
6 Appendix section796

6.1 Benchmark task descriptions797

The tasks are categorized into single-view and multi-view settings, covering depth estimation, distance798

prediction, spatial relations, and spatial imagination. The descriptions of each task are as follows:799

Single-view tasks Single-view tasks test a model’s ability to infer spatial properties from a single800

image. These tasks include:801

• Depth estimation (OC, OO, NA): Predicting absolute or relative depth values for objects802

• Distance prediction (OC, OO, NA): Estimating the Euclidean distance between objects or803

from an object to the camera.804

• Object center distance inference (OO, MCA): Given objects A, B and C, determine which805

of B and C is farther or closer to A.806

• Object spatial relation (OO, MCA): Determining relative positioning (e.g., left, right, in807

front of).808

• Spatial imagination (OC, OO, MCA): Predicting unseen spatial relationships based on809

limited visual information.810

Multi-view tasks Multi-view tasks require reasoning across multiple images to infer spatial rela-811

tionships. These tasks include:812

• Viewpoint change inference (NA): Given two perspectives, output how the camera should813

be moved to see the second perspective.814

• Multi-view depth estimation (OC, OO, NA): Predicting depth across multiple perspectives.815

• Multi-view distance prediction (OC, OO, NA): Estimating object distances across different816

views.817

• Multi-view object matching (MCA): Identifying the same object across multiple views.818

• Camera pose inference (MCA): Predict the position of the camera corresponding to the819

second perspective in the first image.820

• Multi-view object spatial relation (OC, OO, MCA): Determining object relationships821

across multiple images.822

• Spatial imagination (OC, OO, MCA): Reasoning about spatial structure beyond visible823

views.824

A tiny version of our SPAR-Bench evaluation results are shown in table 8.825

6.2 Image subsampling826

We propose an efficient image filtering method based on camera poses to reduce redundant images827

with high similarity, so that can improve data processing efficiency. Given a scene S with a set of828

image sequence I , our goal is to filter out similar images based on a translation threshold dtrans and a829

rotation angle threshold drot, obtaining a compact image sequence I ′ ⊆ I.830

Specifically, for a given image sequence I, we first load the corresponding camera intrinsic and831

extrinsic parameters. Each camera pose is represented by a 4×4 transformation matrix Ti, consisting832

of a rotation matrix Ri and a translation vector ti:833

Ti =

[
Ri ti
0T 1

]
(1)

where ti ∈ R3 and Ri ∈ SO(3). The world-to-camera transformation by inverting the given pose.834

Translation filtering For each image i(i = 1, .., n), we compute the Euclidean distance between its835

translation vector ti and the translation vector tj of a candidate image j(j = i+ 1, .., n):836

dtransij = ∥ti − tj∥ (2)
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If dtransij > dth, we believe that the difference between these two frames is significant enough and837

we will preserve the current frame j. If dtransij < dth, we will further perform rotation filtering.838

Rotation filtering For images with smaller dtransij , we compute the relative rotation matrix: Rij =839

R−1
i Rj The rotational difference is determined by the angle θij , computed as:840

θij = cos−1

(
Trace(Rij)− 1

2

)
∗ 180

π
(3)

If θij < θth, image j is considered redundant and removed. After iterating through all images, the841

final filtered image set is as follows:842

I ′ = {i ∈ I | satisfies filtering criteria} (4)

This method can filter out approximately 90% of redundant images, which ensures that only images843

with sufficiently distinct poses are retained, reducing redundancy while preserving viewpoint diversity.844

In the experimental setup, we set the threshold parameter of the ScanNetPP dataset [27] with845

dth = 0.5 and θth = 45 and ScanNet [26] dataset with dth = 0.5 and θth = 15. For the Structured3D846

