
A Mathematical Background

DUST-net uses a reparameterization of the space of rigid body transformations that allows distribu-
tions over an object’s articulation model parameters to be defined naturally. Here, we briefly describe
the mathematical foundation leveraged in the proposed distribution over articulation parameters.

A.1 Screw Transformations

Chasles’ theorem states that “Any displacement of a body in space can be accomplished by means

of a rotation of the body about a unique line in space accompanied by a translation of the body

parallel to that line” [32]. Such a line is called a screw axis, S. We represent this line using Plücker
coordinates, given as (l,m) for a l = p + xl, with moment vector m = p ⇥ l, [32, 36]. The
constraints klk = 1 and hl,mi = 0 ensure that the degrees of freedom of the line in space are
restricted to four. The rigid body displacement in SE(3) as a screw transform is then defined as
� = (l,m, ✓, d), where the linear displacement d and the rotation ✓ are connected through the pitch
h of the screw axis, d = h✓.

A.2 Stiefel manifold:

The Stiefel manifold Vk,m is the space whose points are sets of k orthonormal vectors in Rm,
called k-frames in Rm (k  m) [19]. Points on the Stiefel manifold Vk,m are represented by
the set of m ⇥ k matrices X such that XT

X = Ik, where Ik is the k ⇥ k identity matrix; thus
Vk,m = {Xm,k;XT

X = Ik}. Some special cases of the Stiefel manifold are the unit hypersphere
V1,m in Rm for k = 1, and the orthogonal group O(m) for m = k.

A.3 von Mises-Fisher distribution

The von Mises-Fisher distribution (or Langevin distribution) is a unimodal probability distribution
on the (m� 1) sphere in Rm (see Figure 6a). A random m-dimensional unit vector x is said to have
the von Mises–Fisher distribution, if its probability distribution function is given by: fm(x|µ,) =
Cm() exp(µTx), where the concentration parameter  � 0, the mean direction kµk = 1 and the

normalization constant Cm() =


m
2 �1

(2⇡)
m
2 Im

2 �1()
where I⌫ denotes the modified Bessel function

of the first kind at order ⌫ [37]. For m = 3, the normalization constant reduces to C3() =


4⇡ sinh
=

 e
�

2⇡(1� e�2)
.

(a) von Mises-Fisher distribution
in R3. X, Y, Z axes are shown
in red, blue and green colors, re-
spectively. Black color repre-
sents the mean direction of dis-
tribution

(b) Matrix von Mises-Fisher distribution over V3,2, X, Y, Z axes
are shown in red, blue and green colors, respectively. Magenta and
cyan colors denote vectors corresponding to the first and second
column of the matrix M 2 V3,2 representing the mode of the
distribution
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A.4 Matrix von Mises-Fisher distribution

A random matrix X on Vk,m is said to have the matrix von Mises-Fisher distribu-
tion (or matrix Langevin distribution), if its density function is given by F(X|m,F) =

1

0F1(
m
2 ,

1
4F

TF)
exp(Tr(FTX)), where F is any m ⇥ k matrix and 0F1 is a hypergeometric

function with matrix argument [19] (see Figure 6b for an illustration). We can write the general
(unique) singular value decomposition (SVD) of F as F = �⇤⌦T , where � 2 Ṽk,m, ⌦ 2 O(k),
⇤ = diag(�1, ...,�k), �1 � ... � �k � 0, Ṽk,m denotes the set of matrices � 2 Vk,m with the
property that all the elements of the first row of the matrix � are positive, and O(k) denoting the
orthogonal group in k dimensions. It can be shown that 0F1(

m
2 ,

1
4F

TF) = 0F1(
m
2 ,

1
4⇤

2). For
more details, we refer to [19].

B Joint distribution over model parameters

A screw transform, represented as a tuple hS, ✓, di, corresponds to a point on the manifold
S ⇥ SO(2) ⇥ R+, where S := V2,3 ⇥ R+, V2,3 is the Stiefel manifold of 2�frames in R3, SO(2)
denotes the circle group or the special orthogonal in two dimensions, and R+ denotes the set of pos-
itive real numbers. The unified representation proposed by Jain et al. [14] considers the motion of an
articulated object as a sequence of screw transforms that share a common screw axis S. Hence, the
extended tuple hS, ✓1:n�1, d1:n�1i, representing the articulation model for an object, corresponds
to a point on the manifold S ⇥ [SO(2)]n�1 ⇥ [R+]n�1. We can define a joint distribution over
the articulation model parameters by defining the probability density function for the distribution
as the exponentiated distance of a point from the modal point of the distribution, and subsequently
restricting the density function to the manifold [19]. However, calculating the normalization factor
for this distribution is challenging. For example, a direct extension of the von Mises-Fisher distri-
bution to define a distribution on V2,3 ⇥ R yields a density function with a normalizing factor that
requires integrating a generalized hypergeometric function, which, to the best of our knowledge,
is not computationally tractable to compute [38, 39]. Therefore, to define a distribution over the
articulation model parameters that is tractable to learn, we make certain assumptions and propose
an approximate joint distribution over the model parameters in this work.

