
Appendix

This appendix is outlined as follows:

• Section A details our synthetic data generating process and how we generated missingness.
• Section B contains additional experiments on synthetic data testing for imputation perfor-

mance, testing for prediction performance of a downstream machine learning algorithm
on imputed data, and testing for congeniality. In each case we consider MCAR, MAR
and MNAR missingness patterns. We used the same experimental setup in [33] for testing
prediction performance of a downstream machine learning algorithm and for congeniality.

• Section C contains additional experiments on real datasets testing for prediction performance
of a downstream machine learning algorithm on imputed data, and testing for congeniality
over all types of missingness.

• Section D provides an overview of our model and training details.
• Section E provides a computational complexity analysis of MIRACLE.
• Section F provides an ablation study for the MIRACLE loss function.
• Section G provides experiments regarding missingness location.
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A Supplementary experimental details

A.1 Synthetic data generation

In each synthetic experiment, we generated a p-dimensional random graph G from a Erdös–Rényi
random graph model with p edges on average. Given G, we assigned uniformly random edge weights
to obtain a weighted adjacency matrix W 2 Rp⇥p. Given W , we sampled X = WX +E repeatedly
from a Gaussian noise model for E 2 Rp (each dimension sampled independently) to generate
independent observations from this system.

A.2 Generating missingness.

The following explains how we constructed synthetic datasets that satisfy MCAR, MAR and MNAR
patterns of missingness. We apply a modification to the missingness generation from [33].

• MCAR. Missing completely at random was introduced by randomly removing 30% of the
observations in each feature.

• MAR. We sequentially define the probability that the i-th component of the n-th sample
is observed conditional on the missingness and values (if observed) of the previous i� 1
components to be,

Pm(i) =
pm(i) ·N · exp(

P
j<i wjmj(n)xj(n) + bj(1�mj(n)))

PN
l=1 exp(

P
j<i wjmj(l)xj(l) + bj(1�mj(l)))

(6)

where pm(i) corresponds to the average missing rate of the i-th feature, and wj , bj are
sampled from U(0, 1) (but are only sampled once for the entire dataset).

• MNAR. Missing not at random was introduced by defining the probability of the i-th
component of the n-th sample to be observed by,

Pm(i) =
pm(i) ·N · exp(�wixi(n))PN

l=1 exp(�wixi(l))
(7)

with the same notation as above. Here, the missingness of a data point is directly dependent
on its value (with dependence determined by the weight wi, sampled from U(0, 1)).

B Additional synthetic results

In this section, we provide supplementary results for synthetic experiments. Note that the error bars
are large for some of the plots with predictive error and congeniality. This is because the y-axis of
these plots are min-max normalized between 0 and 1, so the high variance (large error bars) shows
that the improvement by MIRACLE may be minimal for the mentioned datasets. Additionally, this
could be caused by the fact that the missing features aren’t predictive of a target variable, i.e., better
imputation does not necessarily lead to any performance gain for the predicting the target variable.

B.1 MCAR Results

Using our synthetic experimental setup used in the main paper, we show the performance of MIR-
ACLE in terms of RMSE, predictive error, and congeniality in Figure 8 for each of our baseline
methods with MCAR.
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(a) Performance in terms of RMSE. (b) Performance in terms of prediction RMSE.

(c) MCAR congeniality (in terms of RMSE).
Figure 8: Experiments on MCAR synthetic data as a function of dataset sizes (top), missingness rates (middle),
and feature sizes (bottom) of each subfigure: (a) RMSE, (b) machine learning predictive error of a random
variable, and (c) congeniality.

B.2 MAR Results

Using our synthetic experimental setup used in the main paper, we show the performance of MIR-
ACLE in terms of RMSE, predictive error, and congeniality in Figure 9 for each of our baseline
methods with MAR.

B.3 MNAR Results

Using our synthetic experimental setup used in the main paper, we show the performance of MIR-
ACLE in terms of RMSE, predictive error, and congeniality in Figure 10 for each of our baseline
methods with MNAR.
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(a) Performance in terms of RMSE. (b) Performance in terms of prediction RMSE.

(c) Congeniality (in terms of RMSE).
Figure 9: Experiments on MAR synthetic data as a function of dataset sizes (top), missingness rates (middle),
and feature sizes (bottom) of each subfigure: (a) RMSE, (b) machine learning predictive error of a random
variable, and (c) congeniality.

C Additional real datasets

Prediction error and congeniality. We include additional plots for the real data experiments for
prediction error and congeniality in Figures 12 and 13, respectively.

Additional convergence plots. We include additional convergence plots on real datasets in Fig-
ure 11. We use the same experimental setup used in Figure 7 in Section 4. We observe that MIRACLE
is able to converge regardless of baseline imputation used.

