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Abstract
The 3D model can be estimated by regressing the pose and shape
parameters from the image data of the digital model. The recon-
struction of 3D cartoon characters poses a challenging task due
to diverse visual representations and postural variations. This pa-
per proposes a dual-branch structure named MagicCartoon for 3D
bipedal cartoon character estimation, which models pose and shape
independently through feature decoupling. Considering the corre-
lation between category difference and shape parameters, a hybrid
feature fusion technique is introduced, which integrates the global
features of the original image with the corresponding local features
expressed by the puzzle image, reducing the abstractness of under-
standing shape parameter differences. To semantically align image
and geometric between feature space, a geometric-guided feedback
loop is proposed in an iterative way, so that the pose of modeling
results can be expressed consistently with the image. Moreover, a
feature consistency loss is designed to augment the training data
by incorporating the same character with different postures and
the same posture of different characters. It enhances the correla-
tion between the features extracted by the backbone network and
the specific task. Experiments conducted on the 3DBiCar dataset
demonstrate that MagicCartoon outperforms the state-of-the-art
methods.
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Figure 1: Creating a 3D cartoon model from an input image
can be presented by the pose and shape parameters of the
digital model. Given the vast diversity in poses and shapes
exhibited by cartoon characters, this represents a challenging
task that remains unexplored.
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1 Introduction
The creation of 3D models for cartoon characters is widely utilized
across various domains, including video games, interactive media,
and animation production. However, modeling high-quality 3D
models heavily relies on skilled character designer laborious work.
Deep learning can quickly create corresponding 3D models based
on input images, which helps speed up this process.

Remarkable advancements have been observed in the field of
digital modeling, particularly human modeling. Researchers have
explored human digital models [1, 27, 34], which enable fast model-
ing of characters. Massive datasets of virtual and real-person scans
have been exploited for deep model training. Existing methods have
primarily focused on two aspects: parametric models of the human
body [15, 30, 41, 46, 47] and clothing models [17, 32, 33, 38, 45].
The former estimates the shape and pose parameters of the human
digital models, while the latter focuses on modeling clothed human
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Figure 2: The framework of the proposed MagicCartoon, which learns the pose and shape parameters of the RaBit cartoon
parameter model respectively. It incorporates feature consistency constraints to different pose images sharing the same shape,
as well as different shape images sharing the same pose. Additionally, the architecture leverages a hybrid feature fusion and a
geometry-guided feedback loop to enhance the learning of shape and pose individually. For the in-the-wild image, the output
parameters of the Rabit are fine-tuned to align with the 2D observations.

bodies. However, 3D modeling for cartoon characters has not been
fully explored. Recently, RaBit [28] introduced a novel parametric
model specifically designed for bipedal cartoon characters, which
have diverse appearances and postures, as illustrated in Fig. 1. The
RaBit model is capable of expressing a variety of animals with dis-
tinct appearances, such as cats and giraffes. Since the reference
images are mainly derived from hand-painted drawings, their poses
exhibit obvious complexity.

A direct way of getting a 3D cartoon model is to train regression
methods for human body parameters on cartoon data, such as HMR
[18] and HybrIK [22]. However, pose and shape are two different
attributes of the parametric model, and there is a conflict between
their learning processes. The complex changes introduced by the
diversity of cartoon characters intensify the conflict between them,
thus making the learning process difficult.

To mitigate the problem of task conflict, the features correspond-
ing to different tasks are learned independently through feature
decoupling. A dual-branch structure method named MagicCartoon
is introduced, illustrated in Fig. 2. This approach employs two sets
of encoders and decoders to model pose and shape parameters sep-
arately. Given that cartoon characters primarily differ in elements
like ears, mouth, face, hands, and feet, a jigsaw puzzle data aug-
mentation technique is introduced. By disrupting the order of the
puzzle pieces in the image, the global feature representation cor-
responding to the character category is destroyed to capture local
details. Additionally, a hybrid fusion module is proposed to com-
bine global features extracted from the original image with local
features derived from the jigsaw puzzle-processed image. This inte-
gration enables a comprehensive understanding and representation
of the input image, which reduces the abstractness of understanding
shape parameters through differences in object categories. Taking
into account the significant posture differences in cartoon images,
a feedback loop strategy guided by geometric features is designed.