Dataset, we did not perform filtering and subsampling operations since the images in the dataset were847

sparse enough.848
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Baseline
Chance Level (Random) - - - - - - - - - 22 18 - 80 32 26 28 22 32 12 30 28
Chance Level (Frequency) 37.80 36.33 42.89 51.78 25.78 27.11 35.33 46.89 35.33 25.56 41.14 30 40 53.42 38.00 60 58 32 30 30 32 34 28 38
Human Level 67.27 55.31 72.75 74.25 28.75 36.25 78.25 52.25 66.5 33.50 72.32 92 64 60.97 76.22 80 94 70 92 80 78 82 50 60
GPT-4o 36.39 29.25 53.80 45.00 15.00 13.60 37.40 34.40 23.40 24.40 24.93 30 16 28.80 45.11 64 64 58 46 46 32 44 30 22
Claude-3.7-Sonnet 21.77 25.43 41.00 45.40 11.20 12.20 42.60 19.60 26.00 5.40 7.33 16 6 0.00 23.33 40 48 22 36 14 12 20 6 12
Qwen2-VL-72B 35.62 35.28 45.40 49.80 13.80 10.00 54.60 49.40 36.80 22.40 23.39 42 18 10.16 40.00 60 68 50 38 44 18 28 18 36
Qwen2.5-VL-72B 39.40 35.35 53.20 46.80 17.80 29.00 49.60 57.40 14.40 14.60 23.05 40 16 13.16 48.44 74 74 60 56 50 20 34 24 44
InternVL2-2B 29.51 21.85 15.00 31.40 17.80 18.80 13.40 27.40 26.40 24.60 25.81 44 26 7.44 37.56 46 56 54 42 18 50 42 14 16
InternVL2-4B 32.10 29.55 22.02 28.40 18.80 14.20 47.60 52.60 26.00 26.60 33.88 52 30 19.64 33.78 46 54 44 30 30 26 26 26 22
InternVL2-8B 32.95 24.10 24.60 39.00 16.00 16.80 35.40 33.40 13.40 14.20 35.43 58 28 20.28 40.00 68 42 40 46 34 34 46 16 34
InternVL2.5-2B 31.81 27.85 44.80 42.20 11.20 7.00 40.20 35.40 24.20 17.80 22.48 40 22 5.44 38.44 68 48 50 48 26 18 38 20 30
InternVL2.5-4B 33.99 30.38 31.20 36.20 26.20 30.00 24.20 36.40 31.40 27.40 34.27 58 38 6.80 37.11 48 58 54 40 30 24 42 18 20
InternVL2.5-8B 37.27 28.38 27.40 31.80 19.60 19.00 40.40 48.80 15.00 25.00 31.47 66 22 6.40 47.11 58 54 50 52 52 44 58 22 34
Qwen2-VL-2b 26.88 23.45 44.20 50.00 25.20 17.40 7.40 12.60 20.60 10.20 28.01 22 24 38.04 29.56 52 50 20 24 10 40 30 24 16
Qwen2-VL-7b 32.84 27.98 37.80 36.20 23.60 7.00 28.00 31.80 31.60 27.80 16.36 26 18 5.08 42.67 58 54 26 40 54 34 36 40 42
Qwen2.5-VL-7b 33.48 31.25 27.80 37.20 27.40 19.80 50.00 47.60 17.60 22.60 19.84 26 24 9.52 40.00 52 50 44 56 28 28 36 32 34
LLaVA-OV-0.5B 30.84 33.20 55.40 51.60 22.80 10.00 35.20 28.20 36.60 25.80 15.08 24 20 1.24 34.00 52 56 40 36 16 30 40 22 14
LLaVA-OV-7B 34.73 27.95 42.80 44.60 25.20 24.00 12.80 12.60 38.40 23.20 27.69 48 22 13.08 43.11 64 62 26 58 42 24 40 32 40
llava-v1.5-7b 25.76 13.02 4.80 15.40 17.60 17.60 8.80 7.80 17.60 14.60 33.69 28 40 33.08 34.44 52 54 18 22 26 42 38 18 40
llava-v1.6-7b 13.50 9.00 10.60 0.00 20.40 0.00 16.20 0.00 24.80 0.00 6.00 8 10 0.00 20.00 46 14 12 30 6 42 6 20 4
ours 66.65 70.33 87.00 83.20 45.80 43.20 81.00 84.00 78.80 59.60 60.13 78 66 36.40 65.56 86 90 72 78 58 48 48 42 68

Table 8: Performance of different models on SPAR-Bench. All results are obtained on tiny SPAR-
Bench. Shaded cells indicate best scores in each category.

