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6 Appendix section

6.1 Benchmark task descriptions

The tasks are categorized into single-view and multi-view settings, covering depth estimation, distance
prediction, spatial relations, and spatial imagination. The descriptions of each task are as follows:

Single-view tasks Single-view tasks test a model’s ability to infer spatial properties from a single
image. These tasks include:

* Depth estimation (OC, OO, NA): Predicting absolute or relative depth values for objects

* Distance prediction (OC, OO, NA): Estimating the Euclidean distance between objects or
from an object to the camera.

* Object center distance inference (00, MCA): Given objects A, B and C, determine which
of B and C is farther or closer to A.

* Object spatial relation (OO, MCA): Determining relative positioning (e.g., left, right, in
front of).

 Spatial imagination (OC, OO, MCA): Predicting unseen spatial relationships based on
limited visual information.

Multi-view tasks Multi-view tasks require reasoning across multiple images to infer spatial rela-
tionships. These tasks include:

* Viewpoint change inference (NA): Given two perspectives, output how the camera should
be moved to see the second perspective.

* Multi-view depth estimation (OC, OO, NA): Predicting depth across multiple perspectives.

* Multi-view distance prediction (OC, OO0, NA): Estimating object distances across different
views.

* Multi-view object matching (MCA): Identifying the same object across multiple views.

* Camera pose inference (MCA): Predict the position of the camera corresponding to the
second perspective in the first image.

* Multi-view object spatial relation (OC, OO, MCA): Determining object relationships
across multiple images.

 Spatial imagination (OC, OO, MCA): Reasoning about spatial structure beyond visible
views.

A tiny version of our SPAR-Bench evaluation results are shown in table 8.

6.2 Image subsampling

We propose an efficient image filtering method based on camera poses to reduce redundant images
with high similarity, so that can improve data processing efficiency. Given a scene S with a set of
image sequence Z, our goal is to filter out similar images based on a translation threshold dy,,s and a
rotation angle threshold dy, obtaining a compact image sequence Z' C Z.

Specifically, for a given image sequence Z, we first load the corresponding camera intrinsic and
extrinsic parameters. Each camera pose is represented by a 4 x 4 transformation matrix T';, consisting
of a rotation matrix R; and a translation vector t;:

R, ti]

T; = ey

o7 1

where t; € R? and R; € SO(3). The world-to-camera transformation by inverting the given pose.

Translation filtering For each image i(i = 1, .., n), we compute the Euclidean distance between its
translation vector t; and the translation vector t; of a candidate image j(j = ¢ + 1, ..,n):

diz™™ = ||t — t]] @
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If dﬁ;‘ms > dyp, we believe that the difference between these two frames is significant enough and
we will preserve the current frame j. If dﬁ;‘ms < dyp, we will further perform rotation filtering.

Rotation filtering For images with smaller df;f“"s, we compute the relative rotation matrix: R;; =
R; le The rotational difference is determined by the angle 6;;, computed as:
T R;;) -1 1
0;; = cos™* <race( ) ) 180
2
If 0;; < 04, image j is considered redundant and removed. After iterating through all images, the
final filtered image set is as follows:

T’ = {i € T | satisfies filtering criteria} (€))

3

s

This method can filter out approximately 90% of redundant images, which ensures that only images
with sufficiently distinct poses are retained, reducing redundancy while preserving viewpoint diversity.

