
LiteTransformerSearch: Training-free On-device Search for
Efficient Autoregressive Language Models

Mojan Javaheripi1 Gustavo Henrique de Rosa2 Subhabrata Mukherjee2 Shital Shah2
Tomasz Lukasz Religa3 Caio Cesar Teodoro Mendes2 Sebastien Bubeck2
Farinaz Koushanfar1 Debadeepta Dey2

1
University of California San Diego,

2
Microsoft Research,

3
Microsoft

Abstract The Transformer architecture is ubiquitously used as the building block of large-scale au-

toregressive language models. However, finding architectures with the optimal trade-off

between task performance (perplexity) and hardware constraints like peak memory utiliza-

tion and latency is non-trivial. We leverage the somewhat surprising empirical observation

that the number of non-embedding parameters in autoregressive Transformers has a high

rank correlation with task performance, irrespective of the architecture topology. This

observation organically induces a simple search algorithm that can be directly run on target

devices. We rigorously show that the pareto-frontier of perplexity versus different hardware

costs such as latency and memory can be found without need for any model training, using

non-embedding parameters as a proxy for perplexity. We evaluate our method, dubbed

Lightweight Transformer Search (LTS) on diverse devices from ARM CPUs to NVIDIA GPUs

and two popular autoregressive Transformer backbones: GPT-2 and Transformer-XL. Results

show that the perplexity of 16-layer GPT-2 and Transformer-XL can be achieved with up

to 1.6×, 2.5× faster runtime and 1.3×, 2× lower peak memory utilization. LTS extracts the

pareto-frontier in under 3 hours, running on a commodity laptop. We effectively remove

the carbon footprint of training during search for hundreds of GPU hours, offering a strong

simple baseline for future NAS methods in autoregressive language modeling.

1 Introduction
The Transformer architecture [31] is the de-facto building block ofmost pre-trained languagemodels

like GPT [3]. A critical problem ariseswhen creating smaller Transformermodels with strictmemory

and latency constraints: the architectural hyperparameters, e.g., number of layers and number of

attention heads, are not known. This problem is exacerbated if each individual Transformer layer

is allowed to have different values for these settings. This results in a combinatorial explosion of

architectural hyperparameter choices and a large heterogeneous search space. For instance, the

search space considered in this paper consists of over 10
54
possible architectures.

Neural Architecture Search (NAS) is an organic solution due to its ability to automatically search

through candidate models with multiple conflicting objectives like latency vs. task performance.

The central challenge in NAS is prohibitively expensive function evaluation, i.e., evaluating each

architecture requires training it on the dataset at hand. Thus it is often infeasible to evaluate more

than a handful of architectures during the search phase. Supernets [23] have emerged as a dominant

paradigm in NAS which combine all possible architectures into a single graph and jointly train them

using weight-sharing. Nevertheless, supernet training imposes constraints on the expressiveness

of the search space [21] and is often memory-hungry [4, 38, 40] as it creates large networks during

search. Additionally, training supernets is non-trivial as children architectures may interfere with

each other and rank correlation between sub-architectures is not preserved [21]
1
.

We propose a training-free proxy that provides a highly accurate ranking of candidate archi-

tectures during NAS without need for costly training or supernets. Our scope is NAS for efficient

Transformer-based autoregressive language models
2
. We design a lightweight search that is tar-

get hardware-aware and outputs a gallery of models on the pareto-frontier of perplexity versus

1
See [21] for a comprehensive treatment of the difficulties of training supernets.

2
For preliminaries on autoregressive Transformers, please see Appendix A.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

mailto:mojan@ucsd.edu
mailto:gderosa@microsoft.com
mailto:submukhe@microsoft.com
mailto:shitals@microsoft.com
mailto:toreli@microsoft.com
mailto:caiocesart@microsoft.com
mailto:sebubeck@microsoft.com
mailto:farinaz@ucsd.edu
mailto:dedey@microsoft.com
https://creativecommons.org/licenses/by/4.0/

Target Hardware

sample

Model 2

Model N

...

Pareto Ranking

Evolutionary Search

Search-space
Evaluation

Model 1

Validation Perplexity
Proxy

Latency and Memory
Measurement

Figure 1: High-level overview of LTS. We propose a

training-free proxy for evaluating the validation perplex-

ity of candidate architectures. Pareto-frontier search is

powered by evolutionary algorithms which use the pro-

posed proxy along with real latency and memory mea-

surements on the target hardware to evaluate sampled

architectures.

hardware metrics. We term this method Lightweight Transformer Search (LTS). LTS relies on our

surprising observation: the number of non-embedding parameters, i.e., parameters enclosed in decoder
layers, has a high rank correlation with the perplexity of fully trained autoregressive Transformers.

Given a set of Transformer-based autoregressive language models, one can accurately rank

them using non-embedding parameter count as the proxy for perplexity. Our observations are also

well-aligned with the power laws in [15], shown for homogeneous autoregressive Transformers,

i.e., when all decoder layers have the same configuration. We provide rigorous experiments to

empirically establish the high rank correlation between perplexity and non-embedding parameter

count for both homogeneous and heterogeneous search spaces.

The above phenomenon coupled with the fact that a candidate architecture’s hardware perfor-

mance can be measured on the target device leads to a training-free search procedure: pick one’s
favorite discrete search algorithm (e.g. evolutionary search), sample candidate architectures from the
search space; count their decoder parameters as a proxy for task performance (i.e., perplexity); measure
their hardware performance (e.g., latency and memory) directly on the target device; and progressively
create a pareto-frontier estimate.

Building upon these insights, Figure 1 shows a high-level overview of LTS. We design the first

training-free Transformer search that is performed entirely on the target (constrained) platform. As

such, LTS easily performs a multi-objective NAS where several underlying hardware performance

metrics, e.g., latency and peakmemory utilization, are simultaneously optimized. Using our training-

free proxy, we extract the 3-dimensional pareto-frontier of perplexity versus latency and memory

in a record breaking time of < 3 hours on a commodity Intel Core i7 CPU. Notably, LTS eliminates

the carbon foot print from hundreds of GPU hours of training associated with legacy NAS methods.

To evaluate our proxy, we train over 2800 Transformer architectures on two large language

modeling datasets, i.e., WikiText-103 [20] and One Billion Word [5]. We use LTS to search for

pareto-optimal architectural hyperparameters in two popularly used autoregressive Transformer

backbones, i.e., Transformer-XL [6] and GPT-2 [24]. We believe decoder parameter count provides

a competitive baseline for Transformer NAS in terms of ranking capabilities and easy computation.

2 Related Work

To the best of our knowledge, there exist only one prior work that focuses on NAS for autoregressive

(decoder-only) transformer architectures. So et al. [26] searches over TensorFlow programs that

implement an autoregressive languagemodel via evolutionary search. Since most random sequences

of programs either have errors or underperform, the search has to be seeded with the regular

transformer architecture, termed “Primer”. As opposed to “Primer” which uses large computation

to search a much more general space, our aim is to efficiently search the “backbone” of traditional

decoder-only transformers. Additionally, the objective in “Primer” is to finds models that train

faster. Our objective for NAS, however, is to deliver pareto-frontier models for the inference phase

with respect to task metrics and hardware constraints, e.g., latency.

We provide further literature review of NAS for other Transformer architectures and whose

target applications are language domains in Appendix B. We refer the eager reader to extensive

surveys on NAS [9, 37] for a more broad overview of the field.

3 Lightweight Transformer Search
We perform an evolutionary search over candidate architectures to extract models that lie on the

pareto-frontier, which spans a wide range of latency, peak memory utilization, and perplexity char-

2

acteristics. To evaluate candidate models during the search, LTS uses a training-free proxy for the

validation perplexity. By incorporating training-free evaluation metrics, LTS, for the first time, per-

forms the entire search directly on the target (constrained) hardware. Therefore, we can use real mea-

surements of hardware performance during the search. Algorithm 1 outlines the iterative process

Algorithm 1: LTS’s training-free NAS
Input: Search space D, 𝑛𝑖𝑡𝑒𝑟
Output: Perplexity-latency-memory pareto-frontier

F
1 L,M,P,F← ∅, ∅, ∅, ∅
2 while 𝑁 ≤ 𝑛𝑖𝑡𝑒𝑟 do
3 F′← Subsample(F)
4 S𝑁 ← 𝐸𝐴(F′,D)

// hardware profiling
5 L← L

⋃
Latency(S𝑁)

6 M←M
⋃

Memory(S𝑁)
// estimate perplexity

7 P ← P
⋃

Proxy(S𝑁)
// update the pareto front

8 F← LowerConvexHull(P,L,M)

performed in LTS for finding candidate ar-

chitectures in the search space (D)
3
, that

lie on the 3-dimensional pareto-frontier

(F) of perplexity versus latency and mem-

ory. At each iteration, a set of points (F′)
are subsampled from the current pareto-

frontier. A new batch of architectures (S𝑁)
are then sampled from F′ using evolution-

ary algorithms (𝐸𝐴(.))4. The new samples

are evaluated by measuring the latency (L)
and peak memory utilization (M) directly

on the target hardware and estimating the

validation perplexity (P) using our accu-

rate and training-free proxy. Finally, the

pareto-frontier is recalibrated using the

lower convex hull of all sampled architec-

tures. In the context of multi-objective NAS, pareto-frontier points are those where no single metric

(e.g., perplexity, latency, and memory) can be improved without degrading another metric [13].

3.1 Training-free Architecture Ranking

▶ Low-cost Ranking Proxies. Recently, Abdelfattah et al. [1] utilize the summation of pruning

scores over model weights as the ranking proxy for Convolutional Neural Networks (CNNs), where

a higher score corresponds to a higher rank. White et al. [36] find that no particular low-cost

(pruning-based) proxy performs consistently well over various tasks, while number of parameters

is a quite competitive proxy. However they did not include Transformer-based search spaces in

their analysis. Note that one cannot naively apply these proxies to language models. Specifically,

since the embedding layer in Transformers is equivalent to a lookup operation, special care must

be taken to omit this layer from the proxy computation. Using this insight, we perform the first

systematic study of low-cost proxies for NAS on autoregressive Transformers in language domain.