6.3 Image item construction849

Given a scene S, we construct image items by extracting 3D object data and projecting it onto 2D850

images.851

Data loading and initialization For each scene, we load the corresponding 3D mesh, camera intrinsic852

and extrinsic parameters, and instance annotations. The scene mesh is represented as: M = (V,F)853

where V is the set of vertices and F is the set of triangular faces.854

To determine the visibility of 3D faces in the image, we perform rasterization to obtain a mapping855

from image pixels to face indices: pix_to_face(x,y) = fk. where fk ∈ F and pix_to_face stores856

the corresponding face index for each pixel (x, y). If a pixel does not correspond to any face, it will857

be marked as -1.858

Object projection and bounding box computation For each 3D object, we compute the set of859

visible vertices and project them into the 2D image plane using:860

p2D = K(R · p3D + t) (5)
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where p3D is a vertex in the 3D space, and p2D is its projected 2D coordinate. The bounding box of861

the projected object is computed as:Bobj = [xmin, ymin, xmax, ymax].To ensure a valid projection,862

we also enforce some constraints as follows:863

• The fraction of visible object vertices fv in the image must exceed a threshold τv, where864

fv = |Vvisible|
|Vtotal| .865

• The projected object area must be above a minimum threshold Amin.866

• The depth values in the z-buffer must be within a reasonable range. where zmin =867

min(Zobj), zmax = max(Zobj)868

Each 3D object is associated with an oriented bounding box, defined by its centroid c, axis-aligned869

lengths lx, ly, lz . Finally, the extracted image item dictionary, including object data, is used for870

downstream task generation.871

6.4 Task data generation872

In this section, we describe the detailed information on multi-task generation. We generate questions873

based on the template. These questions can be of three types: select, fill, or sentence. In each case,874

the goal is to generate a question that involves the spatial relationship between two objects. We will875

provide a Q&A format in the form of a template and fill in key information and answers in it.876

Obj spatial relation This task is to describe the spatial relationships between objects in the 3D877

scene based on their spatial positions. The process involves several key steps: (1) Transforming 3D878

object coordinates from the original camera view into a common view. This transformation ensures879

that all spatial calculations are relative to the main camera view. Let c denotes the 3D center of880

an object in the world coordinate system, and T denotes the camera pose. The transformation is881

carried out as: c′homo = T−1 · chomo. where chomo means homogeneous coordinate of object 3D882

center point. (2) Spatial Relationship Description. We describe their spatial relationships in terms883

of several key factors: above-below, left-right, near-far, and front-behind (relative to two objects).884

These relationships are determined based on their spatial coordinates and distance from the camera885

center. The distance is calculated by d = ∥c′ − Ttrans∥2. We set the relationship threshold at 0.1m.886

If the difference in coordinates or distances is less than 0.1m, we consider the corresponding spatial887

relationship to be indistinguishable (empty).888

Depth prediction Given an image I containing a set of detected objects O = {o1, o2, ..., on}, we889

transform each object’s 3D center point c into the camera coordinate system as c′ ∈ R3. Then the890

transformed depth values dare extracted from the z-component of their transformed coordinatesc′,891

which means d = c′(z).892

For the absolute depth prediction task, we use this value as the standard answer. For the relative depth893

estimation task, we calculate the depth difference between objects by: ∆d = |di − dj |. We will skip894

that case if two objects have overlapping bounding boxes or similar values.895

Distance infer Given an image I containing a set of objects O = {o1, o2, ..., on}, we define the896