The consistency between pose modeling and image representation
is achieved by iteratively reducing the differences between geo-
metric and image information within the feature space. Moreover,
a feature consistency loss is introduced to enhance the capability
of the model to express relevant features. Considering improving
the generalization ability of the model on in-the-wild images, 2D
skeletal key points and masks of the characters are leveraged as
supervisory signals during inference. This approach fine-tunes the
parameters of results and achieves a better pixel-align expression
with the image.

Different from traditional methods of human mesh estimation,
MagicCartoon decomposes pose and shape into two distinct tasks.
By eliminating task conflicts throughout the learning process, this
approach facilitates extracting features that are unique to different
tasks. Moreover, by incorporating the jigsaw puzzle, the network
can be guided to concentrate on the detailed representation of dif-
ferent characters. This approach is advantageous in discriminating
the shape disparities among cartoon characters. Modeling semantic
errors using geometric and image features can produce accurate
pose modeling outcomes.

The contributions can be summarized as follows:
• A dual-branch architecture called MagicCartoon is novelly pro-
posed for 3D bipedal cartoon character estimation. This architec-
ture distinctly separates the pose and shape modeling processes.
It employs a feature consistency loss to enhance the capabilities
of the backbone network to capture task-relevant features.

• To address the drastic shape changes of cartoon characters, a
hybrid feature fusion module is proposed to produce a com-
prehensive expression of the input. It combines local features
extracted from the input image after jigsaw puzzle processing
with global features derived from the original image.

• Considering the complexity of cartoon character posture changes,
a geometric-guided feedback loop strategy is introduced. This
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strategy iteratively aligns the 3D modeling with the 2D input
image at the feature level, minimizing discrepancies to achieve
semantic alignment.

• Experiments conducted on the public 3DBiCar dataset demon-
strate thatMagicCartoon achieves promising performance, which
outperforms the state-of-the-art approaches.

2 Related work
2.1 Human Pose and Shape Estimation
Human pose and shape estimation methods primarily fall into two
categories: optimization-based methods [2, 6, 50] and regression-
based methods [5, 18, 19, 23, 24, 40, 47, 49]. The early methods
employed optimization to align the 2D observation data correspond-
ing to the image by updating model parameters or vertices. The
SMPL annotations of some benchmark datasets (such as the Hu-
man3.6M [16] dataset and COCO [26] dataset) are obtained through
the optimization-based method [21]. However, these methods are
often sensitive to initialization and may converge to local optima
during iterative refinement [53]. On the other hand, regression-
based methods leverage the nonlinear mapping capabilities of deep
learning models. These methods directly regress the parameters of
a human body model from image features. HMR [18] pioneered the
approach to human mesh reconstruction, and subsequent efforts
further enhanced it by leveraging the attributes of the SMPL model.
PyMAF [53] minimized the interference from background informa-
tion by incorporating IUV prediction. HybrIK [22] established a
bridge between SMPL’s 3D skeleton key points and its parameter
space. However, due to the abstraction between image space and
parameter space, the parameter regression method can often result
in misalignment between the modeling outcomes and the original
image. While the vertex regression methods [20, 25, 30, 51] offer a
better solution to this issue, modeling results indicate difficulties in
achieving smoothness.

Our work belongs to the parametric regression category. How-
ever, unlike existing methods, we propose a novel approach specif-
ically tailored for cartoon characters. These characters exhibit a
more extensive range of visual diversity compared to humans. A
dual-branch structure network MagicCartoon integrated with fea-
ture consistency constraints is proposed. It enhances the capacity
of the network for expressing features relevant to pose and shape-
related tasks, while simultaneously alleviating conflicts stemming
from these tasks.

2.2 3D Reconstruction of Cartoon Characters.
In the early stages of 3D modeling for cartoon images, 2D pic-
tures were typically transformed into a 2.5D representation [37, 48].
When users observe the 2.5D model from varying perspectives, an
interpolation algorithm is employed to generate images from the
user’s specific viewpoint. However, thesemethods do not establish a
true 3D model, thereby limiting its scope of application. MagicToon
[11] constructs a mesh using a single viewing angle by inputting an
image mask. Photo Wake-Up [44] adopts a comparable approach,
specializing in modeling human characters. It relies on the SMPL
[27] model and transforms its projection to align with the mask cor-
responding to the input image. Nevertheless, due to the absence of
3D supervision information, these methods often lack a reasonable