D Model and training details

We used the following network architecture for MIRACLE. Our proposed architecture consists of d
sub-networks with shared hidden layers, as shown in Figure 4. Each network is constructed with two
hidden layers of d neurons with ELU activation. Each benchmark method is initialized and seeded
identically with the same random weights. For dataset preprocessing, all continuous variables are
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(a) Performance in terms of RMSE. (b) Performance in terms of prediction RMSE.

(c) Congeniality (in terms of RMSE).
Figure 10: Experiments on MNAR synthetic data as a function of dataset sizes (top), missingness rates (middle),
and feature sizes (bottom) of each subfigure: (a) RMSE, (b) machine learning predictive error of a random
variable, and (c) congeniality.

standardized with a mean of 0 and a variance of 1. We train each model using the Adam optimizer
with a learning rate of 0.0005 for up to a maximum of 300 epochs.

Computational hardware. All models were trained on an Ubuntu 18.04 OS with 64GB of RAM
(Intel Core i7-6850K CPU @ 3.60GHz) and 2 NVidia 1080 Ti GPUs.

E Computational Complexity
Pseudocode for MIRACLE is provided in Algorithm 1. We perform an analysis of the MIRACLE
scalability. Using our synthetic data generation, we created datasets of 1000 samples. Using our
the synthetic experimental setup presented in the main paper, we present the computational timing
results for MIRACLE as we increase the number of input features on inference and training time
in Figure 14. Computational time scales linearly with increasing the number of input samples. As
expected, we observe that the time to train 1000 samples grows exponentially with the feature size;
however, the inference time remains linear. Inference time on 1000 samples with 400 features takes
approximately 1.1 seconds, while training time takes nearly 85 seconds. Experiments were conducted
on an Ubuntu 18.04 OS using 6 Intel i7-6850K CPUs.
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(a) Autism (b) Energy (c) Protein

(d) Life expectancy (e) Community (f) Yeast

(g) Mammo. masses (h) Wine quality (i) Facebook
Figure 11: Convergence plots for real datasets.

Algorithm 1 Train MIRACLE
Input: An incomplete dataset X with missing values, a missing indicator matrix R (with 1
indicating observed), an imputed matrix X̃(0) by some baseline method,
Output: Imputed dataset X̃⇤ with no missing values.
Initialization: Imputation network f , G = ? with maximum size MG for saving imputed matrices
over epochs
repeat

Train f for one epoch by optimizing the objective function L = L1 + �1R1 + �2R2 with X̃(0)

as input.
if G is full then

Remove the first element from G
end if
X̃ f(X̃(0)), G  G [ {X̃}
X̃(0)  average all the elements of G.

until MIRACLE converges (i.e., change of X(0) is small)
return X̃⇤  X̃(0)
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Figure 12: MIRACLE on real datasets in terms of predictive error. MIRACLE improves over all baselines
across all types of missingness: MCAR (top), MAR (middle), and MNAR (bottom).

Figure 13: MIRACLE on real datasets in terms of congeniality. MIRACLE improves over all baselines
across all types of missingness: MCAR (top), MAR (middle), and MNAR (bottom).

Figure 14: MIRACLE scalability analysis
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F Ablation study

We provide an ablation study on our MIRACLE loss function in Eq. 5 to understand the sources of
gain of MIRACLE. Here we execute this experiment on our real datasets using the same experimental
details highlighted in the main manuscript. We show the results of our ablation on MIRACLE
using MissForest as baseline imputation with MAR missingness to highlight our sources of gain in
Table 1. Here, we observe that MIRACLE (rightmost column) has the most gain over all datasets.
Additionally, we observe that L1 + R1 + R2 has the most gain when MIRACLE has the most
performance improvement over the baseline (see Fig. 7 in the manuscript).

Table 1: Ablation study of MIRACLE on real datasets to highlight sources of gain.

Dataset R1 +R2 L1 +R2 L1 +R1 L1 +R1 +R2

abalone 0.321 ± 0.108 0.521 ± 0.199 0.312 ± 0.082 0.222 ± 0.062
autism 0.093 ± 0.005 0.094 ± 0.004 0.091 ± 0.004 0.073 ± 0.004
energy 0.106 ± 0.011 0.147 ± 0.077 0.132 ± 0.050 0.065 ± 0.061
protein 0.134 ± 0.016 0.129 ± 0.008 0.119 ± 0.010 0.080 ± 0.008
life expectancy 0.239 ± 0.007 0.223 ± 0.019 0.216 ± 0.014 0.208 ± 0.015
community 0.490 ± 0.015 0.516 ± 0.020 0.479 ± 0.023 0.463 ± 0.010
yeast 0.984 ± 0.013 0.984 ± 0.006 0.988 ± 0.004 0.950 ± 0.014
mammo masses 1.105 ± 0.010 1.150 ± 0.009 1.103 ± 0.013 1.040 ± 0.013
wine quality 0.797 ± 0.004 0.745 ± 0.013 0.724 ± 0.008 0.722 ± 0.003
facebook 1.056 ± 0.005 1.032 ± 0.044 1.034 ± 0.056 0.983 ± 0.002