We use various pruning metrics, namely, grad_norm , snip [16], grasp [33], fisher [29],

and synflow [27]. We also study jacob_cov [19] and relu_log_det [18] which are low-

cost scoring mechanisms proposed for NAS on CNNs in vision tasks. While these low-cost

techniques do not perform model training, they require forward and backward passes over

the architecture to compute the proxy, which can be time consuming on low-end hardware.

Figure 2: Decoder parameter count proxy is

highly correlated with the (ground-truth) per-

plexity after full training.

Additionally, these techniques, by definition, include

the final softmax projection in their score assessment

which can skew the evaluation for autoregressive

Transformers with a large output vocabulary.

▶ Decoder Parameter Count as a Proxy. We empir-

ically establish a strong correlation between the pa-

rameter count inside decoder layers and final model

performance in terms of validation perplexity. We

evaluate 200 architectures sampled uniformly at ran-

dom from the search space of two autoregressive

Transformer backbones, namely, Transformer-XL

3
Details of our search-space are included in Appendix C.

4
While we have chosen a reasonable search algorithm inspired by [8, 14], one can plug-and-play any pareto-frontier

search method such as those in [13].

3

and GPT-2. Full training of these architectures consumes over 25000 GPU-hours on NVIDIA

A100 and V100 nodes. We compare the ranking obtained using our zero-cost proxy against the

ground-truth ranking based on validation perplexity after full training in Figure 2 and Figure 7 in

the Appendix. On WikiText-103, ranking using the decoder parameter count obtains a Spearman’s

Rank Correlation (SRC) of 0.97 and 0.98 with full training for Transformer-XL and GPT-2 back-

bones, respectively. SRC increases to 0.99 for the more complex LM1B dataset. As shown, decoder

parameter count is strongly correlated with model perplexity, providing a reliable proxy for NAS.

4 Experiments
Details of our experimental setup is included in Appendix E. Our experiments seek answers to the

following critical questions: 1 How well can training-free proxies perform compared to training-

based methods for estimating the performance of Transformers (Section 4.1)? 2 How does model

topology affect the decoder parameter count proxy (Appendix I)? 3 Which models are on the

pareto-frontier of perplexity, latency, and memory for different hardware (Section 4.2)? 4 Can our

training-free decoder parameter count proxy be integrated inside a search algorithm to estimate

the pareto-frontier? How accurate is such an estimation of the pareto (Appendix H)?

4.1 How do training-free proxies perform compared to training-based methods?
We benchmark several proxy methods for estimating the rank of candidate architectures.

▶ Partial Training. We stop the training after 𝜏 ∈ [1.25%, 87.5%] of the total iterations needed
for convergence and analyze the relationship between the obtained perplexity versus that of full

training. As shown in Figure 8 in the Appendix, more training iterations result in a more accurate

estimate of the final perplexity. Nevertheless, the increased wall-clock time prohibits training

during search and also imposes the need for GPUs. Interestingly, very few training iterations

(1.25%) provides a very good proxy for final perplexity with an SRC of > 0.9. Our training-free

proxy, i.e., decoder parameter count, also shows competitive SRC compared to partial training.

▶ Low-cost Proxies. We benchmark various low-cost methods introduced in Section 3.1 on

randomly sampled architectures from the Transformer-XL backbone. Figure 3 shows the SRC

between low-cost proxies and the ground-truth ranking after full training on WikiText-103.

Figure 3: SRC between low-cost proxies and the

ground-truth ranking after full training of 200 ran-

domly sampled Transformers. The decoder parameter

count obtains the best SRC with zero cost.

We measure the cost of each proxy in terms of

floating point operations (FLOPs). The evalu-

ated low-cost proxies have a strong correlation

with the ground-truth ranking (even the lowest

performing relu_log_det has > 0.8 SRC)5. Our

analysis on randomly selected models with ho-

mogeneous decoder layers also shows a strong

correlation between the low-cost proxies and

perplexity, with decoder parameter count out-

performing other proxies (see Appendix G).

▶ Parameter Count. As shown in Figure 3 and

Figure 8 in the Appendix, our zero-cost proxy

outperforms all higher cost proxies. We thus propose using the decoder parameter count as the

ranking proxy for the search. We provide a more detailed breakdown of the performance of this

proxy in Appendices G and F.

4.2 Pareto-frontier Models for Various Hardware Platforms

We benchmark the Transformer-XL (base) and GPT-2 (small) models with homogeneous layers

∈ [1, 16] as our baseline and show that LTS finds models with better validation perplexity and/or

lower latency and peak memory utilization (better pareto). All models are trained using the same

setup
6
in Appendix E for fair comparison. We compare the pareto-frontier architectures found by

5
The lower performance of relu_log_det can be attributed to the fundamental difference in the frequency of ReLU

activations in CNNs, where the method was originally developed, compared to Transformers.

6
The best reported result in the literature for GPT-2 or Transformer-XL might be different based on the specific

training hyperparameters, which is orthogonal to our investigation.

4

Figure 4: 2D visualization of the perplexity versus latency and memory pareto-frontier found by

LTS, versus the scaled backbone models with varying number of layers, trained on the LM1B dataset.

Architectural parameters for models shown here are detailed in Appendix L.

LTS with the baseline in Figure 4. Here, all models are trained on the LM1B dataset (See Figure 16

in Appendix K for results on WikiText-103). Note that the pareto-frontier search is performed in a

3-dimensional space (see Appendix J) but here we plot 2-dimensional slices of the pareto-frontier.

As seen, in the low-latency regime, LTS consistently finds models that have significantly lower

perplexity compared to naive scaling of the baseline Transformer-XL or GPT-2. On the Transformer-

XL backbone, LTS finds models with an average of 19.8% (resp. 25.8%) and 28.8% (resp. 30.0%) lower

latency and memory and similar perplexity compared to the baseline on ARM CPU (resp. Corei7

CPU). The savings are even higher on the GPU device, where the NAS-generated models achieve

the same perplexity as the baseline with average 30.5% lower latency and 27.0% less memory.

Specifically, an LTS model with the same perplexity as the 16-layer Transformer-XL base has 2.5×
lower latency and consumes 2.0× less peak memory on TITAN Xp.

On the GPT-2 backbone, the NAS-generated models utilize on average 11.8% less memory while

achieving the same validation perplexity and latency on an ARM CPU. The benefits are larger on

Corei7 and TitanXP where the latency savings are pushed to 13.8% and 11.9%, respectively. The

peak memory utilization is also decreased by 9.7% and 12.9%, on average, compared to the baseline

scaled GPT-2s on Corei7 and TITAN Xp, respectively.

Search Efficiency. The main component in LTS search time is the latency/peak memory utilization

measurement for candidate architectures since evaluating the model perplexity is instant using the

decoder parameter count. Our lightweight search, therefore, finishes in a few hours on commodity

hardware, i.e., 0.9, 2.6, and 17.2 hours on a TITAN Xp GPU, Corei7 CPU, and an ARM core,

respectively. To provide more context, full training of just one 16-layer Transformer-XL base model

on LM1B using a machine with 8× NVIDIA V100 GPUs takes 15.8 hours.

5 Limitations and Future Work
Decoder parameter count provides a simple yet accurate proxy for ranking autoregressive models.

This should serve as a strong baseline for future works on Transformer NAS. Our focus is entirely

on autoregressive, decoder-only transformers. We therefore, study perplexity as the commonly used

metric for language modeling tasks. Nevertheless, recent literature on scaling laws for Transformers

suggest a similar correlation between parameter count and task metrics may exist for encoder

only (BERT-style) Transformers or encoder-decoder models used in neural machine translation

(NMT) [12]. Additionally, recent findings [28] show specific scaling laws exist between model

size and downstream task metrics, e.g., GLUE [32]. Investigating such scaling laws for NAS on

heterogeneous BERT-style or NMT models with new metrics is an important future direction.

5

References
[1] M. S. Abdelfattah et al. “Zero-Cost Proxies for Lightweight NAS”. In: International Conference

on Learning Representations. 2020.

[2] A. Baevski and M. Auli. “Adaptive Input Representations for Neural Language Modeling”. In:

International Conference on Learning Representations. 2018.

[3] T. B. Brown et al. “Language models are few-shot learners”. In: arXiv preprint arXiv:2005.14165
(2020).

[4] H. Cai et al. “Once-for-All: Train One Network and Specialize it for Efficient Deployment”.

In: International Conference on Learning Representations. 2019.

[5] C. Chelba et al. “One billion word benchmark for measuring progress in statistical language

modeling”. In: arXiv preprint arXiv:1312.3005 (2013).

[6] Z. Dai et al. “Transformer-XL: Attentive Language Models beyond a Fixed-Length Context”.

In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
2019, pp. 2978–2988.

[7] J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing”. In: NAACL-HLT (1). 2019.

[8] T. Elsken, J. H. Metzen, and F. Hutter. “Efficient Multi-Objective Neural Architecture Search

via Lamarckian Evolution”. In: International Conference on Learning Representations. 2019.

[9] T. Elsken, J. H. Metzen, and F. Hutter. Neural Architecture Search: A Survey. 2019. arXiv:
1808.05377 [stat.ML].

[10] H. Face. OpenAI GPT2 by Hugging Face. https://huggingface.co/docs/transformers/
model_doc/gpt2.

[11] J. Gao et al. AutoBERT-Zero: Evolving BERT Backbone from Scratch. 2021. arXiv: 2107.07445
[cs.CL].

[12] B. Ghorbani et al. “Scaling laws for neural machine translation”. In: arXiv preprint
arXiv:2109.07740 (2021).

[13] J. Guerrero-Viu et al. “Bag of baselines for multi-objective joint neural architecture search

and hyperparameter optimization”. In: arXiv preprint arXiv:2105.01015 (2021).

[14] H. Hu et al. “Efficient Forward Architecture Search”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url: https:
//proceedings.neurips.cc/paper/2019/file/6c468ec5a41d65815de23ec1d08d7951-
Paper.pdf.