In the experimental setup, we set the threshold parameter of the ScanNetPP dataset [27] with
dyn, = 0.5 and 6, = 45 and ScanNet [26] dataset with d;;, = 0.5 and 6,5, = 15. For the Structured3D
Dataset, we did not perform filtering and subsampling operations since the images in the dataset were
sparse enough.

s s > > & § ; s §
§ § § § 9 5 o 5 ) S 5 § SO § 5 5 § §
Methods < |8 & & & 9 g &4 4 & £ |8 &4 5§ § 8§ & & & &
Baseline
Chance Level (Random) - - - - - 22 18 80 32 26 28 22 32 12 30 28
Chance Level (Frequency) | 37.80 | 36.33 42.89 51.78 25.78 27.11 3533 46.89 35.33 25.56|41.14 30 40 5342|3800 60 58 32 30 30 32 34 28 38
Human Level 67.27|55.31 72.75 74.25 2875 36.25 78.25 5225 66.5 33.50(7232 92 64 6097|7622 8 94 70 92 8 78 82 50 60
GPT-40 36.39 | 29.25 53.80 45.00 15.00 13.60 37.40 34.40 23.40 24.40|2493 30 16 28.80(45.11 64 64 58 46 46 32 44 30 22
Claude-3.7-Sonnet 21.77 | 2543 41.00 4540 11.20 12.20 42.60 19.60 26.00 540 | 733 16 6 0.00 (2333 40 48 22 36 14 12 20 6 12
Qwen2-VL-72B 35.62|35.28 4540 49.80 13.80 10.00 54.60 49.40 36.80 22.40|23.39 42 18 10.16/40.00 60 68 50 38 44 18 28 18 36
Qwen2.5-VL-72B 39.40 | 35.35 53.20 46.80 17.80 29.00 49.60 57.40 14.40 14.60|23.05 40 16 13.16|4844 74 74 60 56 S50 20 34 24 44
InternVL2-2B 29.51|21.85 15.00 31.40 17.80 18.80 13.40 27.40 26.40 24.60|25.81 44 26 7.44 3756 46 56 54 42 18 50 42 14 16
InternVL2-4B 32.10 |29.55 22.02 28.40 18.80 14.20 47.60 52.60 26.00 26.60|33.88 52 30 19.64|33.78 46 54 44 30 30 26 26 26 22
InternVL2-8B 32.95 |24.10 24.60 39.00 16.00 16.80 35.40 33.40 13.40 1420|3543 58 28 20.28|40.00 68 42 40 46 34 34 46 16 34
InternVL2.5-2B 31.81|27.85 44.80 4220 11.20 7.00 40.20 3540 2420 17.80|22.48 40 22 544 |3844 68 48 50 48 26 18 38 20 30
InternVL2.5-4B 33.99 |30.38 31.20 36.20 26.20 30.00 24.20 36.40 31.40 27.40|34.27 58 38 6.80 |37.11 48 58 54 40 30 24 42 18 20
InternVL2.5-8B 37.27 | 28.38 27.40 31.80 19.60 19.00 40.40 48.80 15.00 25.00|31.47 66 22 640 [47.11 58 54 50 52 52 44 58 22 34
Qwen2-VL-2b 26.88 | 23.45 44.20 50.00 25.20 17.40 7.40 12.60 20.60 10.20|28.01 22 24 38.04|29.56 52 50 20 24 10 40 30 24 16
Qwen2-VL-7b 32.84 12798 37.80 36.20 23.60 7.00 28.00 31.80 31.60 27.80|16.36 26 18 5.08 |42.67 58 54 26 40 54 34 36 40 42
Qwen2.5-VL-7b 33.48 |31.25 27.80 37.20 27.40 19.80 50.00 47.60 17.60 22.60|19.84 26 24 952 |40.00 52 50 44 56 28 28 36 32 34
LLaVA-OV-0.5B 30.84 |33.20 55.40 51.60 22.80 10.00 35.20 28.20 36.60 25.80|15.08 24 20 1243400 52 56 40 36 16 30 40 22 14
LLaVA-OV-7B 3473 |27.95 42.80 44.60 2520 24.00 12.80 12.60 38.40 23.20|27.69 48 22 13.08|43.11 64 62 26 58 42 24 40 32 40
llava-v1.5-7b 2576 | 13.02 4.80 15.40 17.60 17.60 8.80 7.80 17.60 14.60|33.69 28 40 33.08|34.44 52 54 18 22 26 42 38 18 40
llava-v1.6-7b 13.50 | 9.00 10.60 0.00 20.40 0.00 16.20 0.00 24.80 0.00 | 6.00 8 10 0.00 |20.00 46 14 12 30 6 42 6 20 4
ours 66.65 | 70.33 87.00 83.20 45.80 43.20 81.00 84.00 78.80 59.60|60.13 78 66 3640|6556 8 90 72 78 58 48 48 42 68