structure when viewed from the side. MonsterMash [10] introduces
a sketch-based 3D shape modeling technique that allows for the
interactive creation of 3D shapes from sketches drawn in 2D space.
Models are inflated into 3D and are easily animated from a single
view. Additionally, SimpModeling [29] is dedicated to modeling the
heads of animated characters. PAniC-3D [4] builds upon Nerf [31],
enabling the generation of multi-view images from a single-view
head image of an anime character. For the creation of complete 3D
models, AvatarStudio [52] and DreamAvatar [3], combined with
diffusion models [14], can achieve text-guided 3D generation of
cartoon characters. However, research related to 3D conversion
from 2D images to models is limited. 3DCaricShop [36] reconstructs
3D faces from 2D comics using implicit reconstruction techniques.
Recently, the RaBit [28] parametric model was introduced, which
constructs a cartoon character parametric model similar to SMPL.
RaBit is the first 3D full-body cartoon parametric model, which
creates 3D models by adjusting various pose and shape parameters.
Its primary contribution lies in introducing a large-scale cartoon
dataset, 3DBiCar, and a unified 3D RaBit model serving as the
ground truth of 3D cartoon representation. Furthermore, RaBit
proposes a BiCarNet framework that converts single-view images
into 3D RaBit models. It is implemented by the regression of pose
and shape parameters, which adopts the HMR [18] methodology.
This advancement makes it feasible to achieve refined modeling of
cartoon characters from 2D images to 3D.

Our method effectively models 3D characters that correspond to
the cartoon characters depicted in the image. It integrates a hybrid
feature fusion module and a geometric guidance feedback loop
module to enhance the consistency of expression with the image.

3 MagicCartoon
3.1 Framework
Formally, given an input image 𝐼 , MagicCartoon framework utilizes
a dual-branch structure to model the 3D pose parameters 𝛽 ∈ R𝑘×3

and shape parameters 𝜃 ∈ R𝑑×1 of the cartoon image, where 𝑘 is
the number of bone key points and 𝑑 is the dimensions of shape.
The RaBit is then employed to generate the corresponding 3D mesh
R(𝛽, 𝜃 ) ∈ R𝑁×3 based on these parameters, where 𝑁 is the number
of vertices. As illustrated in Fig. 2, during the training phase, the
pose and shape parameters of the parameter model corresponding
to the original image are changed, and the rendered image is si-
multaneously input into the network. This approach facilitates the
decoupling of pose and shape features through feature consistency
constraints. Furthermore, the fine-grained feature fusion and the
geometric feature guidance feedback loop modules contribute to
the regression of branch-specific parameters. In the inference stage,
the framework leverages the mask and skeleton of the input image
as supervisory signals to fine-tune the mesh parameters, ensuring
alignment with the input image.

3.2 Feature Decoupling Module
MagicCartoon aims to accurately model both the shape and pose
of the target character. Typically, existing methods for modeling
such parameters rely on a shared backbone network, which poses
a challenge as the focus areas for shape and pose modeling differ
significantly. The pose parameter focuses on the posture of the
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Figure 3: The visualization diagram illustrates the evolution
of vertex error loss of different parameters within a single
batch, achieved by freezing the learning of a specific task
during the model gradient update process.

target character, while shape needs to distinguish the category and
appearance of the target. Fig. 3 visualizes the conflicts between
tasks, similar to the definition of task affinity in TAG [12]. Under
the same batch, freeze the gradient generated by learning a task
and then observe whether it has an impact on another task. The
comparison between the blue line in Fig. (a) and the green line in
Fig. (b) illustrates that once the learning of pose or shape is frozen,
the parameter updates arising from the other task fail to enhance
the performance of the current task. This observation indicates the
presence of a conflict between the two tasks. Furthermore, training
only shape parameters leads to better modeling results with lower
loss values. To address this issue, a dual-branch network is designed
that effectively decouples the target features from those specific to
the respective tasks, enabling more precise modeling of both shape
and pose.

Driven by the supervision of distinct tasks, the features learned
by each branch naturally diverge. To further enlarge this diver-
gence, a feature consistency constraint is introduced. In brief, the
shape branch feature network should extract consistent features
from input target images that share the same shape parameters
but vary in pose parameters. Conversely, the same applies to the
pose branch. This approach guides the network to prioritize task-
relevant features while disregarding extraneous factors.
Character image generator. To generate diverse 3D models for a
given cartoon character, multiple characters are randomly selected
from the training set. For models exhibiting the same pose but
varying shapes, the pose parameters of the current character are
maintained, while the shape parameters and color maps of other
characters are adopted. Conversely, to create models with identical
shapes and color maps but different poses, the pose parameters
are varied while keeping the shape and color consistent. RaBit is
then employed to model the 3D mesh based on the pose and shape
parameters. Finally, the rendering process is completed to obtain
the image, as depicted in Fig. 2.
Feature consistency loss. The feature consistency loss is defined
as the Euclidean distance measured between the feature represen-
tations of a source image and the reference image, where the latter
exhibits a different pose or shape:

L𝑓 𝑐 =

𝐿∑︁
𝑖=1

𝑇∑︁
𝑡=1

(𝐹 (𝐼𝑠 )0 − 𝐹 (𝐼𝑟_𝑖 )𝑡 )2, (1)

where 𝐿 is the number of reference images, 𝐹 signifies the features
extracted at various stages of the backbone network, and 𝑇 is the
total number of stages.