[15] J. Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361
(2020).

[16] N. Lee, T. Ajanthan, and P. Torr. “SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON

CONNECTION SENSITIVITY”. In: International Conference on Learning Representations. 2019.
url: https://openreview.net/forum?id=B1VZqjAcYX.

[17] H. Liu, K. Simonyan, and Y. Yang. “DARTS: Differentiable Architecture Search”. In: Interna-
tional Conference on Learning Representations. 2019. url: https://openreview.net/forum?
id=S1eYHoC5FX.

[18] J. Mellor et al. “Neural architecture search without training”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 7588–7598.

[19] J. Mellor et al. Neural Architecture Search without Training. 2021. url: https://openreview.
net/forum?id=g4E6SAAvACo.

[20] S. Merity et al. “Pointer sentinel mixture models”. In: arXiv preprint arXiv:1609.07843 (2016).

6

https://arxiv.org/abs/1808.05377
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2
https://arxiv.org/abs/2107.07445
https://arxiv.org/abs/2107.07445
https://proceedings.neurips.cc/paper/2019/file/6c468ec5a41d65815de23ec1d08d7951-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c468ec5a41d65815de23ec1d08d7951-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c468ec5a41d65815de23ec1d08d7951-Paper.pdf
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=g4E6SAAvACo
https://openreview.net/forum?id=g4E6SAAvACo

[21] X. Ning et al. “Evaluating Efficient Performance Estimators of Neural Architectures”. In:

Advances in Neural Information Processing Systems 34 (2021).

[22] NVIDIA. Transformer-XL For PyTorch. https : / / github . com / NVIDIA /
DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL.

[23] H. Pham et al. “Efficient neural architecture search via parameters sharing”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 4095–4104.

[24] A. Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog 1.8

(2019), p. 9.

[25] D. R. So, C. Liang, and Q. V. Le. The Evolved Transformer. 2019. arXiv: 1901.11117 [cs.LG].

[26] D. R. So et al. Primer: Searching for Efficient Transformers for Language Modeling. 2021. arXiv:
2109.08668 [cs.LG].

[27] H. Tanaka et al. “Pruning neural networks without any data by iteratively conserving synaptic

flow”. In: Advances in Neural Information Processing Systems 33 (2020).

[28] Y. Tay et al. “Scale efficiently: Insights from pre-training and fine-tuning transformers”. In:

arXiv preprint arXiv:2109.10686 (2021).

[29] L. Theis et al. “Faster gaze prediction with dense networks and fisher pruning”. In: arXiv
preprint arXiv:1801.05787 (2018).

[30] H. Tsai et al. Finding Fast Transformers: One-Shot Neural Architecture Search by Component
Composition. 2020. arXiv: 2008.06808 [cs.LG].

[31] A. Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems. 2017, pp. 5998–6008.

[32] A. Wang et al. “GLUE: A multi-task benchmark and analysis platform for natural language

understanding”. In: arXiv preprint arXiv:1804.07461 (2018).

[33] C. Wang, G. Zhang, and R. Grosse. “Picking Winning Tickets Before Training by Preserving

Gradient Flow”. In: International Conference on Learning Representations. 2020. url: https:
//openreview.net/forum?id=SkgsACVKPH.

[34] H. Wang et al. “HAT: Hardware-Aware Transformers for Efficient Natural Language Pro-

cessing”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 2020, pp. 7675–7688.

[35] H. Wang et al. “DeepNet: Scaling Transformers to 1,000 Layers”. In: arXiv preprint
arXiv:2203.00555 (2022).

[36] C.White et al. “A Deeper Look at Zero-Cost Proxies for Lightweight NAS”. In: ICLR Blog Track.
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/. 2022. url: https://iclr-
blog-track.github.io/2022/03/25/zero-cost-proxies/.

[37] M. Wistuba, A. Rawat, and T. Pedapati. A Survey on Neural Architecture Search. 2019. arXiv:
1905.01392 [cs.LG].

[38] J. Xu et al. Analyzing and Mitigating Interference in Neural Architecture Search. 2021. arXiv:
2108.12821 [cs.CL].

[39] J. Xu et al. “NAS-BERT”. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (Aug. 2021). url: http://dx.doi.org/10.1145/3447548.3467262.

[40] Y. Xu et al. “PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture

Search”. In: International Conference on Learning Representations. 2019.

[41] Y. Yin et al. “Autotinybert: Automatic hyper-parameter optimization for efficient pre-trained

language models”. In: arXiv preprint arXiv:2107.13686 (2021).

7

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://arxiv.org/abs/1901.11117
https://arxiv.org/abs/2109.08668
https://arxiv.org/abs/2008.06808
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://arxiv.org/abs/1905.01392
https://arxiv.org/abs/2108.12821
http://dx.doi.org/10.1145/3447548.3467262

[42] Y. You et al. “Large batch optimization for deep learning: Training bert in 76 minutes”. In:

arXiv preprint arXiv:1904.00962 (2019).

[43] Y. Zhao et al. Memory-Efficient Differentiable Transformer Architecture Search. 2021. arXiv:
2105.14669 [cs.LG].

A Preliminaries on Autoregressive Transformers
Perplexity. Perplexity is a widely used metric for evaluating language models. This metric en-

capsulates how well the model can predict a word. Formally, perplexity of a language model𝑀 is

derived using the entropy formula as:

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑀) = 2
𝐻 (𝐿,𝑀) = 2

−∑𝑥 𝐿 (𝑥) .𝑙𝑜𝑔 (𝑀 (𝑥)))
(1)

where 𝐿 represents the ground-truth words. As seen, the perplexity is closely tied with the cross-

entropy loss of the model, i.e., 𝐻 (𝐿,𝑀).
Parameter count. Contemporary autoregressive Transformer architectures comprise three main

components, namely, the input embedding layer, hidden layers, and the final (softmax) projection

layer. The embedding head often comprises look-up table based modules which map the input

language tokens to vectors. These vectors then enter a stack of multiple hidden layers a.k.a, the

decoder blocks. Each decoder block is made up of an attention layer and a feed-forward network.

Once the features are extracted by the stack of decoder blocks, the final prediction is generated

by passing through a softmax projection layer. When counting the number of parameters in an

autoregressive Transformer, the total parameters enclosed in the hidden layers is dubbed the decoder

parameter count or equivalently, the non-embedding parameter count. These parameters are

architecture dependent and do not change based on the underlying tokenization or the vocabulary

size. The embedding parameter count, however, accounts for the parameters enclosed in the input

embedding layer as well as the softmax projection layer, both of which are closely tied to the

tokenization and vocabulary size. We visualize an autoregressive Transformer in Figure 5, where

the orange blocks contain the decoder parameters and grey blocks hold the embedding parameters.

Figure 5: High-level visualization of different compo-

nents in autoregressive Transformers. Here, the pa-

rameters enclosed in the orange blocks are counted as

decoder parameters, while the parameters contained in

the gray boxes denote the embedding parameter count.

B Additional Related Work
NAS for Encoder-only Architectures. Relative to decoder-only autoregressive language models,

encoder-only architectures like BERT [7] have received much more recent attention from the NAS

community. NAS-BERT [39] trains a supernet to efficiently search for masked language models

(MLMs) which are compressed versions of the standard BERT, Such models can then be used in

downstream tasks as is standard practice. Similar to NAS-BERT, Xu et al. [38] also train a supernet

to conduct architecture search with the aim of finding more efficient BERT variants. They find

interesting empirical insights into supernet training issues like differing gradients at the same node

from different child architectures and different tensors as input and output at every node in the

supernet. The authors propose fixes that drastically improves supernet training. Gao et al. [11],

Tsai et al. [30], and Yin et al. [41] also conduct variants of supernet training with the aim of finding

more efficient BERT models.

NAS for Encoder-Decoder Architectures: Applying the well-known DARTS [17] approach to

Transformer search spaces leads to memory-hungry supernets. To mitigate this issue, [43] propose

8

https://arxiv.org/abs/2105.14669

a multi-split reversible network and a memory efficient backpropagation algorithm. One of the

earliest papers that applied discrete NAS to Transformer search spaces was by So et al. [25], who

use a modified form of evolutionary search. Due to the expense of directly performing discrete

search on the search space, this work incurs extremely high computation overhead. Follow-up work

by [34] uses the Once-For-All [4] approach to train a supernet for encoder-decoder architectures

used in machine translation. Search is performed on subsamples of the supernet that inherit weights

to estimate task accuracy. For each target device, the authors train a small neural network regressor

on thousands of architectures to estimate latency. As opposed to using a latency estimator, LTS

evaluates the latency of each candidate architecture on the target hardware. Notably, by performing

the search directly on the target platform, LTS can easily incorporate various hardware performance

metrics, e.g., peak memory utilization, for which accurate estimators may not exist. To the best of

our knowledge, such holistic integration of multiple hardware metrics in Transformer NAS has not

been explored previously.

C Search Space

Figure 6 shows all elastic parameters in LTS search space, namely, number of layers (nlayer),

number of attention heads (nhead), decoder output dimension (dmodel), inner dimension of the feed

forward network (dinner), embedding dimension (dembed), and the division factor (𝑘) of adaptive

embedding [2]. These architectural parameters are compatible with popularly used autoregressive

Transformer backbones, e.g., GPT. We adopt a heterogeneous search space where the backbone

Figure 6: Elastic parameters in LTS search space.

parameters are decided on a per-layer basis.

This is in contrast to the homogeneous struc-

ture commonly used in Transformers [3, 6],

which reuses the same configuration for all lay-

ers. Compared to homogeneous models, the

flexibility associated with heterogeneous archi-

tectures enables them to obtain much better

hardware performance under the same perplex-

ity budget (see Section 4.2).

Heterogeneous search space was previously

explored in [34]. However, due to the underlying supernet structure, not all design parameters can

change freely. As an example, the dimensionality of the Q, K, V vectors inside the encoder and

decoder layers is fixed to 512 to accommodate inheritance from the supernet. Our search space,

however, allows exploration of all internal dimensions without constraints. By not relying on

the supernet structure, our search space easily encapsulates various Transformer backbones with

different configurations of the input/output embedding layers and elastic internal dimensions.