Table 8: Performance of different models on SPAR-Bench. All results are obtained on tiny SPAR-
Bench. Shaded cells indicate best scores in each category.

6.3 Image item construction

Given a scene .S, we construct image items by extracting 3D object data and projecting it onto 2D
images.

Data loading and initialization For each scene, we load the corresponding 3D mesh, camera intrinsic
and extrinsic parameters, and instance annotations. The scene mesh is represented as: M = (V, F)
where V is the set of vertices and F is the set of triangular faces.

To determine the visibility of 3D faces in the image, we perform rasterization to obtain a mapping
from image pixels to face indices: piz_to_face(, ) = fr. where fi € F and pix_to_face stores
the corresponding face index for each pixel (x, y). If a pixel does not correspond to any face, it will
be marked as -1.

Object projection and bounding box computation For each 3D object, we compute the set of
visible vertices and project them into the 2D image plane using:

p2p = K(R-psp +1) (5)
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where psp is a vertex in the 3D space, and pop is its projected 2D coordinate. The bounding box of
the projected object is computed as: Bp,; = [Tmins Ymin, Tmaz, Ymae)- 10 ensure a valid projection,
we also enforce some constraints as follows:

* The fraction of visible object vertices f, in the image must exceed a threshold 7,,, where
U Viotal]

* The projected object area must be above a minimum threshold A,,,;;,.

* The depth values in the z-buffer must be within a reasonable range. where z,,;, =
min(Zop;),  Zmas = max(Zop;)

Each 3D object is associated with an oriented bounding box, defined by its centroid ¢, axis-aligned
lengths I,[,,l.. Finally, the extracted image item dictionary, including object data, is used for
downstream task generation.

6.4 Task data generation

In this section, we describe the detailed information on multi-task generation. We generate questions
based on the template. These questions can be of three types: select, fill, or sentence. In each case,
the goal is to generate a question that involves the spatial relationship between two objects. We will
provide a Q&A format in the form of a template and fill in key information and answers in it.

Obj spatial relation This task is to describe the spatial relationships between objects in the 3D
scene based on their spatial positions. The process involves several key steps: (1) Transforming 3D
object coordinates from the original camera view into a common view. This transformation ensures
that all spatial calculations are relative to the main camera view. Let ¢ denotes the 3D center of
an object in the world coordinate system, and T denotes the camera pose. The transformation is
carried out as: ¢}, . = T~ - Chomo. Where chomo means homogeneous coordinate of object 3D
center point. (2) Spatial Relationship Description. We describe their spatial relationships in terms
of several key factors: above-below, left-right, near-far, and front-behind (relative to two objects).
These relationships are determined based on their spatial coordinates and distance from the camera
center. The distance is calculated by d = ||¢/ — Tyrans||2- We set the relationship threshold at 0.1m.
If the difference in coordinates or distances is less than 0.1m, we consider the corresponding spatial
relationship to be indistinguishable (empty).

Depth prediction Given an image I containing a set of detected objects O = {01, 0, ..., 0, }, we
transform each object’s 3D center point c into the camera coordinate system as ¢’ € R3. Then the
transformed depth values dare extracted from the z-component of their transformed coordinatesc’,
which means d = ¢/(z).

For the absolute depth prediction task, we use this value as the standard answer. For the relative depth
estimation task, we calculate the depth difference between objects by: Ad = |d; — d;|. We will skip
that case if two objects have overlapping bounding boxes or similar values.