3D center of each object oi in the world coordinate system as ci ∈ R3 and transformed them into897

the camera coordinate system as c′i. For the object-object type task, we random sample two objects898

oA with c′A and oB with c′B in the same scene. The Euclidean distance between them is given by:899

dAB = ∥c′A − c′B∥2, where ∥ · ∥2 represents the L2-norm. For the object-camera type task, we900

calculate the distance with |c′i|2. To ensure numerical stability and consistency in question-answer901

generation, the computed distance is rounded to the nearest 0.1 meter. If the two objects have902

overlapping 3D bounding boxes or the distance is smaller than the threshold, we will skip that case.903

Spatial volume infer For an object oi in the image, we first obtain its 3D bounding box in the904

world coordinate system and then transform it into the camera coordinate system by the extrinsic905

transformation matrix. The center coordinate is denoted as c′i and each corner point of 3D bounding906

box is denoted as b′
ij , j = (1, 2, ..., 8). The object’s dimensions(length, width, and height) are907
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derived as follows:908

h = max
j

b
(z)
i,j −min

j
b
(z)
i,j

l = max
j,k

||b(xy)i,j − b
(xy)
i,k ||

w = min
j,k

||b(xy)i,j − b
(xy)
i,k ||

(6)

where b
(xy)
i,j = (b

(x)
i,j , b

(y)
i,j ) represents the 2D projection of the bounding box in the XY plane. To909

ensure consistency, all dimensions are converted to centimeters. The final estimated volume is given910

by: V = h · l · w.911

Spatial imagination Our spatial imagination task aims to evaluate the spatial reasoning capabilities912

of LLM models by analyzing object relationships before and after camera transformations in a 3D913

environment. Given an image and corresponding scene metadata, we randomly sample objects and914

generate structured question-answer (QA) pairs that describe spatial relationships.915

For each image I , it is associated with a set of objects O = {o1, o2, ..., oN}. We randomly sample916

objects oA, oB , oC , oD ⊂ O for relational comparisons. To analyze object relationships from different917

viewpoints, we transform the camera pose P ∈ SE(3) so that it moves towards object A and faces918

object B. The new camera pose is constructed as follows:919

tA−→B = cA f =
cB − cA

∥cB − cA∥

v =
u0 × f

∥u0 × f∥
u = f × v r = −v

(7)

where cA, cB are 3D center coordinates of object oA and oB respectively. u0 = [0, 0, 1]T . f is920

forward direction vector. v,u, r are left-vector, up-vector and right-vector respectively. So the new921

camera pose is computed as:922

PA−→B =

[
r u f tA−→B

0 0 0 1

]
(8)

We extract the up-vector u from PA−→B to compute the vertical rotation angle: θ = cos−1(uz). If923

θ > 60◦, we will discard this viewpoint to maintain a reasonable observation angle.924

After that, we compute the spatial relationship between object C and object D before and after camera925

transformation. The relationships are determined based on their relative positions in the original926

and transformed coordinate system. We describe their spatial relationships in terms of several key927

factors: above-below, left-right, near-far, and front-behind (relative to two objects). Please refer to the928

paragraph Obj spatial relation for details. The final step is to generate structured question-answer929

pairs. The same procedure is also applied after the camera-object type task.930

Position matching Position matching aims to identify and compare the positions of the same931

object across different views. Given an object detected in multiple images, the task is to find its932

corresponding 2D bounding box in another view based on its known location in one reference image.933

We define the set of detected objects as: O = {o1, o2, . . . , oN}. Each object oi appears in a set934

of images: Ii = {Ii1 , Ii2 , . . . , Iim}. If m < 2, the object is discarded. For each valid object, we935

randomly select two distinct images IiA , IiB ∈ Ii as a reference frame and target frame. The 3D936

bounding box of object oi in world coordinate is denoted as b3Di . We project the 3D bounding box937

into the image plane by Eq. 5. The 2D bounding boxes in different images are denoted as b2DiA , b2DiB .938

The system formulates the position-matching question as: Qusetion = Given object oi and 2D939

bounding box b2DiA in image IA, find its location in image IB ; Answer = b2DiB .940

