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Figure 1: New version of Figure 2 in the original paper. As suggested by Reviewer fWzj, we replace
the cube with tri-plane to represent the 3D face NeRF field. And change the "3D face" with "tri-plane"
in the label to improve clarity.
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Figure 2: Network details of each component in our generic model, as suggested by Reviewer fWzj.
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Figure 3: New version of Figure 3 in the original paper. As suggested by Reviewer fWzj, we improve
the clarity of the inference process of ICS-A2M model.

Table 1: CMOS results on the lip-sync and expressiveness of various setting of our ICS-A2M model
and the baseline ER-NeRF (ICCV 2023). CMOS score ranges from -3 to +3. Error bars are 95%
confidence intervals.

Settings CMOS-lip-sync↑ CMOS-expressive ↑
#1. Ours (MimicTalk with ICS-A2M model) 0.000 0.000

#2. Ours w.o flow matching −0.438± 0.273 −0.895± 0.387
#4. Ours w. style vector −0.361± 0.204 −0.532± 0.210
#5. Ours w. style encoder −0.254± 0.188 −0.338± 0.225
#6. Ours w.o sync loss −0.932± 0.349 −0.423± 0.296

#6. ER-NeRF (ICCV 2023) −1.838± 0.486 −1.535± 0.422

Table 2: CMOS results on the style controllability and identity similarity of MimicTalk and StyleTalk.
CMOS score ranges from -3 to +3. Error bars are 95% confidence intervals.

Methods CMOS-style-control↑ CMOS-identitiy-similarity ↑
#1. MimicTalk (ours) 0.549± 0.225 1.735± 0.362
#2. StyleTalk (AAAI 2023) 0.000 0.000
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