Distance infer Given an image I containing a set of objects O = {01, 02, ..., 0, }, we define the
3D center of each object o; in the world coordinate system as ¢; € R? and transformed them into
the camera coordinate system as c;. For the object-object type task, we random sample two objects
04 with ¢/, and op with ¢/; in the same scene. The Euclidean distance between them is given by:
dap = ||c/y — cz|2, where || - |2 represents the Lo-norm. For the object-camera type task, we
calculate the distance with |c}|2. To ensure numerical stability and consistency in question-answer
generation, the computed distance is rounded to the nearest 0.1 meter. If the two objects have
overlapping 3D bounding boxes or the distance is smaller than the threshold, we will skip that case.

Spatial volume infer For an object o; in the image, we first obtain its 3D bounding box in the
world coordinate system and then transform it into the camera coordinate system by the extrinsic
transformation matrix. The center coordinate is denoted as ¢, and each corner point of 3D bounding
box is denoted as b;;, j = (1,2,...,8). The object’s dimensions(length, width, and height) are
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derived as follows:

h = max bfzj) — min bgzj)
J ’ J ’
l = max| b — bl (6)

w = min b7 — 53|
gk

where b(my) = (b()r-) b(y)) represents the 2D projection of the bounding box in the XY plane. To
ensure con51stency, all d1mens1ons are converted to centimeters. The final estimated volume is given
by: V=~h-1 w.

Spatial imagination Our spatial imagination task aims to evaluate the spatial reasoning capabilities
of LLM models by analyzing object relationships before and after camera transformations in a 3D
environment. Given an image and corresponding scene metadata, we randomly sample objects and
generate structured question-answer (QA) pairs that describe spatial relationships.

For each image T, it is associated with a set of objects O = {01, 02, ..., on }. We randomly sample
objects 04, 0p,0c,0p C O for relational comparisons. To analyze object relationships from different
viewpoints, we transform the camera pose P € SE/(3) so that it moves towards object A and faces
object B. The new camera pose is constructed as follows:

Cp —C4
ta—sp=-cy f=7”CBi(:A”
" @)
()Xf
=——— u=fxv r=-v
[uo x £

where c 4, cp are 3D center coordinates of object 04 and op respectively. ug = [0,0,1]7. f is
forward direction vector. v, u, r are left-vector, up-vector and right-vector respectively. So the new
camera pose is computed as:

r u f tyqop

0 0 0 1 ®

Pa—sp =
We extract the up-vector u from P 4y 5 to compute the vertical rotation angle: § = cos™! (u,). If
6 > 60°, we will discard this viewpoint to maintain a reasonable observation angle.

After that, we compute the spatial relationship between object C' and object D before and after camera
transformation. The relationships are determined based on their relative positions in the original
and transformed coordinate system. We describe their spatial relationships in terms of several key
factors: above-below, left-right, near-far, and front-behind (relative to two objects). Please refer to the
paragraph Obj spatial relation for details. The final step is to generate structured question-answer
pairs. The same procedure is also applied after the camera-object type task.

Position matching Position matching aims to identify and compare the positions of the same
object across different views. Given an object detected in multiple images, the task is to find its
corresponding 2D bounding box in another view based on its known location in one reference image.

We define the set of detected objects as: O = {01, 09,...,0n}. Each object o; appears in a set
of images: Z; = {I;,, L,, ..., I;, }. If m < 2, the object is discarded. For each valid object, we
randomly select two distinct images I;,, I;,, € Z; as a reference frame and target frame. The 3D
bounding box of object o; in world coordmate is denoted as b?. We project the 3D bounding box
into the image plane by Eq. 5. The 2D bounding boxes in different images are denoted as b2, b2BD .
The system formulates the position-matching question as: Qusetion = Given object o; and 2D
bounding box b7”in image I, find its location in image Ip; Answer = b7

View chang infer The view change inference task aims to determine the spatial displacement between
different images. To ensure images exhibit a co-visibility relationship, we select different perspectives
images containing the same object instance.