View chang infer The view change inference task aims to determine the spatial displacement between941

different images. To ensure images exhibit a co-visibility relationship, we select different perspectives942

images containing the same object instance.943

For two distinct images IA, IB containing the same object o, we first compute the center of the944

2D bounding box to quantify the object’s displacement in image space. If 2D bounding box of945

object o in image IA is denoted as b2DA = [xmin
A , ymin

A , xmax
A , ymax

A ], the 2D center coordinate can be946
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calculated as c2DA =
(
(xmin

A + xmax
A )/2, (ymin

A + ymax
A )/2

)
. We determined the object’s location in947

image IA, IB according to c2DA and c2DB .948

To further analyze the view movement in the world coordinate system, We compute the relative pose949

transformation: TAB = T−1
A TB . Finally, we determine the translation distance and rotation angle950

of the viewpoint based on the relative pose transformation matrix and designed rules.951

Camera pose The camera pose task aims to estimate the relative camera motion and generate952

questions about the 2D coordinate and depth information.953

We select distinct frames IA, IB containing the same object o to ensure there is an overlap between954

them. Firstly, we project the camera position of image IB in the world coordinate into the coordinate955

system of image IA. According to Eq. 5, the projected point coordinate is given by pB|A =956

K(RA · pB + tA), where RA and tA are the rotation matrix and the translation vector of IA, K is957

camera intrinsic parameters. Then we calculate 2D image coordinates (u, v) and normalize to 0-1000:958

u =
pB|A[0]

pB|A[2]
· 1000

width
v =

pB|A[1]

pB|A[2]
· 1000

height
(9)

If the projected point lies within the bounds of the image IA, we compute the depth as: dB|A =959

(RA · pB + tA)[2]960

Obj frame location We introduce the object frame location task to identify the frames in which a961

given object appears. We select a reference frame and determine in which other frames the object962

is present. This process enables the automatic generation of question-answer pairs related to object963

appearance across frames.964

For an object o, we extract the set of frames: Io = {I1, I2, ..., In} in which it appears. To generate965

questions and answers for the object frame localization task, we randomly select one frame Is as the966

reference frame. We also add some irrelevant frames as wrong options, and the answer consists of967

the list of other frame indices Io \ {Is} where the object appears.968

Obj frame location This task infers the chronological order in which multiple objects appear within969

a sequence of frames. By selecting a subset of objects and analyzing their first occurrence across970

frames, we generate structured question-answer pairs that facilitate the temporal reasoning ability of971

LLMs.972

Given object set O = {o1, o2, ..., oN} and associated image set L = {I1, I2, ..., IN}, where Ii973

means the set of frames that object oi appears, we extract the first appearance frame of each object as974

Fi = min(f | f ∈ Ii). Fi represents the first appearance frame of object oi. Then we sort the first975

appearance frames of all objects to determine the order of appearance:976

S = sort({(o1, F1), (o2, F2), (o3, F3)...(oN , FN )}) (10)

where S is the ordered sequence of objects based on their first appearance. For sentence QA type, the977

ordered sequence and corresponding frame indices are embedded into a sentence. For fill-in-the-blank978

QA type, the question is to instruct the user to input the ordered sequence as a comma-separated list.979

Obj count The object counting task estimates the number of object instances for each label category980

in the scene and generates structured question-answer pairs to facilitate the numerical reasoning981

ability of LLMs.982

For each label l ∈ L, the total number of object instances is computed as: N(l) = |L(l)|, where N(l)983

represents the number of object instances associated with label l. We will exclude labels with fewer984

than two object instances.985

Room size This task is designed for estimating the size of a room and generating corresponding986

question-answer pairs to facilitate the spatial reasoning ability of LLMs.987

Given the room scene with 3D mesh M = (V,F), where V is the set of vertices and F is the set988

of faces, we first downsample the points by quantizing them into a grid with a specified voxel size989