LTS searches over the following values for the architectural parameters in our backbones:

nlayer∈ {2, . . . , 16|1}7, dmodel∈ {128, . . . , 1024|64}, dinner∈ {128, . . . , 4096|64}, and nhead∈ {2, 4, 8}.
Additionally we explore adaptive input embedding [2] with dembed∈ {128, 256, 512} and factor

𝑘 ∈ {1, 2, 4}. Once a dmodel is sampled, we adjust the lower bound of the above range for dinner to

2×dmodel. Encoding this heuristic inside the search ensures that the acquired models will not suffer

from training collapse. Our heterogeneous search space encapsulates more than 10
54

different

architectures. Such high dimensionality further validates the critical need for training-free NAS.

D Decoder Parameter Count Proxy

We randomly sample 200 architectures from the GPT-2 backbone and train them fully on WikiText-

103 and LM1B. We then compare the (ground-truth) ranking of these architectures based on their

final validation perplexity with the ranking obtained from the decoder parameter count proxy. As

shown in Figure 7, our training-free decoder parameter proxy holds a high SRC of 0.98 with final

perplexity after full training for both datasets.

7
We use the notation {vmin,. . . , vmax|step size} to show the valid range of values.

9

Figure 7: Our zero-cost proxy is highly correlated with

the (ground-truth) perplexity after full training on

WikiText-103 and LM1B, achieving an SRC of 0.98. Ex-

periment is conducted on 200 models randomly sampled

from the GPT-2 backbone.

E Experimental Setup

Datasets. We conduct experiments on two datasets, WikiText-103 and LM1B. The datasets are

tokenized using word-level and byte-pair encoding for models with Transformer-XL and GPT-2

backbones, respectively.

Training and Evaluation. We adopt the open-source code by [10] and [22] to implement the GPT-2

and Transformer-XL backbones, respectively. For each backbone and dataset, we use the same

training setup for all models generated by NAS. Table 1 encloses the hyperparameters used for

training all models in the experiments section of the paper. We follow the training hyperparameters,

i.e., batch size, optimizer, learning rate values and scheduler, provided in NVIDIA’s open-source

repository [22]. Validation perplexity is measured over a sequence length of 192 and 32 tokens for

WikiText-103 and LM1B datasets, respectively. Inference latency and peak memory utilization are

measured on the target hardware for a sequence length of 192, averaged over 10 measurements. We

utilize PyTorch’s native benchmarking interface for measuring the latency and memory utilization

of candidate architectures.

Table 1: LTS training hyperparameters for different backbones. Here, DO is the abbreviation used for

dropout layers.

Backbone Dataset Tokenizer # Vocab Optim. # Steps Batch size LR Scheduler Warmup DO Attn DO

Transformer-XL
WT103 Word 267735 LAMB [42] 4e4 256 1e-2 Cosine 1e3 0.1 0.0

LM1B Word 267735 Adam 1e5 224 2.5e-4 Cosine 2e4 0.0 0.0

GPT-2
WT103 BPE 50257 LAMB [42] 4e4 256 1e-2 Cosine 1e3 0.1 0.1

LM1B BPE 50257 LAMB [42] 1e5 224 2.5e-4 Cosine 2e4 0.1 0.1

Search Setup. Evolutionary search is performed for 30 iterations with a population size of 100; the

parent population accounts for 20 samples out of the total 100; 40 mutated samples are generated

per iteration from a mutation probability of 0.3; and 40 samples are created using crossover.

Backbones. We apply our search on two widely used autoregressive Transformer backbones,

namely, Transformer-XL [6] and GPT-2 [24] that are trained from scratch with varying architectural

hyperparameters. The internal structure of these backbones are quite similar in that they contain

decoder blocks with attention and feed-forward layers. The difference between the backbones lies

mainly in their dataflow structures; the models derived from Transformer-XL backbone adopt a

recurrence methodology over past states, which coupled with relative positional encoding, allows

for modeling longer term dependencies.

Performance Criteria. To evaluate the ranking performance of various proxies, we first establish

a ground-truth ranking of candidate architectures by training them until full convergence. This

ground-truth ranking is then utilized to compute two performance criteria as follows:

▶ Common Ratio (CR): We define CR as the percentage overlap between the ground-truth ranking

of architectures versus the ranking obtained from the proxy over the top-𝑘% of architectures. CR

quantifies the ability of the proxy ranking to identify the top-𝑘% architectures.

▶ Spearman’s Rank Correlation (SRC): We use this metric to measure the correlation between the

proxy ranking and the ground-truth. Ideally, the proxy ranking should have high correlation with

the ground-truth over the entire search space as well as high-performing candidate models.

10

Figure 8: Comparison between partial training and our zero-cost proxy, i.e., decoder parameter count,

in terms of ranking performance and timing overhead. Experiment is conducted on 100 randomly

selected models from the Transformer-XL backbone, trained on WikiText-103. The horizontal axis

denotes the average time required for 𝜏 iterations of training across all sampled models.

F Decoder Parameter Count versus Total Parameters

Figure 9a demonstrates the final validation perplexity versus total number of model parameters

for 300 randomly sampled architectures from the Transformer-XL backbone. This figure contains

two important observations: (1) the validation perplexity has a downward trend as the number of

parameters increase, (2) The discontinuity is caused by the dominance of embedding parameters

when moving to the small Transformer regime. We highlight several example points in Figure 9a

where the architectures are nearly identical but the adaptive input embedding factor 𝑘 is changed.

Changing 𝑘 ∈ {1, 2, 4} (shown with different colors in Figure 9a) varies the total parameter count

without much influence on the validation perplexity.

The above observations motivate us to evaluate two proxies, i.e., total number of parameters and

only decoder parameter count. Figure 9b demonstrates the CR and SRCmetrics evaluated on the 300

randomly sampled models divided into top-𝑘% bins based on their validation perplexity. As shown,

the total number of parameters has a lower SRC with the validation perplexity, compared to decoder

parameter count. This is due to the masking effect of embedding parameters. The total number of

decoder parameters, however, provides a highly accurate, zero-cost proxy with an SRC of 0.97 with

the perplexity after full training. We further show the high correlation between decoder parameter

count and validation perplexity for Transformer architectures with homogeneous decoder blocks

in Appendix G.

(a) (b)

Figure 9: (a) Validation perplexity after full training versus total parameters. The clear downward trend

suggests a strong correlation between parameter count and perplexity. (b) Ranking performance of

parameter count proxies. The decoder parameter count provides a very accurate ranking proxy while

the total parameter count has a low SRC and CR, due to the masking effect of embedding parameter

count. Experiments are conducted on 300 architectures randomly sampled from the Transformer-XL

backbone and trained on WikiText-103.

11

G Analysis on Homogeneous Models

In this section, we evaluate the efficacy of the proposed proxies on the homogeneous search space,

i.e., when all decoder layers have the same parameter configuration. In this scenario, the parameters

are sampled from the valid ranges in Section 3 to construct one decoder block. This block is then

replicated based on the selected nlayer to create the Transformer architecture. In what follows, we

provide experimental results gathered on 100 randomly sampled Transformer models from the

Transformer-XL backbone with homogeneous decoder blocks, trained on WikiText-103.

▶ Low-cost Proxies. Figure 10a demonstrates the SRC between various low-cost methods and the

validation perplexity after full training. On the horizontal axis, we report the total computation

required for each proxy in terms of FLOPs. Commensurate with the findings on the heterogeneous

models, we observe a strong correlation between the low-cost proxies and validation perplexity,

with decoder parameter count outperforming other proxies. Note that we omit the relu_log_det
method from Figure 10a as it provides a low SRC of 0.42 due to heavy reliance on ReLU activations.

(a) (b)

Figure 10: Experiments conducted on 100 randomly sampled Transformers with homogeneous decoder

blocks, trained on WikiText-103. (a) SRC between ranking obtained from low-cost proxies and the

ground-truth ranking after full training. The decoder parameter count obtains the best SRC with

zero cost. (b) Performance of parameter count proxies. The decoder parameter count provides a very

accurate ranking proxy with an SRC of 0.95 over all models.

▶ Parameter Count. As seen in Figure 10b, the total parameter count has a low SRC with the

validation perplexity while the decoder parameter count provides an accurate proxy with an SRC

of 0.95 over all architectures. These findings on the homogeneous search space are well-aligned

with the observations in the heterogeneous space.

H How good is the decoder parameters proxy for pareto-frontier search?

Before we use the decoder parameter count as a proxy for perplexity in the inner loop of pareto-

frontier search, we validate whether this proxy will actually help find pareto-frontiers which are

close to the groundtruth. We first fully train all 1200 architectures sampled from the Transformer-XL

backbone during evolutionary search (See Algorithm 1). Using the validation perplexity obtained

after full training, we rank all sampled architectures and extract the ground-truth pareto-frontier

of perplexity versus latency. We train the models on the WikiText-103 dataset and benchmark Intel

Xeon E5-2690 CPU as our target hardware platform for latency measurement in this experiment.

Figure 11 represents a scatter plot of the validation perplexity (after full training) versus latency

for all sampled architectures during the search. The ground-truth pareto-frontier, by definition, is

the lower convex hull of the dark navy dots, corresponding to models with the lowest validation

perplexity for any given latency constraint. We mark the pareto-frontier points found by the

training-free proxy with orange color. As shown, the architectures that were selected as the

pareto-frontier by the proxy method are either on or very close to the ground-truth pareto-frontier.

12

Figure 11: Perplexity versus latency pareto obtained from

full training of 1200 architectures sampled during NAS on

Transformer-XL backbone. Orange points are the pareto-

frontier extracted using decoder parameter count proxy,

which lies closely to the actual pareto-frontier. Decoder

parameter count holds a SRC of 0.98 with the ground-truth

perplexity after full training.