For two distinct images [ 4, Ip containing the same object o, we first compute the center of the
2D bounding box to quantify the object’s displacement in image space. If 2D bounding box of
object o in image 14 is denoted as b2P = [p3in ymin gmax ymax] the 2D center coordinate can be
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calculated as ¢3” = (@™ + 24¥) /2, (y'3™ 4 y3#*)/2). We determined the object’s location in
image 14, I according to ¢ and c¢2P.

To further analyze the view movement in the world coordinate system, We compute the relative pose
transformation: T g = Tle p. Finally, we determine the translation distance and rotation angle
of the viewpoint based on the relative pose transformation matrix and designed rules.

Camera pose The camera pose task aims to estimate the relative camera motion and generate
questions about the 2D coordinate and depth information.

We select distinct frames 14, I 5 containing the same object o to ensure there is an overlap between
them. Firstly, we project the camera position of image /5 in the world coordinate into the coordinate
system of image 4. According to Eq. 5, the projected point coordinate is given by pgja =
K(R4 -pp +1ta), where R4 and t 4 are the rotation matrix and the translation vector of 74, K is
camera intrinsic parameters. Then we calculate 2D image coordinates (u, v) and normalize to 0-1000:

_ ppjal0] 1000 Yy ppjall] 1000
pB|al2] width pB|al2] height

©))

If the projected point lies within the bounds of the image 14, we compute the depth as: dpj4 =
(Ra-pp+ta)l2]

Obj frame location We introduce the object frame location task to identify the frames in which a
given object appears. We select a reference frame and determine in which other frames the object
is present. This process enables the automatic generation of question-answer pairs related to object
appearance across frames.

For an object o, we extract the set of frames: I, = {I1, I», ..., I, } in which it appears. To generate
questions and answers for the object frame localization task, we randomly select one frame I as the
reference frame. We also add some irrelevant frames as wrong options, and the answer consists of
the list of other frame indices I, \ {I;} where the object appears.

Obj frame location This task infers the chronological order in which multiple objects appear within
a sequence of frames. By selecting a subset of objects and analyzing their first occurrence across
frames, we generate structured question-answer pairs that facilitate the temporal reasoning ability of
LLMs.

Given object set O = {01,042, ...,0n} and associated image set L = {Z1,Zs,...,Zn}, where Z;
means the set of frames that object o; appears, we extract the first appearance frame of each object as
F; =min(f | f € Z;). F; represents the first appearance frame of object o;. Then we sort the first
appearance frames of all objects to determine the order of appearance:

S = sort({(o1, F1), (02, F2), (03, F3)...(on, FN)}) (10)

where S is the ordered sequence of objects based on their first appearance. For sentence QA type, the
ordered sequence and corresponding frame indices are embedded into a sentence. For fill-in-the-blank
QA type, the question is to instruct the user to input the ordered sequence as a comma-separated list.

Obj count The object counting task estimates the number of object instances for each label category
in the scene and generates structured question-answer pairs to facilitate the numerical reasoning
ability of LLMs.

For each label | € L, the total number of object instances is computed as: N (1) = |L£(l)], where N (1)
represents the number of object instances associated with label . We will exclude labels with fewer
than two object instances.

Room size This task is designed for estimating the size of a room and generating corresponding
question-answer pairs to facilitate the spatial reasoning ability of LLMs.

Given the room scene with 3D mesh M = (V, F), where V is the set of vertices and F is the set
of faces, we first downsample the points by quantizing them into a grid with a specified voxel size
0 = 0.1. The quantized points are computed as: Q = |)/¢|. We then retain only the unique voxels
and obtain voxel centers: P; = (unique(Q) + 0.5) - 4. If the downsampled set contains fewer than
100 points, we revert to the original point cloud. To estimate the room area, we construct a concave
hull using the a-shape algorithm:

‘H = AlphaShape(P4[:,0 : 2], @) (11)
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where a = 0.1 controls the concavity of the shape. The final room area is calculated as:
A= Z area(h) (12)
heH

To ensure valid QA generation, If the room area is below the threshold A;;, = 5, no QA pairs will be
generated.