Given a sequence of n depth images I1:n of object part motion, the joint probability distribution
over the articulation model parameters p(S, ✓1:n�1, d1:n�1 | I1:n) can be written as a product of a
distribution over the screw axis parameters and a conditional distribution over the joint configuration
parameters:

p(S, ✓1:n�1, d1:n�1 | I1:n) = p(S | I1:n) p(✓1:n�1, d1:n�1 | S, I1:n) (3)

We first approximate the distribution over the screw axis parameters S as a product of two marginal
distributions: one over the orientation vector tuple hl, m̂i 2 V2,3 and another over the moment
vector magnitude kmk 2 R+,

p(S | I1:n) ⇡ p(hl, m̂i | I1:n) p(kmk | I1:n) (4)

This approximation is motivated by the fact that calculating statistics over manifolds can be com-
putationally intractable in a general setting [19, 37, 40]. This approximation enables us to define
the probability density function over the screw axis parameters using standard distributions over
manifolds whose properties are well studied in the literature, such as the matrix von Mises-Fisher
distributions over Stiefel manifolds [19, 37].

Calculating the conditional distribution over joint configurations, p(✓1:n�1, d1:n�1 | S, I1:n), ex-
actly would require us to evaluate hypergeometric functions over the complete manifold in which
the screw transforms lie. Hypergeometric functions in the matrix argument result in an infinite se-
ries in terms of zonal polynomials, which becomes combinatorially expensive to calculate with the
increasing number of terms [40]. To maintain the numerical tractability of the solution, we ap-
proximate the probability density function of the conditional distribution as a Dirac delta function
centered at the expected value of the distribution over the screw axis parameters S̄:

p(✓1:n�1, d1:n�1 | S, I1:n) ⇡ �S̄[p(✓1:n�1, d1:n�1 | S, I1:n)]
= p(✓1:n�1, d1:n�1 | S̄, I1:n)

(5)
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where S̄ =
R
S S p(S | I1:n).

As we noted earlier, the unified parameterization of the articulation model parameters corresponds to
a sequence of rigid body transforms (or screw transforms). Each of these rigid body transforms can
be treated as an independent frame transformation between the object parts. Leveraging this fact,
we approximate the conditional distribution over the joint configurations as a product of marginals
over screw transforms at each time step:

p(✓1:n�1, d1:n�1 | S̄, I1:n) =
n�1Y

i=1

p(✓i, di | S̄, I1:n) (6)

In this work, we approximate the conditional distribution over the joint configurations,
p(✓i, di | S̄, I1:n), as a product of marginals over the rotation and displacement parameters to further
simplify the parameterization of the joint distribution over articulation model parameters:

p(✓i, di | S̄, I1:n) ⇡ p(✓i | S̄, I1:n) p(di | S̄, I1:n) (7)

While this approximate distribution cannot capture the correlations between joint configurations, it
was found to be sufficiently expressive to enable DUST-Net to outperform the state-of-the-methods
for articulation model estimation with a significant margin (see Section 5). In the future, DUST-
Net may be extended to use multivariate distributions instead, which can capture the correlations
between joint configurations as well.

Combining these together, in this work, we propose to approximate the joint distribution over artic-
ulation model parameters as:

p(S, ✓1:n�1, d1:n�1 | I1:n) ⇡ p(S | I1:n)
n�1Y

i=1

p(✓i | S̄, I1:n)
n�1Y

i=1

p(di | S̄, I1:n)

⇡ p(hl, m̂i|I1:n) p(kmk |I1:n)
n�1Y

i=1

p(✓i | S̄, I1:n)
n�1Y

i=1

p(di | S̄, I1:n)

(8)

where the exact parameterization of each of these probability distribution functions is discussed in
section 4 of the main text.