We define the mean average perplexity difference as a metric to evaluate the distance (𝑑𝑎𝑣𝑔)

between the proxy and ground-truth pareto-frontier:

𝑑𝑎𝑣𝑔 =
1

𝑁

𝑁∑︁
𝑖=1

|𝑝𝑖 − 𝑝𝑔𝑡,𝑖 |
𝑝𝑔𝑡,𝑖

(2)

Here, 𝑝𝑖 denotes the 𝑖-th point on the proxy pareto front and 𝑝𝑔𝑡,𝑖 is the closest point, in terms of

latency, to 𝑝𝑖 on the ground-truth pareto front. The mean average perplexity difference for Figure 11

is 𝑑𝑎𝑣𝑔 = 0.6%. This low difference further validates the effectiveness of our zero-cost proxy in

correctly ranking the sampled architectures and estimating the true pareto-frontier. In addition to

the low distance between the pareto-frontier estimated using decoder parameter count proxy and

the ground-truth, our zero-cost proxy holds a high SRC of 0.98 over the entire pareto, i.e., all 1200

sampled architectures. We provide the ranking performance for different evaluation techniques

along with their cost in Table 2. As seen, our proposed evaluation proxy, i.e., decoder parameter

count, provides the highest SRC with the ground-truth ranking of the sampled architectures during

NAS, while removing the extremely high overhead of training. This proxy can hence be effectively

used in the inner loop of search for NAS.

Table 2: Comparison between training-based and the proposed training-free evaluation proxy on a

real NAS benchmark. The SRC is computed on the entire population set of 1200 models visited during

the search. The training time is reported on the Nvidia V100 GPU.

Train

Iter

GPU

Hours

𝐶𝑂2e

(lbs)
SRC

Full Training 40,000 19,024 5433 1.0

Partial Training
500 231 66 0.92

5,000 2690 768 0.96

Decoder Params 0 0 ∼0 0.98

We further study the decoder parameter proxy in scenarios where the range of model sizes

provided for search is limited. We categorize the total 1200 sampled architectures into different

bins based on the decoder parameters. Figure 12 demonstrates the SRC between decoder parameter

count proxy and the validation perplexity after full training for different model sizes. The proposed

proxy provides a highly accurate ranking of candidate architectures even when exploring a small

range of model sizes.

Figure 12: SRC between the decoder parameter count proxy and

validation perplexity. Results are gathered on 1200models grouped

into four bins based on their decoder parameter count. Our proxy

performs well even when exploring within a small range of model

sizes.

13

(a) (b) (c)

Figure 13: Validation perplexity after full training versus (a) the width-to-depth aspect ratio, (b) latency,

and (c) peak memory utilization. Models are randomly generated from the GPT-2 backbone and trained

on WikiText-103. For a given decoder parameter count, we observe low variation in perplexity across

different models, regardless of their topology. The topology, however, significantly affects the latency

(up to 2.8×) and peak memory utilization (up to 5.5×) for models with the same perplexity.

I How does model topology affect the decoder parameter count proxy?

The low-cost proxies introduced in Section 3.1, rely on forward and backward passes through the

network. As such, they automatically capture the topology of the underlying architecture by relying

on the dataflow to compute the final proxy score. The decoder parameter count proxy, however,

is topology-agnostic. In this section, we investigate the effect of topology on the performance of

our proposed decoder parameter count proxy. Specifically, we seek to answer whether for a given

decoder parameter count budget, the aspect ratio of the architecture, i.e., trading-off the width

versus the depth, can affect the final validation perplexity.

We define the aspect ratio of the architecture as dmodel (=width), divided by nlayer (=depth).

This metric has been used in previous work which study scaling laws for language models [15] to

quantify the skewness of the topology. For a given decoder parameter count budget, we generate

several random architectures from the GPT-2 backbone with a wide range of the width-to-depth

aspect ratios
8
. The generated models span wide, shallow topologies (e.g., dmodel=1256, nlayer=2) to

narrow, deep topologies (e.g., dmodel=112, nlayer=100). Figure 13a shows the validation perplexity

of said architectures after full training on WikiText-103 versus their aspect ratio. The maximum

deviation (from median) of the validation perplexity is < 12.8% for a given decoder parameter

count, across a wide range of aspect ratios ∼ 1 − 630. Our findings on the heterogeneous models

complement the empirical results by [15] where decoder parameter count largely determines

perplexity for homogeneous Transformer models, irrespective of shape (see Fig 5 in [15]).

We observe stable training when scaling models from the GPT-2 backbone up to 100 layers,

with the perplexity increasing only when the aspect ratio nears 1. Nevertheless, such deep models

are not part of our search space as they have a high latency and are unsuitable for lightweight

inference. For the purposes of hardware-aware and efficient Transformer NAS, decoder parameter

count proxy holds a very high correlation with validation perplexity, regardless of the architecture

topology as shown in Figure 13a.

Note that while models with the same parameter count have very similar validation perplexities,

the topology in fact affects their hardware performance, i.e., latency (up to 2.8×) and peak memory

utilization (up to 5.5×), as shown in Figure 13b and 13c. This motivates the need for incorporating

hardware metrics in NAS to find the best topology.

We further validate the effect of topology on decoder parameter count proxy for the Transformer-

XL backbone in Figure 14. Here, the generated models span wide, shallow topologies (e.g.,

dmodel=1024, nlayer=3) to narrow, deep topologies (e.g., dmodel=128, nlayer=35). Our results demon-

strate less than 7% deviation (from the median) in validation perplexity for aspect ratios ranging

from ∼ 8 − 323. Nevertheless, for the same decoder parameter count budget, the latency can vary

by 1.3× and the peak memory utilization by 2.0× as shown in Figure 14b and 14c, respectively.

8
We control the aspect ratio by changing the width, i.e., d

model
while keeping dinner=2×dmodel

and n
head

=8. The

number of layers is then derived such that the total parameter count remains the same.

14

For deeper architectures (more than 40 layers) with the Transformer-XL backbone, we observe

an increase in the validation perplexity, which results in a deviation from the pattern in Figure 14a.

This observation is associated with the inherent difficulty in training deeper architectures, which can

be mitigated with proposed techniques in the literature [35]. Nevertheless, to facilitate generation

of lightweight lightweight Transformers, our search-space contains architectures with less than 16

layers. In this scenario, the decoder parameter count proxy, independent of the topology, highly

correlates with validation perplexity as seen in Figure 14a.

(a) (b) (c)

Figure 14: Validation perplexity after full training versus (a) the width-to-depth aspect ratio, (b) latency,

and (c) peak memory utilization. Models are randomly generated from the Transformer-XL backbone

and trained on WikiText-103. For a given decoder parameter count, we observe low variation in

perplexity across different models, regardless of their topology. The topology, however, significantly

affects the latency and peak memory utilization for models with the same perplexity.

J 3D Pareto Visualization
Figure 15 visualizes the 3-dimensional pareto for the GPT-2 backbones. Here, the black and blue

points denote the regular and pareto-frontier architectures, respectively. The pair of red dots are

architectures which match in both memory and decoder parameter count (∼ perplexity). However,

as shown, their latency differs by 2×. The pair of green points correspond to models with the

same decoder parameter count (∼ perplexity) and latency, while the memory still differs by 30MB,

which is non-negligible for memory-constrained application. In a 2-objective pareto-frontier search

of perplexity versus memory (or latency), each pair of red (or green) dots will result in similar

evaluations. While in reality, they have very different characteristics in terms of the overlooked

metric. This experiment validates the need for multi-objective pareto-frontier search, which

simultaneously takes into account multiple hardware performance metrics.

Figure 15: 3D visualization of our multi-

objective NAS for the GPT-2 backbone

on TITAN Xp GPU. Architectures with

similar memory and decoder parame-

ter count can result in drastically dif-

ferent runtimes (up to 2× difference).

Similarly, architectures with similar de-

coder parameter count and latency may

have different peak memory utiliza-

tion. Therefore, it is important to per-

form multi-objective NAS where sev-

eral hardware characteristics are simul-

taneously taken into account when ex-

tracting the pareto-frontier.

15

Figure 16: 2D visualization of the perplexity versus latency and memory pareto-frontier found by LTS

and scaled backbone models with varying number of layers. All models are trained on theWikiText-103

dataset. The architectural parameters for all models are enclosed in Appendix L.

K LTS Performance Comparison on WikiText-103
We compare the pareto-frontier architectures found by LTS with the baseline after full training on

the WikiText-103 dataset in Figure 16. Commensurate with the findings on the LM1B dataset, the

NAS-generated models outperform the baselines in at least one of the three metrics, i.e., perplexity,

latency, and peak memory utilization. We note that the gap between the baseline models and those

obtained from NAS is larger when training on the LM1B dataset. This is due to the challenging

nature of LM1B, which exceeds the WikiText-103 dataset size by ∼ 10×. Thus, it is harder for
hand-crafted baseline models to compete with the optimized LTS architectures on LM1B.

On the Transformer-XL backbone, the models on LTS pareto-frontier for the ARM CPU have,

on average, 3.8% faster runtime and 20.7% less memory under the same validation perplexity

budget. On the Corei7, the runtime and memory savings increase to 13.2% and 19.6%, respectively,

while matching the baseline perplexity. We achieve our highest benefits on TITAN Xp GPU where

the pareto-frontier of LTS has on average 31.8% lower latency and 21.5% less memory. Notably,

the validation perplexity of the baseline 16-layer Transformer-XL base can be achieved with a

lightweight model with 2.1× less latency while consuming 1.6× less memory at runtime.

On the GPT-2 backbone, LTS achieves 6.3 − 11.2 lower perplexity in the low-latency-and-

memory regime. As we transition to larger models and higher latency, our results show that the

GPT-2 architecture is nearly optimal on WikiText-103 when performing inference on a CPU. The

benefits are more significant when targeting a GPU; For any given perplexity achieved by the

baseline, LTS pareto-frontier on TITAN Xp delivers, on average, 9.0% lower latency and 4.5% lower

memory. Therefore, the perplexity and memory of the baseline 16-layer GPT-2 can be achieved by

a new model that runs 1.4× faster and consumes 1.2× less memory on TITAN Xp.