G Understanding missingness location

An important consideration is how well does predicting with the causal parents work when down-
selecting features. Consider missingness in X5 in the DAG in Figure 15. The first column with the
causal parents Pa(X5) mean that only the parents of features were used for imputation. X9 represents
a variable that is not causally linked to anything.

Using our synthetic data generating process, we synthesized a dataset according to Figure 15. The
goal here was to impute the missing values in X5, using each variable in Figure 15 to induce the
missingness. Each of the missingness causes is categorized as MAR, except for X5, which is MNAR
(since missingness caused by itself), and for X9, which is MCAR, since it is an external noise variable.
The results provide several interesting findings.

1. Using MissForest as a baseline imputer, the results in Table 2 show that MIRACLE performs
as well as Pa(X5), and has better performance than the baseline imputer. Moreover, the two
right-most columns of Table 2 give the average estimated functional dependence of X5 (our target
for prediction) and its parents and non-parents. We see that MIRACLE recovers true parents
consistently.

2. We see that using causal parents (Pa(X5) and MIRACLE) for missingness caused by itself, X5‡,
and a noise variable, X9†, leads to the least amount of improvement.

3. We see that MIRACLE has the most gain when the missingness is caused by a causal parent (X2

or X3).

4. Interestingly, for this example, we observe comparable performance when using the Markov
blanket features versus all features in our baseline algorithm (MissForest). This suggests that the
Markov blanket features are likely used for imputation by the baseline method.

In Appendix B, we show that the baseline performs similarly to the Markov blanket features colored
in blue in Figure 15.
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Figure 15: A sample DAG. X5 is the incomplete variable in red. The Markov Blanket MB(X5) is shown in blue,
and the causal parents Pa(X5) are shown with dashed borders. X9 represents a variable that is not causally
linked to anything.

Table 2: Understanding the location of missingness. We predict X5 when its missingness is caused by each
variable in the DAG. ‡ and † represent MNAR and MCAR, respectively. All other causes are MAR. The two
right-most columns show the learned edge weights into X5 for the parental and non-parental variables.

X5 imputed error (RMSE) X5 edge weights (no threshold)
Cause Pa(X5) MB(X5) Baseline MIRACLE Pa non-Pa

X1 0.11 ± .06 0.15 ±.03 0.27 ± .05 0.12 ± .07 0.44 ± 0.14 0.02 ± 0.01
X2 0.98 ± .08 1.34 ± .05 1.31 ± .06 0.49 ± .06 0.64 ± 0.09 0.01 ± 0.01
X3 1.20 ± .04 1.49 ±.04 1.45 ± .09 0.50 ± .06 0.62 ± 0.13 0.02 ± 0.01
X4 0.69 ± .05 1.20 ±.07 1.23 ± .05 1.04 ± .05 0.29 ± 0.11 0.13 ± 0.05
X5‡ 1.51 ± .03 1.75 ±.08 1.76 ± .06 1.59 ± .07 0.37 ± 0.18 0.03 ± 0.02
X6 0.13 ± .08 0.17 ±.04 0.18 ± .07 0.14 ± .05 0.34 ± 0.15 0.05 ± 0.02
X7 1.04 ± .05 1.47 ±.04 1.47 ± .06 1.01 ± .06 0.39 ± 0.05 0.04 ± 0.01
X8 0.21 ± .04 0.28 ±.05 0.23 ± .03 0.20 ± .03 0.46 ± 0.10 0.02 ± 0.01
X9† 0.15 ± .03 0.18 ±.04 0.17 ± .07 0.14 ± .05 0.31 ± 0.15 0.02 ± 0.01

H Convergence

Using the same experimental setup, in Appendix G, we examine how the estimated adjacency matrix
converges to the truth as sample size increases. Table 3, shows that as sample size increases we see
that the quality of the learned m-graph improves.

Table 3: Convergence of DAG weights as dataset size increases. � is the element-wise product and Ŵ is the
predicted adjacency matrix weights

Dataset size
P

i,j (Ŵ �W )/
P

i,j Ŵ

100 0.135 ± 0.04
500 0.242 ±0.03
1000 0.252 ±0.03
5000 0.910 ±0.01
10000 0.916 ±0.01
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