Navigation We construct visual navigation data based on Matterport3D [51] and Room Across Room
(RxR) [52] Dataset. For the navigation instructions and image sequences in RxR, we take the image
sequence as input and construct question-answer pairs. We expect the LLM model to complete the
absent key action information in the instructions, such as left turn, straight ahead, on the right side,
and other keywords.

6.5 More visualization

We visualize the detailed QA of different tasks from our proposed SPAR-7M in table 9 - 14.
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Table 9: Detailed QA of the Depth Prediction Object-Camera Multi-view Task

Task

Question

Answer

Depth-OC-MV (fill)

The table (red point) is located at a depth
of 1.5 meters. Estimate the depth of the
food container (blue point). Calculate or
judge based on the 3D center points of
these objects. Ensure your answer contains
only one number.

' .

1.7

Depth-OC-MV (select)

Given the refrigerator (red point) is located
at a depth of 0.9 meters in the Z-axis of the
camera coordinate system, how far in depth
is the dish soap bottle (blue point) at its
center? Calculate or judge based on the
3D center points of these objects. Please
select the correct option from the choices
provided. A. 2.2; B. 2.3; C. 2.1; D. 14.
Your answer can only include one of op-
tions A, B, C or D.

!

Depth-OC-MV (sentence)

The wardrobe (red point) at a depth of 1.0
meters serves as a reference. How deep is
the power socket (blue point)? Calculate
or judge based on the 3D center points of
these objects.

Q‘

With a central
depth of 1.2 me-
ters, power socket
is referenced here.
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Table 10: Detailed QA of the Distance Inference Object-Object Task

Task

Question

Answer

DistI-00 (fill)

Between cooking pan (green point) and plas-
tic bag (blue point), which object is positioned
closer to coat (red point)? Calculate or judge
based on the 3D center points of these objects.
Submit your response as the name of one object
exclusively.

Cooking pan

DistI-OO (choice)

Which object lies at a closer distance from back-
pack (red point): duffel bag (green point) or
light switch (blue point)? Calculate or judge
based on the 3D center points of these objects.
Pick the appropriate answer from the options
given. A. duffel bag; B. light switch. Your
answer can only include one of options A, B.

2

DistI-OO (sentence)

Compare the positions of bed (green point) and
chair (blue point). Which is farer to the heater
(red point)? Calculate or judge based on the 3D
center points of these objects.
e 1

The proximity of
heater to bed is
2.0 meters, and
to chair, it is 0.6
meters. Hence,
the bed is farer to
heater.
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Table 11: Detailed QA of the Object Spatial Relation Object-Camera Multi-view Task

Task

Question

Answer

ObjRel-OC-MYV (choice)

What is the direction of object chair
(bbox) relative to the observer’s primary
angle? Calculate or judge based on the
3D center points of these objects. We
use the first image to reflect the main per-
spective, which aligns with the observer’s
viewpoint. The options describe the spa-
tial relationship between object and ob-
server in terms of left-right (left, right, or
empty if indistinguishable), above-below
(above, below, or empty if indistinguish-
able), and front-behind (front, behind, or
empty if indistinguishable). Select the cor-
rect response from the given choices. A.
left, above, front; B. left, above, behind;
C. right, below, front; D. right, above,
front. Your answer can only include one
of options A, B, C or D.

P

C

ObjRel-OC-MYV (sentence)

Describe the spatial orientation of object
bag (bbox) relative to the observer. Cal-
culate or judge based on the 3D center
points of these objects. The first image is
positioned to serve as the main viewpoint
for the observer.