L Architecture Details
Tables 3, 4, 5, 6 enclose the architecture parameters for the baseline and NAS-generated models in

Figure 4 for Transformer-XL and GPT-2 backbones. For each target hardware, the rows of the table

are ordered based on increasing decoder parameter count (decreasing validation perplexity). For all

models, dhead=dmodel/nhead, the adaptive input embedding factor is set to 𝑘 = 4, and dembed=dmodel.

16

Table 3: Detailed architectural parameters for all models in Figure 4 with Transformer-XL backbone.

nlayer dmodel nhead dinner DecoderParams (M)

baseline ∈[1,16] 512 8 2048 -

A
R
M

M1 2 512 [2, 2] [1216, 1280] 3.2

M2 3 320 [2, 4, 2] [1472, 2368, 3392] 5.5

M3 2 512 [2, 2] [2560, 2176] 5.5

M4 2 512 [2, 2] [3904, 1792] 6.5

M5 2 640 [2, 2] [3520, 3456] 9.8

M6 2 832 [2, 2] [3264, 3968] 13.1

M7 2 704 [8, 2] [3904, 3968] 13.4

M8 2 960 [2, 2] [3648, 3968] 15.9

M9 2 960 [2, 2] [3904, 3968] 16.4

M10 3 960 [2, 2, 2] [1856, 2368, 3392] 16.5

M11 3 960 [2, 4, 2] [3328, 2368, 3200] 19.6

M12 3 832 [2, 2, 2] [3904, 3968, 3008] 19.7

M13 3 960 [2, 2, 2] [3904, 3584, 3456] 22.9

M14 3 960 [4, 2, 2] [3648, 3584, 3584] 23.3

M15 3 960 [2, 2, 8] [4032, 3968, 3904] 26.6

M16 4 896 [4, 2, 8, 2] [3904, 3008, 3520, 3584] 29.7

M17 4 960 [2, 2, 2, 2] [3840, 3904, 3520, 3072] 30.0

M18 4 960 [2, 2, 2, 2] [4032, 3648, 3136, 4032] 31.0

M19 4 960 [2, 2, 4, 2] [3904, 3968, 3840, 3584] 32.5

M20 4 960 [8, 8, 8, 4] [4032, 3968, 2880, 3200] 35.7

M21 4 960 [8, 2, 4, 8] [4032, 3584, 3840, 3584] 35.7

M22 5 960 [2, 2, 2, 2, 2] [3904, 3968, 3264, 3456, 3200] 37.3

M23 5 960 [2, 2, 2, 8, 2] [3904, 3648, 3136, 3648, 3840] 39.9

M24 6 960 [2, 2, 2, 2, 2, 8] [3328, 2624, 3392, 2944, 3008, 3904] 42.5

M25 6 960 [2, 4, 2, 2, 2, 2] [2112, 3840, 3328, 3264, 3968, 3648] 43.1

M26 6 960 [2, 2, 2, 2, 2, 4] [3968, 3968, 3456, 3456, 3776, 2432] 44.8

M27 6 960 [2, 2, 4, 2, 8, 8] [3584, 2624, 3392, 3968, 3008, 3328] 46.3

M28 6 960 [2, 4, 2, 2, 8, 2] [3904, 3008, 3392, 3648, 3392, 3584] 46.4

M29 6 960 [8, 8, 2, 4, 2, 4] [3904, 3648, 3136, 3648, 3200, 3840] 49.7

M30 6 960 [2, 4, 8, 4, 2, 8] [3904, 3008, 3392, 3200, 3968, 3904] 49.7

M31 6 960 [8, 4, 8, 4, 2, 8] [3904, 3648, 3392, 3200, 3968, 3840] 52.7

M32 8 896 [4, 2, 2, 4, 4, 2, 4, 8] [3584, 3968, 3392, 3904, 2240, 1856, 2560, 3264] 53.1

M33 8 896 [4, 2, 2, 2, 4, 4, 4, 2] [3584, 3584, 3520, 2368, 2752, 4032, 3520, 3264] 54.7

M34 8 960 [2, 4, 4, 4, 4, 8, 2, 2] [3968, 3584, 3520, 3072, 3968, 4032, 1856, 3712] 62.5

M35 9 896 [4, 2, 4, 4, 8, 2, 8, 8, 2] [3840, 3136, 3520, 2880, 3200, 3008, 3328, 2560, 3136] 63.4

M36 9 960 [4, 4, 8, 2, 2, 2, 8, 8, 2] [2112, 3008, 3520, 3648, 3968, 4032, 1984, 3200, 3520] 68.0

M37 9 960 [8, 2, 4, 2, 8, 8, 8, 2, 2] [3968, 3008, 3520, 3200, 3200, 4032, 1984, 2816, 3520] 69.8

M38 12 832 [2, 4, 4, 2, 2, 8, 8, 8, 4, 4, 2, 8] [3136, 2112, 2112, 2368, 2752, 2432, 2432, 2176, 3456, 3712, 2880, 3712] 70.4

M39 12 832 [4, 4, 4, 2, 2, 8, 4, 8, 2, 8, 2, 8] [3136, 3968, 2112, 2368, 3072, 2240, 2624, 2112, 3456, 3072, 2880, 3264] 72.1

C
o
r
e
i
7

M1 2 384 [2, 2] [896, 2816] 3.4

M2 2 576 [2, 2] [1792, 2816] 6.1

M3 2 832 [2, 2] [1728, 1536] 6.5

M4 2 576 [2, 2] [1408, 3776] 6.7

M5 2 768 [2, 2] [2112, 3584] 9.7

M6 2 768 [2, 2] [3776, 1920] 9.7

M7 2 832 [2, 2] [3776, 3392] 13.0

M8 2 960 [2, 4] [1984, 3840] 13.0

M9 2 832 [2, 2] [3968, 3584] 13.7

M10 2 960 [2, 2] [3904, 3904] 16.2

M11 2 960 [8, 8] [3968, 3584] 19.4

M12 3 960 [2, 2, 4] [2176, 3840, 2880] 19.6

M13 3 896 [2, 2, 2] [2304, 3904, 3904] 19.9

M14 3 960 [2, 2, 4] [3776, 2880, 3904] 22.8

M15 3 960 [2, 8, 2] [3840, 3840, 3904] 26.0

M16 3 960 [2, 2, 8] [3968, 3904, 3904] 26.3

M17 3 960 [2, 8, 8] [3904, 3840, 3904] 27.9

M18 4 960 [2, 4, 2, 2] [3904, 2112, 4032, 3584] 29.3

M19 4 960 [2, 2, 2, 4] [2112, 3840, 3904, 3904] 29.5

M20 4 960 [2, 2, 2, 4] [3904, 3776, 3904, 3904] 32.9

M21 4 960 [2, 4, 8, 4] [3776, 3392, 3520, 3904] 33.6

M22 5 960 [2, 2, 2, 2, 2] [3776, 1984, 3904, 3904, 3456] 35.8

M23 5 960 [2, 4, 2, 4, 2] [3968, 3584, 3520, 3904, 3200] 39.3

M24 5 960 [2, 4, 4, 4, 2] [3776, 3840, 3904, 3904, 3968] 42.2

M25 6 960 [2, 4, 2, 4, 2, 4] [3776, 2112, 4032, 3584, 3200, 4032] 45.4

M26 6 960 [2, 4, 4, 2, 2, 4] [3776, 3840, 3904, 3904, 3008, 2304] 45.4

M27 6 960 [2, 4, 2, 4, 4, 4] [3776, 3840, 3904, 4032, 3648, 2432] 47.7

M28 6 960 [4, 2, 8, 4, 2, 2] [3840, 3712, 3520, 4032, 3200, 4032] 49.7

M29 8 960 [2, 2, 2, 4, 2, 4, 8, 2] [3392, 1792, 3904, 3904, 3200, 2432, 1792, 2496] 52.1

M30 7 960 [2, 2, 8, 4, 2, 2, 4] [3776, 3840, 3904, 1856, 3072, 3648, 4032] 53.8

M31 8 960 [2, 2, 4, 4, 2, 4, 8, 2] [3776, 3008, 4032, 3904, 3520, 3136, 1984, 3648] 60.5

M32 8 960 [8, 2, 2, 4, 8, 4, 4, 8] [3776, 3008, 3904, 3904, 2176, 4032, 4032, 3648] 67.1

M33 9 960 [4, 2, 4, 4, 4, 4, 8, 8, 2] [3840, 3136, 3520, 4032, 3200, 4032, 3648, 2112, 2368] 69.8

M34 9 960 [8, 2, 8, 8, 2, 4, 8, 2, 2] [3520, 3008, 2880, 4032, 3200, 2432, 4032, 3904, 3136] 71.5

M35 13 768 [2, 8, 2, 4, 2, 2, 4, 2, 2, 8, 8, 8, 4] [3776, 2112, 1600, 3904, 3840, 2880, 2304, 3200, 2048, 2944, 2816, 3328, 3968] 73.3

17

Table 4: Detailed architectural parameters for all models in Figure 4 with Transformer-XL backbone.