3.3 Hybrid Feature Fusion
For the human body model, besides gender, the differences between
individuals are mainly reflected in height, weight, and body shape.
These global features can be better captured and expressed through
image extraction. However, cartoon characters exhibit differences
in appearance and posture, as well as significant differences in local
details, such as ears, mouths, and feet. Therefore, representing the
local regions of cartoon images is equally crucial. Prior studies have
demonstrated that image jigsaw puzzles are suitable for charac-
terizing fine-grained image features [9]. The difference is that our
method simultaneously leverages local features 𝐹𝑙 derived from the
jigsaw puzzle and global features 𝐹𝑔 extracted from the original
image. Considering the negative impact of redundant information
produced by the direct fusion of two features on the quality of
fused features [39]. Subsequently, the global feature 𝐹𝑔 and local
feature 𝐹𝑙 are integrated into a compact descriptor through orthog-
onal decomposition and fusion. This process screens for key local
features, ultimately providing a representative description for the
shape recognition task.
Jigsaw puzzle generator. Given an input image 𝐼 ∈ R3×𝑛𝐻×𝑛𝑊 ,
it is initially segmented into 𝑛 × 𝑛 blocks. Then, the order among
these distinct blocks is randomly shuffled, and the rearranged image
is forwarded to the backbone network. This process enables the
network to derive the local features 𝐹𝑙 ∈ R𝐶×𝐻×𝑊 .
Orthogonal decomposition. Before the feature fusion, 𝐹𝑙 initially
establishes feature associations among diverse local blocks by lever-
aging the self-attention mechanism. This facilitates the recognition
and selection of more crucial local characteristics:

𝐹𝑙𝑎𝑡𝑡 = 𝜎 (𝑓 (𝐹𝑙 ) · 𝐹𝑙 ), (2)

where 𝜎 denotes the Softplus activation function and 𝑓 signifies
the convolution calculation involving a convolution kernel of size
1 and output channel of 1. Calculate the orthogonal components of
𝐹𝑙𝑎𝑡𝑡 with respect to 𝑓𝑔 :

𝐹𝑙∗ = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹𝑙𝑎𝑡𝑡 −
𝐹𝑙𝑎𝑡𝑡 · 𝐹𝑔��𝐹𝑔 ��2 𝐹𝑔), (3)

where | · |2 is L2 norm calculation. The features are concatenated
along the channel dimension and then processed through a layer
of multilayer perceptron (MLP) to derive the final feature represen-
tation:

𝐹𝑠 = 𝑀𝐿𝑃 (𝐶𝑎𝑡 (𝐹𝑙∗ , 𝐹𝑔)). (4)

3.4 Geometry-guided Feedback Loop
The postures of cartoon characters exhibit a broader distribution
than those of humans, as they often with exaggerated gestures
that humans do not have, as shown in Fig 1b. Given the diversity
of poses, prior works typically employ multiple iterative loops to
gradually approximate the target pose from an initial one, such
as HMR [18] and PyMAF [53]. A similar mechanism is designed,
with the difference being the consideration of geometric feature
extraction from modeling results. The advantage of this method
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is that it can compare the differences between geometric features
and image features at the semantic level, so as to adjust the pose
parameters accordingly.