δ = 0.1. The quantized points are computed as: Q = ⌊V/δ⌋. We then retain only the unique voxels990

and obtain voxel centers: Pd = (unique(Q) + 0.5) · δ. If the downsampled set contains fewer than991

100 points, we revert to the original point cloud. To estimate the room area, we construct a concave992

hull using the α-shape algorithm:993

H = AlphaShape(Pd[:, 0 : 2], α) (11)
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where α = 0.1 controls the concavity of the shape. The final room area is calculated as:994

A =
∑
h∈H

area(h) (12)

To ensure valid QA generation, If the room area is below the threshold Ath = 5, no QA pairs will be995

generated.996

Navigation We construct visual navigation data based on Matterport3D [51] and Room Across Room997

(RxR) [52] Dataset. For the navigation instructions and image sequences in RxR, we take the image998

sequence as input and construct question-answer pairs. We expect the LLM model to complete the999

absent key action information in the instructions, such as left turn, straight ahead, on the right side,1000

and other keywords.1001

6.5 More visualization1002

We visualize the detailed QA of different tasks from our proposed SPAR-7M in table 9 - 14.1003
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Table 9: Detailed QA of the Depth Prediction Object-Camera Multi-view Task

Task Question Answer

Depth-OC-MV (fill) The table (red point) is located at a depth
of 1.5 meters. Estimate the depth of the
food container (blue point). Calculate or
judge based on the 3D center points of
these objects. Ensure your answer contains
only one number.

1.7

Depth-OC-MV (select) Given the refrigerator (red point) is located
at a depth of 0.9 meters in the Z-axis of the
camera coordinate system, how far in depth
is the dish soap bottle (blue point) at its
center? Calculate or judge based on the
3D center points of these objects. Please
select the correct option from the choices
provided. A. 2.2; B. 2.3; C. 2.1; D. 1.4.
Your answer can only include one of op-
tions A, B, C or D.

D

Depth-OC-MV (sentence) The wardrobe (red point) at a depth of 1.0
meters serves as a reference. How deep is
the power socket (blue point)? Calculate
or judge based on the 3D center points of
these objects.

With a central
depth of 1.2 me-
ters, power socket
is referenced here.
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Table 10: Detailed QA of the Distance Inference Object-Object Task

Task Question Answer

DistI-OO (fill) Between cooking pan (green point) and plas-
tic bag (blue point), which object is positioned
closer to coat (red point)? Calculate or judge
based on the 3D center points of these objects.
Submit your response as the name of one object
exclusively.

Cooking pan

DistI-OO (choice) Which object lies at a closer distance from back-
pack (red point): duffel bag (green point) or
light switch (blue point)? Calculate or judge
based on the 3D center points of these objects.
Pick the appropriate answer from the options
given. A. duffel bag; B. light switch. Your
answer can only include one of options A, B.

A

DistI-OO (sentence) Compare the positions of bed (green point) and
chair (blue point). Which is farer to the heater
(red point)? Calculate or judge based on the 3D
center points of these objects.

The proximity of
heater to bed is
2.0 meters, and
to chair, it is 0.6
meters. Hence,
the bed is farer to
heater.
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Table 11: Detailed QA of the Object Spatial Relation Object-Camera Multi-view Task

Task Question Answer

ObjRel-OC-MV (choice) What is the direction of object chair
(bbox) relative to the observer’s primary
angle? Calculate or judge based on the
3D center points of these objects. We
use the first image to reflect the main per-
spective, which aligns with the observer’s
viewpoint. The options describe the spa-
tial relationship between object and ob-
server in terms of left-right (left, right, or
empty if indistinguishable), above-below
(above, below, or empty if indistinguish-
able), and front-behind (front, behind, or
empty if indistinguishable). Select the cor-
rect response from the given choices. A.
left, above, front; B. left, above, behind;
C. right, below, front; D. right, above,
front. Your answer can only include one
of options A, B, C or D.

C

ObjRel-OC-MV (sentence) Describe the spatial orientation of object
bag (bbox) relative to the observer. Cal-
culate or judge based on the 3D center
points of these objects. The first image is
positioned to serve as the main viewpoint
for the observer.