nlayer dmodel nhead dinner DecoderParams (M)

baseline ∈[1,16] 8 2048 512 -

T
I
T
A
N
X
p

M1 2 384 [2, 2] [1152, 2432] 3.3

M2 2 576 [2, 2] [2048, 1728] 5.1

M3 2 512 [2, 2] [2368, 3072] 6.2

M4 2 448 [8, 2] [2944, 3008] 6.8

M5 2 832 [8, 2] [3264, 3072] 13.2

M6 2 768 [2, 2] [3968, 4032] 13.3

M7 2 896 [8, 4] [4032, 2880] 15.8

M8 2 960 [2, 2] [3840, 3968] 16.2

M9 2 960 [4, 8] [3968, 3008] 17.1

M10 2 960 [4, 8] [3968, 3648] 18.3

M11 3 960 [2, 2, 2] [3584, 3072, 2624] 19.7

M12 3 896 [2, 2, 2] [3840, 2880, 3840] 20.7

M13 3 896 [8, 4, 8] [4032, 2112, 3392] 22.9

M14 3 960 [4, 2, 2] [3840, 3008, 3840] 23.0

M15 3 960 [2, 2, 8] [3584, 4032, 4032] 26.1

M16 3 960 [2, 2, 8] [4032, 4032, 3840] 26.6

M17 3 960 [8, 2, 8] [4032, 4032, 3520] 27.8

M18 3 960 [8, 4, 8] [4032, 4032, 4032] 29.4

M19 4 896 [4, 4, 8, 8] [4032, 3456, 3328, 3392] 32.4

M20 4 960 [4, 2, 8, 8] [3840, 3008, 3328, 3584] 33.2

M21 4 960 [4, 2, 4, 4] [3840, 4032, 3904, 4032] 34.7

M22 4 960 [2, 2, 8, 8] [4032, 3968, 3904, 3840] 36.4

M23 5 960 [4, 2, 4, 4, 8] [3840, 3008, 3392, 2496, 4032] 39.0

M24 5 960 [2, 2, 4, 4, 4] [3968, 4032, 3328, 4032, 2752] 39.7

M25 5 960 [2, 4, 2, 2, 8] [3968, 3968, 3840, 4032, 3904] 43.4

M26 5 960 [4, 2, 8, 8, 8] [3840, 3008, 3840, 3328, 3968] 43.8

M27 5 960 [8, 2, 8, 8, 4] [4032, 3008, 3840, 3904, 3968] 45.3

M28 6 896 [2, 2, 4, 4, 2, 2] [3840, 3968, 3840, 3328, 3904, 3904] 45.5

M29 6 896 [8, 4, 8, 4, 8, 8] [3328, 2112, 3392, 3904, 3328, 3264] 46.2

M30 6 960 [4, 2, 2, 4, 2, 8] [3840, 3008, 3840, 3904, 4032, 3392] 49.1

M31 6 960 [4, 8, 8, 4, 8, 4] [3072, 3584, 3392, 3840, 3328, 3712] 51.3

M32 6 960 [2, 4, 8, 8, 4, 2] [3840, 3968, 3840, 3328, 4032, 3776] 52.4

M33 6 960 [4, 8, 8, 8, 4, 4] [3840, 3584, 3392, 3328, 3968, 3776] 53.1

M34 6 960 [4, 8, 8, 8, 8, 2] [3840, 3840, 3392, 3840, 3328, 3712] 53.9

M35 7 960 [4, 8, 8, 8, 8, 2, 8] [3840, 3968, 3840, 3328, 3968, 3328, 4032] 64.7

M36 8 960 [4, 2, 8, 8, 8, 4, 8, 8] [3840, 3968, 3840, 3328, 3072, 3328, 4032, 3072] 70.1

M37 10 896 [8, 8, 8, 2, 8, 2, 2, 2, 8, 2] [3840, 3072, 3840, 2560, 3648, 3328, 3840, 3008, 2880, 3328] 74.2

M38 9 960 [8, 8, 8, 4, 4, 8, 8, 4, 2] [2752, 3456, 2880, 3904, 2752, 3904, 4032, 3264, 3136] 74.4

M39 10 896 [8, 4, 8, 8, 8, 2, 8, 2, 4, 8] [4032, 3008, 3840, 2560, 3904, 3904, 3072, 3264, 2368, 2496] 75.4

M40 12 832 [2, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 2] [3840, 2816, 2112, 3584, 3648, 2432, 2304, 3008, 2880, 1664, 2432, 3776] 77.7

18

Table 5: Detailed architectural parameters for all models in Figure 4 with GPT-2 backbone.

nlayer dmodel nhead dinner DecoderParams (M)

baseline ∈[1,16] 1024 12 3072 -

A
R
M

M1 2 512 [2, 2] [1920, 1920] 6.0

M2 3 320 [8, 2, 4] [1920, 1920, 3712] 6.1

M3 2 576 [2, 2] [1344, 3200] 7.9

M4 3 384 [2, 8, 2] [3840, 2368, 3328] 9.1

M5 5 384 [4, 4, 2, 4, 4] [2880, 1920, 960, 2496, 1280] 10.3

M6 2 768 [2, 2] [1600, 2240] 10.6

M7 5 320 [4, 2, 2, 4, 2] [1344, 2240, 3776, 3008, 3648] 11.0

M8 3 768 [2, 2, 4] [1856, 1792, 1920] 15.7

M9 3 704 [2, 2, 2] [3136, 2112, 1920] 16.1

M10 2 960 [4, 2] [3584, 2304] 18.7

M11 6 448 [4, 4, 2, 2, 4, 2] [3072, 2112, 4032, 2688, 1600, 3072] 19.7

M12 3 960 [4, 4, 2] [2368, 2560, 2048] 24.5

M13 4 704 [4, 8, 4, 2] [3008, 3776, 2560, 3648] 26.3

M14 5 704 [4, 2, 4, 2, 8] [3584, 3136, 3776, 3072, 1856] 31.7

M15 3 960 [2, 2, 2] [3392, 3648, 3840] 32.0

M16 4 960 [4, 2, 8, 2] [2048, 3328, 1984, 1856] 32.5

M17 7 704 [2, 4, 4, 4, 8, 2, 2] [3008, 2560, 1920, 1856, 2112, 1728, 3136] 36.9

M18 4 960 [2, 2, 4, 8] [3392, 3456, 2432, 2304] 37.0

M19 5 832 [4, 4, 4, 4, 4] [3840, 1920, 4032, 3072, 3968] 41.9

M20 5 960 [8, 4, 2, 2, 4] [2560, 2048, 3648, 1728, 2304] 42.1

M21 5 960 [4, 4, 2, 2, 2] [3072, 2240, 1984, 2176, 3520] 43.4

M22 5 960 [2, 4, 4, 4, 2] [2496, 3648, 3328, 3392, 2112] 47.2

M23 6 832 [4, 2, 4, 4, 2, 4] [2496, 3200, 1664, 3904, 3520, 3840] 47.7

M24 6 960 [8, 2, 2, 2, 8, 4] [2304, 3328, 3456, 1856, 1792, 2112] 50.7

M25 5 960 [4, 8, 2, 4, 4] [3264, 2688, 4032, 3968, 3712] 52.4

M26 6 960 [2, 4, 4, 2, 2, 2] [3008, 2624, 4032, 2688, 3520, 2624] 57.7

M27 6 960 [2, 4, 4, 2, 8, 2] [2304, 3648, 3328, 3648, 3904, 1728] 57.8

M28 6 960 [4, 4, 2, 4, 2, 2] [3072, 2368, 4032, 4032, 3776, 3264] 61.6

M29 7 960 [2, 2, 2, 8, 4, 8, 4] [3008, 2304, 1920, 1984, 3520, 2816, 3712] 62.9

M30 7 960 [2, 4, 4, 4, 4, 2, 2] [3200, 4032, 2048, 2624, 2112, 2752, 2880] 63.6

M31 7 960 [2, 4, 4, 4, 4, 2, 4] [3584, 3648, 3328, 3392, 3200, 1984, 3200] 68.8

M32 7 960 [2, 4, 8, 8, 2, 2, 8] [3008, 3648, 3584, 3648, 3008, 1728, 3712] 68.8

M33 7 960 [4, 4, 2, 4, 4, 8, 4] [3584, 3840, 3328, 3392, 3136, 2944, 2496] 69.5

M34 8 960 [8, 2, 2, 8, 2, 2, 8, 2] [3008, 3648, 1792, 1984, 3008, 2816, 3712, 3520] 74.7

M35 8 960 [2, 2, 2, 2, 8, 4, 4, 2] [3008, 2304, 1792, 3008, 3520, 2880, 3712, 3456] 75.1

M36 8 960 [2, 2, 2, 2, 2, 2, 4, 8] [3008, 1792, 3840, 3392, 3520, 3136, 3712, 3520] 79.4

M37 9 960 [2, 2, 4, 4, 8, 8, 4, 2, 4] [1664, 1792, 2240, 3904, 3648, 3264, 2176, 3712, 1856] 79.9

M38 11 832 [8, 4, 2, 4, 4, 2, 8, 4, 4, 8, 8] [3072, 2368, 4032, 3968, 1664, 3968, 2176, 2624, 3840, 2176, 2112] 83.8

M39 9 960 [4, 2, 4, 8, 2, 2, 4, 2, 4] [2496, 3648, 3328, 3392, 3648, 1728, 2880, 3520, 2368] 85.1

M40 9 960 [4, 2, 4, 8, 4, 2, 4, 2, 4] [3072, 2816, 4032, 2560, 3648, 1728, 3840, 3264, 3456] 87.8

M41 10 960 [8, 2, 4, 4, 2, 2, 4, 8, 2, 4] [3648, 1792, 2432, 1856, 3392, 2304, 3776, 2944, 3136, 3904] 93.0

M42 10 960 [8, 2, 2, 4, 2, 2, 2, 4, 2, 2] [3264, 2048, 3520, 3904, 3840, 3840, 2624, 3072, 3776, 2304] 98.8

M43 12 896 [4, 4, 4, 2, 4, 2, 4, 8, 8, 2, 4, 2] [2048, 3136, 4032, 1792, 3584, 1728, 3136, 3008, 2560, 3200, 3648, 1728] 98.9