Specifically, the pose parameters and ground truth shape pa-
rameters of the i-th modeling are inputted into RaBit to derive the
corresponding vertices and bone key points of the mesh. Given
that the number of vertices exceeds 30k, the point cloud data are
downsampled to expedite calculations and minimize redundant
information [24, 53], resulting in M points. Geometric features
are extracted through a 3D backbone network, which uses Point-
Net [35]. The decoder establishes a connection between the image
and 3D model features by integrating these features with image
characteristics, outputting the pose parameter error. The entire
geometry-guided feedback loop is as follows:

𝜃𝑖+1 = 𝜃𝑖 + 𝐷𝑝 (𝐸3𝑑 (𝐷𝑜𝑤𝑛(𝑅𝑎𝐵𝑖𝑡 (𝛽𝑔𝑡 , 𝜃𝑖 ))), 𝐹𝑝 ), (5)

where 𝐷𝑝 represents the decoder dedicated to the pose branch, 𝐸3𝑑
is the 3D backbone network, 𝐷𝑜𝑤𝑛(·) corresponds to the down-
sampling operation for the point cloud, and 𝐹𝑝 denotes the image
feature of the pose branch. The symbol 𝑖 represents the number of
iterations within the geometry-guided feedback loop. When 𝑖 is set
to 0, 𝜃𝑖 is the statistical mean of the training set.

3.5 Training
To train MagicCartoon, a loss function is applied to the output of
the model to minimize the prediction errors against ground truth,
alongside the feature consistency loss for constrained learning on
the backbone network. Unlike previous methods for human mesh
reconstruction, only the position errors of mesh vertices and 3D
skeleton points are calculated, excluding supervision of modeling
parameters and 2D projection. The integration of both loss functions
results in notable performance degradation. This could be attributed
to the greater sensitivity of the Rabit model to parameter errors
compared to SMPL, as well as the unknown camera information
between the input images and the parameter model.

Let 𝑉 denote the output vertex position of the mesh, and 𝐽 is
the bone joint location. The difference between the output and the
ground truth is evaluated by minimizing the L1 loss:

L𝑉 =

��𝑉𝑝 −𝑉
�� + ��𝑉𝑠 −𝑉 ��
2

,L𝐽 =

��𝐽𝑝 − 𝐽
�� + ��𝐽𝑠 − 𝐽 ��
2

. (6)

The error losses of the pose and shape branches are individually
calculated. For the pose branch, the ground truth value of the shape
serves as the input for RaBit to produce mesh vertices and bone
key points. Similarly, the same approach is employed for the shape
branch using the corresponding ground truth pose data as input.
Our overall loss function is written as:

L = 𝜆1L𝑉 + 𝜆2L𝐽 + 𝜆3L𝑓 𝑐 , (7)

where 𝜆1, 𝜆2, 𝜆3 represents the weight of different losses, respec-
tively.

4 Experiment
4.1 Datasets and Evaluation Metrics
Compared to 3D human public datasets, cartoon-related datasets
are relatively scarce. The 3DBiCar [28] dataset is the first extensive

parametric model collection specifically tailored for bipedal car-
toon characters. It has 1,500 images, which cover diverse sources
ranging from book illustrations, hand-drawn artworks, computer
designs, and dolls. Given an image as a reference, an artist creates a
corresponding 3D model based on a template model. These models
span across 15 distinct animal categories. This dataset has a uni-
fied topology similar to the SMPL model, enabling precise control
through pose and shape parameters. Since the original work did
not specify the distribution of training and test sets, the first 1,050
instances are set as the training dataset and the remaining ones as
the test set.

The evaluation metrics are consistent with the human parameter
model-based approach [22, 28], including Per-Vertex Error (PVE),
Mean Per-Joint Position Error (MPJPE), and Procrustes Aligned
Mean Per-Joint Position Error (PA-MPJPE). PVE measures the av-
erage Euclidean distance between the predicted and ground truth
vertices, offering a comprehensive assessment of the prediction
accuracy of the model. MPJPE specifically quantifies the error in
joint positions, emphasizing the precision of pose reconstruction.
Furthermore, PA-MPJPE focuses on local posture evaluation by
excluding global rotation, translation, and scale variations. These
evaluation indicators collectively provide a comprehensive analysis
of the performance of the model.

4.2 Implementation Details
The backbone network employs ResNet-50 [13] for a fair compari-
son, with its parameters initialized using pre-trained weights from
ImageNet [7]. The input image is cropped from the bounding box
annotation. The background is eliminated based on the mask an-
notation to be consistent with background-free rendering image
inputs. The resolution of the input image is standardized to 224×224.
The quantity of supplementary input images utilized to calculate
the feature consistency loss is set two. The backbone network ex-
tracts features into a 2048-dimensional vector. When processing
the jigsaw puzzle image, the extracted features are 2048×7×7. The
RaBit model generates mesh vertices number 38,726, along with
23 skeletal joints. After downsampling, 606 points are selected as
inputs for PointNet, leading to a feature vector length of 64. The
feedback loop iterates three times (H=3), and the weight distribu-
tion is set as 𝜆1=100, 𝜆2=100, and 𝜆3=1, respectively. The learning
rate is fixed at 5e-5, the batch size is set to 32, and the jigsaw puzzle
is composed of 4×4 pieces. The entire network is trained on a single
RTX 3090 GPU with 250 epochs.