Relative to the ob-
server’s placement,
the bag (red bbox)
appears to the right
below. It seems to
the front.
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Table 12: Detailed QA of the Object Spatial Imagination Object-Camera Multi-view Task

Task

Question

Answer

Splmag-OC-MV (choice)

How does the positional relationship of
refrigerator (red bbox) to the observer
evolve once the observer shifts to the 3D
center of map poster (green bbox) and
faces trash can (blue bbox)? Calculate
or judge based on the 3D center points
of these objects. Base your response
on the observer’s perspective, with the
first image defined as the primary view
before movement begins. For multiple-
choice questions, consider only the state
after the observer has moved. The op-
tions describe the spatial relationship be-
tween object and observer in terms of
left-right (left, right, or empty if indistin-
guishable), above-below (above, below,
or empty if indistinguishable), and front-
behind (front, behind, or empty if indistin-
guishable). Select the appropriate option
from the given choices. A. left, , behind;
B. right, below, ; C. right, above, ; D.
right, below, behind. Your answer can
only include one of options A, B, C or D.

B L

D

Splmag-OC-MYV (sentence)

How does the observer’s shift to the 3D
center of wardrobe (green bbox) and ori-
entation toward rug (blue bbox) affect the
positioning of bread packet (red bbox)?
Calculate or judge based on the 3D cen-
ter points of these objects. Frame your
answer with the observer’s perspective,
assigning the first image as the main view
before any motion.

Initially, the po-
sition of bread
packet appears to
the left below to
the observer. It is
also to the front.
After moving to
wardrobe and
orienting toward
rug, bread packet
changes to to the

- | right below. It is

now to the behind.
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Table 13: Detailed QA of the View Change Infer Task

Task

Question

Answer

ViewChgl (fill)

If starting from the first image, how would
the observer’s camera need to move to recre-
ate the second image? Provide the cam-
era movement and rotation in the following
format: move (right or left):(meters), move
(down or up):(meters), move (forward or
back):(meters), rotate (down or up):(degrees),
rotate (right or left):(degrees) - The first three
values are in meters. - The last two values are
in degrees. - Use commas to separate each
parameter. - Do not include any additional
text. Example: move left: 2.6, move down:
0.1, move forward: 0.2, rotate up: 10, rotate
left: 0.

move right: 1.2,
move up: 0.4, move
forward: 1.4, rotate
up: 5, rotate left: 90

ViewChgl (sentence)

What changes in position or angle would the
camera need to make to transition from the
first image to the second?

In the initial frame,
suitcase is located in
the bottom-right and
moves left and up to
the bottom-left in the
next image. Observ-
ing these changes, it
appears the camera
movement is as fol-
lows: To realign the
second image: Move
0.6 meters forward.
Shift sideways by 0.2
meters right. Rotate
down by 10 degrees.
Turn right by 10 de-
grees.
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Table 14: Detailed QA of the Camera Pose Task

Task

Question

Answer

CamPos (fill)

Estimate the image-plane location and depth
in meters of the second image’s observer
as it appears in the first image’s coordinate
space. Please ensure your answer is limited
to a 2D coordinate and a depth, for instance:
(200, 500), 1.2.

(113,182),3.8

CamPos (choice)

Where would the second image’s observer
be seen in the first image’s space? Provide
2D image-plane coordinates and depth in me-
ters. Choose the correct response from the
given choices. A. Image Coor: (514, 95),
Depth:4.8 meters; B. Image Coor: (258,
537), Depth: 6.9 meters; C. Image Coor:
(108, 214), Depth: 6.3 meters; D. Image
Coor: (921, 261), Depth: 4.6 meters. Your
answer can only include one of options A, B,
CorD.

ViewChgl (sentence)

How does the camera’s movement between
the two images affect its position in the first
image? Provide (X,Y") image-plane coordi-
nates and depth in meters.

Relative to the first
image, the second
image’s observer oc-
cupies the position
(650,457), at a depth
of 4.4 meters.
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