M44 10 960 [4, 2, 8, 4, 2, 8, 4, 4, 4, 2] [3584, 3968, 3328, 3904, 2368, 2112, 3904, 3520, 3328, 2688] 99.8

M45 10 960 [8, 2, 4, 4, 4, 4, 4, 2, 2, 8] [2688, 3200, 3840, 3392, 3520, 3136, 3392, 3520, 2880, 3200] 99.9

C
o
r
e
i
7

M1 2 384 [2, 2] [3840, 2432] 6.0

M2 3 320 [2, 2, 2] [2176, 3072, 2496] 6.2

M3 2 512 [2, 2] [1408, 2624] 6.2

M4 3 384 [2, 2, 2] [3264, 3456, 3584] 9.7

M5 2 576 [2, 2] [3136, 3648] 10.5

M6 3 448 [2, 2, 2] [4032, 3648, 4032] 12.9

M7 4 448 [2, 2, 4, 4] [3072, 3648, 4032, 1792] 14.5

M8 2 768 [2, 2] [3968, 3328] 15.9

M9 4 576 [2, 2, 2, 2] [3072, 2752, 3456, 3136] 19.6

M10 2 960 [2, 2] [3840, 3264] 21.0

M11 4 640 [2, 2, 2, 2] [2176, 3648, 3584, 1920] 21.1

M12 3 960 [2, 2, 2] [2176, 3264, 2432] 26.2

M13 4 768 [2, 2, 2, 2] [3584, 2112, 3392, 1920] 26.4

M14 4 768 [2, 2, 2, 2] [3584, 2560, 3776, 1536] 27.1

M15 4 832 [2, 2, 2, 2] [3904, 1984, 3392, 3136] 31.8

M16 3 960 [2, 2, 2] [3968, 4032, 2880] 32.0

M17 5 768 [2, 2, 4, 2, 2] [3648, 3072, 3392, 1984, 2944] 34.9

M18 4 960 [2, 2, 2, 2] [3136, 1984, 3392, 2944] 36.8

M19 4 960 [2, 2, 2, 4] [3968, 3456, 3584, 3136] 42.0

M20 6 768 [4, 2, 2, 4, 2, 4] [3584, 2112, 3456, 3136, 3840, 2560] 42.9

M21 7 768 [2, 4, 2, 4, 4, 4, 2] [2624, 1984, 2496, 3968, 2880, 2112, 4032] 47.5

M22 5 960 [2, 2, 4, 2, 4] [2176, 3264, 3392, 3008, 3328] 47.6

M23 6 960 [4, 4, 2, 4, 2, 2] [2048, 2624, 3520, 1984, 2880, 2624] 52.3

M24 6 960 [2, 4, 4, 4, 2, 2] [1792, 3456, 2752, 2240, 1664, 3840] 52.4

M25 6 960 [4, 2, 2, 2, 4, 4] [2176, 1664, 3648, 3136, 3968, 3904] 57.7

M26 7 960 [2, 2, 4, 4, 2, 2, 8] [2816, 1792, 3968, 1728, 1664, 3328, 2944] 60.9

M27 7 896 [2, 2, 4, 2, 2, 2, 2] [3904, 3264, 3328, 3968, 1728, 2624, 4032] 63.5

M28 7 960 [4, 2, 4, 2, 2, 2, 2] [3584, 2560, 1792, 1920, 3968, 2112, 3968] 64.1

M29 8 960 [2, 2, 2, 4, 2, 2, 2, 4] [3328, 2432, 2624, 2752, 1664, 2240, 2304, 2816] 68.3

M30 7 960 [4, 2, 4, 2, 2, 2, 2] [3904, 2304, 2368, 3584, 3264, 2880, 3904] 68.5

M31 8 960 [4, 2, 4, 2, 2, 4, 2, 4] [2560, 3648, 2624, 2112, 3328, 2112, 1792, 3328] 70.9

M32 8 960 [4, 4, 4, 2, 2, 4, 2, 4] [2560, 2304, 2624, 4032, 2688, 2624, 3840, 2816] 74.7

M33 9 960 [2, 4, 2, 4, 2, 4, 2, 2, 4] [3072, 3264, 2944, 1984, 2880, 3520, 2112, 2624, 1728] 79.6

M34 10 896 [2, 2, 4, 2, 2, 2, 2, 2, 4, 2] [2816, 3264, 3584, 1792, 3136, 3584, 2240, 2240, 1920, 2752] 81.2

M35 9 960 [8, 2, 2, 2, 4, 4, 2, 4, 4] [3904, 3648, 2432, 3136, 3264, 2816, 2240, 3072, 3840] 87.7

M36 10 960 [4, 4, 2, 2, 4, 4, 2, 4, 4, 2] [2176, 3264, 2752, 3136, 3968, 3520, 3776, 3328, 1728, 2496] 94.9

M37 10 960 [4, 2, 4, 2, 2, 2, 2, 4, 2, 2] [3904, 2112, 2496, 3968, 3968, 2624, 3904, 2304, 3200, 3840] 99.0

M38 11 960 [4, 2, 2, 4, 2, 4, 2, 2, 4, 4, 4] [2176, 4032, 3264, 3840, 2688, 1984, 1728, 2944, 1920, 2368, 3840] 99.8

19

Table 6: Detailed architectural parameters for all models in Figure 4 with GPT-2 backbone.

nlayer dmodel nhead dinner DecoderParams (M)

baseline ∈[1,16] 8 2048 512 -

T
I
T
A
N
X
p

M1 3 256 [2, 2, 2] [3072, 3776, 3904] 6.3

M2 2 448 [2, 2] [3456, 3776] 8.1

M3 2 448 [2, 4] [4032, 3904] 8.7

M4 3 384 [2, 2, 2] [3072, 2176, 4032] 8.9

M5 2 576 [2, 2] [3456, 3584] 10.8

M6 4 448 [2, 2, 2, 2] [4032, 3904, 1920, 3072] 14.8

M7 4 512 [2, 2, 4, 2] [3904, 3136, 1280, 2624] 15.4

M8 2 832 [8, 2] [3456, 3584] 17.3

M9 2 960 [2, 8] [3456, 3648] 21.0

M10 2 960 [2, 2] [3968, 3584] 21.9

M11 5 640 [2, 2, 2, 2, 2] [4032, 2560, 2176, 2304, 3136] 26.4

M12 3 832 [2, 8, 4] [3840, 3840, 3776] 27.4

M13 5 704 [2, 2, 2, 4, 4] [2368, 3648, 1856, 3712, 3200] 30.8

M14 3 960 [2, 2, 2] [3584, 3648, 4032] 32.7

M15 3 960 [2, 2, 2] [3904, 3520, 4032] 33.1

M16 6 640 [2, 2, 2, 2, 2, 2] [2624, 2560, 2880, 3776, 3648, 3840] 34.6

M17 4 896 [2, 2, 4, 2] [4032, 3712, 3328, 3072] 38.2

M18 5 832 [2, 2, 2, 4, 4] [3392, 3648, 2880, 3712, 3200] 41.9

M19 4 960 [2, 2, 4, 2] [3904, 3136, 3328, 3776] 42.0

M20 4 960 [8, 8, 2, 4] [3904, 3712, 4032, 3776] 44.4

M21 6 832 [2, 2, 4, 2, 2, 2] [3904, 3456, 4032, 1792, 3072, 2496] 47.9

M22 5 896 [4, 2, 2, 2, 4] [3968, 3200, 3840, 3328, 3648] 48.3

M23 5 960 [2, 2, 2, 2, 2] [3904, 3264, 3328, 3776, 3392] 52.4

M24 5 960 [2, 2, 4, 2, 2] [3584, 3456, 3776, 2944, 4032] 52.7

M25 5 960 [2, 8, 2, 4, 2] [3904, 3648, 4032, 3776, 3968] 55.6

M26 6 960 [8, 8, 2, 2, 2, 2] [3904, 2560, 2880, 3776, 2240, 3840] 59.1

M27 6 960 [2, 2, 2, 4, 2, 2] [2496, 3456, 3328, 3904, 3968, 2944] 60.8

M28 6 960 [4, 2, 4, 4, 2, 8] [4032, 3456, 3328, 3776, 4032, 2752] 63.2

M29 6 960 [2, 2, 2, 4, 4, 4] [3968, 3648, 3840, 3776, 3584, 2624] 63.4

M30 7 960 [2, 2, 2, 4, 2, 4, 2] [3904, 2368, 4032, 3008, 3520, 2944, 2496] 68.7

M31 7 960 [2, 2, 4, 2, 2, 2, 4] [3072, 3648, 3520, 3584, 3136, 1984, 3584] 69.1

M32 7 960 [4, 2, 2, 2, 8, 2, 2] [3712, 3648, 3584, 3520, 2752, 3008, 3392] 71.2

M33 8 960 [2, 4, 4, 2, 2, 2, 2, 2] [3904, 2816, 3072, 1920, 3328, 3456, 2304, 2368] 74.1

M34 8 960 [2, 2, 2, 4, 2, 2, 8, 2] [3520, 2368, 4032, 1792, 3200, 3776, 3200, 3648] 78.6

M35 8 960 [4, 2, 4, 4, 8, 8, 4, 2] [3520, 3712, 3328, 3776, 3200, 2752, 3200, 2112] 78.7

M36 8 960 [8, 4, 2, 8, 2, 2, 2, 2] [3520, 3840, 3328, 3776, 3200, 3776, 3968, 3648] 85.4

M37 10 960 [2, 8, 2, 4, 2, 2, 4, 2, 8, 8] [3648, 2560, 3776, 1792, 3968, 2752, 3200, 2368, 4032, 2368] 95.5

M38 10 960 [2, 4, 2, 2, 4, 2, 4, 2, 4, 8] [3840, 2240, 3328, 3776, 3648, 3200, 2944, 2368, 3968, 2880] 98.8

M39 10 960 [2, 4, 2, 2, 2, 2, 4, 2, 4, 8] [3840, 2240, 3328, 3776, 3200, 3200, 3968, 2368, 3968, 2816] 99.8

20

	Introduction
	Related Work
	Lightweight Transformer Search
	Training-free Architecture Ranking

	Experiments
	How do training-free proxies perform compared to training-based methods?
	Pareto-frontier Models for Various Hardware Platforms

	Limitations and Future Work
	Preliminaries on Autoregressive Transformers
	Additional Related Work
	Search Space
	Decoder Parameter Count Proxy
	Experimental Setup
	Decoder Parameter Count versus Total Parameters
	Analysis on Homogeneous Models
	How good is the decoder parameters proxy for pareto-frontier search?
	How does model topology affect the decoder parameter count proxy?
	3D Pareto Visualization
	LTS Performance Comparison on WikiText-103
	Architecture Details