4.3 Quantitative Results
A comparison of the proposed method is conducted on the test
set of 3DBiCar is listed in Table 1. Methods involving vertices are
designated with ∗. The symbol † references outcomes reported in
RaBit [28], while ‡ signifies the reproduction of data augmentation
in this paper. To improve the generalization ability of the model,
linear interpolation was carried out by the RaBit model on the 1,050
models of the training set. This is achieved by randomly selecting
two models for shape and texture, and utilizing them as new model
parameters. Additionally, the H3.6M [16] dataset is accessed to
randomly select pose parameters, resulting in a total of 13,650 pairs
of training data. The results of RaBit in Table 1 are not directly
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Figure 4: Qualitative comparison with Mesh-Graphormer [25] and HMR [18] on 3DBiCar test set.

Table 1: Results are conducted on the 3DBiCar test datasets.

Type MPVE ↓ MPJPE ↓ PA-MPJPE ↓
∗DecoMR† [51] 85.7 81.2 47.2
∗Mesh-Transformer [24] 62.5 49.6 30.7
∗Mesh-Graphormer [25] 62.2 48.0 30.6
HMR [18] 65.4 51.3 30.9
HMR‡ 60.0 47.8 28.8
MagicCartoon 61.6 48.1 30.3
MagicCartoon ‡ 56.6 45.2 28.2
RaBit† [28] 51.5 37.8 26.0

comparable. There exists inconsistency between the open-source
version and its original work, which is mainly because at least 45%
of the 2D images have been replaced due to copyright concerns.

Therefore, to guarantee the fairness of comparison, the afore-
mentioned data augmentation techniques are also utilized, as listed
in Table 1 with ‡. The experimental outcomes clearly show that
our method has achieved significant improvements compared to
the HMR [18] baseline model used by RaBit. This is due to the
design of independent modeling of pose and shape parameters for
cartoon characters, which alleviates task conflicts. With the aug-
mented data, MagicCartoon maintains superior performance. The
Mesh-Graphormer [25] and Mesh-Transformer [24] for vertex re-
gression demonstrates competitive outcomes. However, compared
to SMPL, the Rabit model has a larger number of vertices, which
limits its ability to achieve high-quality modeling results and leads
to performance degradation.

4.4 Qualitative Results
The visualization results of different methods are presented in Fig.
4. The Mesh-Graphormer encounters difficulties in achieving a
smooth surface due to its challenges in accurately modeling the
position of a large number of vertex. Despite its superior evaluation

index performance, it is not suitable for 3D modeling of cartoon
characters because it requires more laborious post-processing. Fur-
thermore, the vertex errors of the modeling results are visualized,
where closer proximity to blue indicates a smaller deviation from
the ground truth, and a deviation towards red signifies a larger er-
ror. In comparison to the HMR method, MagicCartoon offers more
precise shape representation, since it enhances the attention to the
local features of the input image. Furthermore, it facilitates obtain-
ing accurate poses. With the assistance of geometric information,
the semantic-level discrepancy between the modeling outcomes
and the input image is better aligned. Despite significant pose im-
provements achieved compared to other approaches, there remains
a wrong pose estimate. A typical failure case of MagicCartoon is
shown in Fig. 5. These poses are dramatic and rarely appear in the
dataset.

Input GT Graphormer

HMR MagicCartoon

Figure 5: Visualization of failed examples.



MagicCartoon: 3D Pose and Shape Estimation for Bipedal Cartoon Characters MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

4.5 Ablation Study
Impact of different components. The effect of different compo-
nents is evaluated as listed in Table 2. All ablation experiments are
trained on the dataset without augmentation and keep the same hy-
perparameter settings. The baseline method is consistent with HMR.
Initially, a bi-branch structure is established, followed by the inte-
gration of feature consistency loss (FC). This approach enhances
performance by resolving the conflicts in feature learning during
pose and shape estimation tasks. Local features from the puzzle
image are incorporated into the shape branch, effectively capturing
local spatial information with a hybrid feature fusion module (HF).
This refinement leads to a more robust feature representation for
shape regression, further boosting the performance. A geometric
feedback loop achieves optimal performance enhancement (GFL).
Through iterative updates, the 3D model gradually attains semantic
alignment with the image within the feature space.