Relative to the ob-
server’s placement,
the bag (red bbox)
appears to the right
below. It seems to
the front.
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Table 12: Detailed QA of the Object Spatial Imagination Object-Camera Multi-view Task

Task Question Answer

SpImag-OC-MV (choice) How does the positional relationship of
refrigerator (red bbox) to the observer
evolve once the observer shifts to the 3D
center of map poster (green bbox) and
faces trash can (blue bbox)? Calculate
or judge based on the 3D center points
of these objects. Base your response
on the observer’s perspective, with the
first image defined as the primary view
before movement begins. For multiple-
choice questions, consider only the state
after the observer has moved. The op-
tions describe the spatial relationship be-
tween object and observer in terms of
left-right (left, right, or empty if indistin-
guishable), above-below (above, below,
or empty if indistinguishable), and front-
behind (front, behind, or empty if indistin-
guishable). Select the appropriate option
from the given choices. A. left, , behind;
B. right, below, ; C. right, above, ; D.
right, below, behind. Your answer can
only include one of options A, B, C or D.

D

SpImag-OC-MV (sentence) How does the observer’s shift to the 3D
center of wardrobe (green bbox) and ori-
entation toward rug (blue bbox) affect the
positioning of bread packet (red bbox)?
Calculate or judge based on the 3D cen-
ter points of these objects. Frame your
answer with the observer’s perspective,
assigning the first image as the main view
before any motion.

Initially, the po-
sition of bread
packet appears to
the left below to
the observer. It is
also to the front.
After moving to
wardrobe and
orienting toward
rug, bread packet
changes to to the
right below. It is
now to the behind.
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Table 13: Detailed QA of the View Change Infer Task

Task Question Answer

ViewChgI (fill) If starting from the first image, how would
the observer’s camera need to move to recre-
ate the second image? Provide the cam-
era movement and rotation in the following
format: move (right or left):(meters), move
(down or up):(meters), move (forward or
back):(meters), rotate (down or up):(degrees),
rotate (right or left):(degrees) - The first three
values are in meters. - The last two values are
in degrees. - Use commas to separate each
parameter. - Do not include any additional
text. Example: move left: 2.6, move down:
0.1, move forward: 0.2, rotate up: 10, rotate
left: 0.

move right: 1.2,
move up: 0.4, move
forward: 1.4, rotate
up: 5, rotate left: 90

ViewChgI (sentence) What changes in position or angle would the
camera need to make to transition from the
first image to the second?

In the initial frame,
suitcase is located in
the bottom-right and
moves left and up to
the bottom-left in the
next image. Observ-
ing these changes, it
appears the camera
movement is as fol-
lows: To realign the
second image: Move
0.6 meters forward.
Shift sideways by 0.2
meters right. Rotate
down by 10 degrees.
Turn right by 10 de-
grees.
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Table 14: Detailed QA of the Camera Pose Task

Task Question Answer

CamPos (fill) Estimate the image-plane location and depth
in meters of the second image’s observer
as it appears in the first image’s coordinate
space. Please ensure your answer is limited
to a 2D coordinate and a depth, for instance:
(200, 500), 1.2.

(113, 182), 3.8

CamPos (choice) Where would the second image’s observer
be seen in the first image’s space? Provide
2D image-plane coordinates and depth in me-
ters. Choose the correct response from the
given choices. A. Image Coor: (514, 95),
Depth:4.8 meters; B. Image Coor: (258,
537), Depth: 6.9 meters; C. Image Coor:
(108, 214), Depth: 6.3 meters; D. Image
Coor: (921, 261), Depth: 4.6 meters. Your
answer can only include one of options A, B,
C or D.

A

ViewChgI (sentence) How does the camera’s movement between
the two images affect its position in the first
image? Provide (X,Y ) image-plane coordi-
nates and depth in meters.

Relative to the first
image, the second
image’s observer oc-
cupies the position
(650, 457), at a depth
of 4.4 meters.
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