Table 2: Effect of individual component.

FC HF GFL MPVE ↓ MPJPE ↓ PA-MPJPE ↓
65.4 51.3 30.9√
63.1 49.6 31.0√ √
63.5 50.0 30.8√ √ √
61.6 48.1 30.3

Impact of the feature decoupling module. To assess the effec-
tiveness of the feature decoupling module, ablation experiments
are conducted on various structural designs as presented in Table
3, while maintaining the consistency of other designs.
Table 3: Ablation experiment of the feature decoupling mod-
ule.

Structure FC MPVE ↓ MPJPE ↓ PA-MPJPE ↓
1 backbone + 1 regressor 65.4 51.3 30.9
1 backbone + 2 regressor 65.5 51.4 31.2
2 backbone + 1 regressor

√
65.3 51.0 32.5

2 backbone + 2 regressor 63.7 50.5 31.1
2 backbone + 2 regressor

√
63.1 49.6 31.0

The term "1 regressor" refers to the decoder head that shares the
same output as the encoder. The dual-backbone network utilizes
two distinct sets of image features as the input. After increasing
the number of decoders, there are no significant changes in the
experimental performance. This is due to the inherent indepen-
dence among various neurons in MLP. Despite splitting the output,
the input features remain unchanged, essentially resembling the
design of a single decoder. However, when the number of backbone
networks is increased, the performance of PA-MPJPE degrades sig-
nificantly when using a single decoder structure. This degradation
arises from the inherent conflict between the tasks, thereby restrict-
ing the learning capabilities of each task. Significant improvements
in experimental performance are observed by assigning different
encoders and decoders to different tasks. Furthermore, incorpo-
rating feature consistency loss further improved the performance.
For intuitive comparison, a t-SNE [42] analysis is conducted of
the features before and after introducing the FC loss, as well as
those using a single backbone network, as shown in Fig. 6. The
feature distributions across different branches of the dual-branch
encoder differed significantly from the single-branch features, and
the addition of the FC loss further expanded the separation between
different types of features.

(a) w/o fc (b) w fc

Figure 6: The t-SNE visualization of different backbone net-
work features.

The number 𝑛 of jigsaw patches. An ablation experiment is con-
ducted to investigate the impact of the number of puzzle pieces
listed in Table 4. When the number of pieces is low, the improve-
ment is minor. As the number of pieces increases, the performance
is improved. However, a subsequent increase in the number of
blocks results in a decline in performance. With fewer blocks, the
difference between the features learned by the feature network and
the original image is relatively small. As the number of blocks in-
creases, the distance between the features extracted from the puzzle
pieces and the original image increases. It becomes increasingly
difficult to effectively capture meaningful features from the image.
A higher number of blocks causes the entire image to look like
noise, resulting in performance degradation.
Table 4: Ablation experiment of jigsaw patch number selec-
tion.

Jigsaw patch number MPVE ↓ MPJPE ↓ PA-MPJPE ↓
2 × 2 63.9 50.5 31.4
4 × 4 63.5 50.0 30.8
6 × 6 63.9 50.5 31.3
8 × 8 64.4 50.6 31.4

Impact of the feature fusion method. Comparative experiments
are conducted on two feature fusion methods, as listed in Table
5. The straightforward concatenation method leads to a notable
decrease in performance, whereas the orthogonal decomposition
approach introduced in this paper demonstrates superior perfor-
mance. After orthogonal decomposition, there is no correlation be-
tween local and global features, eliminating redundant information
and enhancing the local features as supplementary information. It
provides a more comprehensive representation of the input image.

Table 5: Ablation experiment of feature fusion.

Method MPVE ↓ MPJPE ↓ PA-MPJPE ↓
Concat 69.1 52.6 32.6

Orthogonal 63.5 50.0 30.8

Impact of the feedback loopmodule. To verify the impact of the
optimal design of the feedback loop module, ablation experiments
are conducted. It focuses on the integration of geometric features,
selection of feature dimensions, and iteration times. The results of
these experiments are presented in Table 6. The results demonstrate
that incorporating geometric features, setting the feature dimension
to 64, and performing 3 iterations results in optimal performance.
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Given the limited number of vertices, a smaller number of feature
dimensions is sufficient to represent the geometric characteristics
of the model. Too many iterations may cause the model to fall into
a local optimal solution. Moreover, a comparison was made of the
way PyMAF [53] samples local features of the image. Specifically,
features are sampled from a 14x14 feature map corresponding to
606 vertices, resulting in a feature vector of length 3,030. As camera
information is unavailable, the vertices are normalized within the
range of [-1, 1] to facilitate the projective transformation into the
image space. However, the experimental results are unsatisfactory.
For the 3DBicar data, the input image and 3D model did not pixel
align. While the PyMAF approach is effective on the human-based
SMPL dataset, it is unsuitable for the cartoon data associated with
RaBit.
Table 6: Ablation experiment of feedback loop module.

Method Iter Lengh MPVE ↓ MPJPE ↓ PA-MPJPE ↓
PyMAF [53] img feature 3 - 67.0 52.7 32.6
w/o geometry feature 1 - 63.7 49.7 31.1
w geometry feature 3 1024 62.3 49.0 31.0
w geometry feature 3 256 62.2 48.7 31.4
w geometry feature 1 64 62.6 48.9 31.3
w geometry feature 3 64 61.6 48.1 30.3
w geometry feature 5 64 63.7 50.0 30.4

The impact of the image background and backbone. A seg-
mentation module with input images at the infer stage is needed,
this step is necessary due to their complicated backgrounds, which
will effectively eliminate the effect of background noises, as listed
in Table 7.

Table 7: The impact of image background.
Preprocessing MPVE ↓ MPJPE ↓ PA-MPJPE ↓
w/o background 61.6 48.1 30.0
w background 63.2 48.7 31.9

To further explore the general capabilities of the model, abla-
tion experiments on different backbone network implementations
are conducted. The ablation study results are presented in Table 8,
where various backbone networks are tested. It can be seen that a
larger HRNet [43] backbone network exhibits better feature repre-
sentation capabilities, leading to improved performance. Despite
having a similar number of parameters, the performance of the
Vit [8] backbone network is not satisfactory, which merits further
exploration of the underlying factors.

Table 8: MagicCartoon with different backbone.
Backbone Params (M) MPVE ↓ MPJPE ↓ PA-MPJPE ↓
ResNet-50 23.51 61.6 48.1 30.0
HRNet-32 41.23 60.0 47.6 29.9
HRNet-40 57.56 58.0 45.3 28.4
Vit-S 21.66 70.3 54.7 36.0
Vit-B 85.80 63.5 48.9 31.4

4.6 Inference for In-the-wild Images
Constructing a 3D cartoon model from in-the-wild images presents
a challenge in attaining a result that harmoniously corresponds to
the input image. To address this issue, themesh vertices produced by
RaBit are normalized to a value range of [-1, 1]. This normalization
establishes a conversion between 3D and 2D spaces. In this process,

Iter_50 Iter_100Input Iter_0

Figure 7: Visualization of intermediate results of fine-tuning.

𝜃 , shape 𝛽 , and translation 𝑐 parameters as learnable variables
within the Adam optimizer, aiming to minimize the loss function
in the following way:

L𝑅𝑎𝐵𝑖𝑡 = min
𝜃,𝛽,𝑐

( |𝑀𝐼 −𝑀𝑅𝑎𝐵𝑖𝑡 | + 𝜆𝑝 |𝐾𝐼 − 𝐾𝑅𝑎𝐵𝑖𝑡 |), (8)

where𝑀𝐼 and𝑀𝑅𝑎𝐵𝑖𝑡 denote the mask of the input image and ren-
der image of the RaBit model, respectively, both are optimized using
L1 loss. 𝐾𝐼 represents the 2D coordinates of the bone key points.
The experimental outputs are presented in Fig. 7, showing this
parameter optimization technique can produce modeling results
that match the input image more closely. This method depends on
the initial prediction results. Therefore, it’s difficult to make big
changes just based on 2D observations, like in the last row of the
figure.

5 Conclusion
In this paper, MagicCartoon is introduced as a method for cartoon
character modeling. This method is designed for the complex and
changeable visual characteristics of cartoon characters. The dual-
branch structural design eliminates learning conflicts between pose
and shape tasks. Local features from the target image are extracted
through jigsaw puzzle images and orthogonally decomposed with
the global features of the image to provide a more comprehen-
sive image representation. This implicitly represents subtle differ-
ences among various characters. An iterative refinement guided
by geometric cues captures semantic-level feature disparities from
the input image, resulting in superior pose estimation results. Ex-
perimental results demonstrate the superiority of MagicCartoon
compared to human body model methods. Additionally, the opti-
mization of model parameters during the inference stage enhances
the generalization capabilities of the algorithm for modeling diverse
in-the-wild images.
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