C Hypergeometric function pFq

A general hypergeometric function pFq in the matrix argument can be written as an infinite series in
terms of zonal polynomials, which are multivariate symmetric homogeneous polynomials and form
a basis of the space of symmetric polynomials [19]. Given an m ⇥m symmetric, positive-definite
matrix Y, the hypergeometric function pFq of matrix argument Y is defined as

pFq

✓
a1, . . . , ap

b1, . . . , bq

����Y
◆

:=
1X

n=0

X

⌫2Pn

(a1)⌫ · · · (ap)⌫
(b1)⌫ · · · (bq)⌫

· C⌫(Y )

n!
, (9)

where

• Pn is the set of all ordered integer partitions of n
• (a)⌫ is the generalized Pochhammer symbol, defined as

(a)⌫ = (a)(⌫1,...,⌫k) :=
kY

i=1

✓
a� i� 1

2

◆

⌫i

;

, where, (a)⌫i = a(a+ 1)...(a+ ⌫i � 1), (a)0 = 1,
• and C⌫(Y ) denotes the zonal polynomial of Y , indexed by a partition ⌫, which is a sym-

metric homogeneous polynomial of degree n in the eigenvalues y1, . . . , ym of Y , satisfying
X

⌫2Pn

C⌫(Y ) = (trY )n = (y1 + · · ·+ ym)n. (10)
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Figure 7: DUST-net architecture

Using zonal polynomials, we can define the hypergeometric function 0F1(
3
2 ,

1
4⇤

2) defining the nor-
malization factor of the matrix von Mises-Fisher distribution over Stiefel manifold V3,2 as

0F1(
3

2
,
1

4
⇤2) :=

1X

n=0

X

⌫2Pn

1

( 32 )⌫

C⌫(⇤)

n!
, (11)

where ⇤ = diag(�1,�2), Pn is the set of all ordered integer partitions of n, (a)⌫ is the generalized
Pochhammer symbol, and C⌫(⇤) denotes the zonal polynomial of ⇤ indexed by a partition ⌫. This
series converges for all input matrices for a general hypergeometric function pFq if p  q, which
holds in our case [19]. Recently, Jiu and Koutschan [40] investigated the zonal polynomials in detail
and developed a computer algebra package to calculate these polynomials in SageMath. We use
this package to calculate the the hypergeometric function 0F1(

3
2 ,

1
4⇤

2). However, as the number of
terms in the series grows combinatorially with n, we truncate the series at n = 25 for computational
reasons. Through our experimental analysis, we found that this truncated series is a good approxi-
mation of 0F1 as the series converges to a finite value, if the singular values of the F , i.e. �1 and �2

remain below a maximum value �max = 50.

D Network Architecture

Figure 7 shows the detailed network architecture for DUST-net. DUST-net uses an off-the-shelf
convolutional network, ResNet-18, to extract task-relevant visual features from the input images,
which are later passed through a two-layer MLP to predict a set of parameters � for the distribu-
tion p(S, ✓1:n�1, d1:n�1 | I1:n,�). We use ReLU activations for the hidden fully-connected lay-
ers. The first four output parameters (out of 40) of the last linear layer of MLP correspond to the
parameters (↵,�, �) and !, representing the matrices � and ⌦ respectively, which lie in ranges
[0, 2⇡), [0,⇡), [0, 2⇡), and [0, 2⇡) respectively. We pass the first four values of the output of the last
linear layer through a ReLU-6 layer [41] to correctly map the predicted values with their respective
ranges. The rest of the parameters are required to be non-negative. We pass the remaining output
values of the last linear layer through a Softplus layer for non-negative output.

Figure 8: Object classes used from the simulated articulated object dataset [11]. Object classes:
cabinet, drawer, microwave, and toaster (left to right)
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Figure 9: Object classes used from the PartNet-Mobility dataset [20–22]. Object classes: dish-
washer, oven, microwave, drawer- 1 column, and drawer- multiple columns (left to right)

Figure 10: Real world objects used to evaluate DUST-net’s performance. Object classes: microwave,
drawer, and toaster (left to right)

E Experimental details

E.1 Datasets

Objects used in the experiments from each of the dataset are shown in the Figures 8 and 9. We
sampled a new object geometry and a joint location for each training example in the simulated
articulated object dataset, as proposed by [11]. For the PartNet-Mobility dataset, we considered 11
microwave (8 train, 3 test), 36 dishwasher (27 train, 9 test), 9 oven (6 train, 3 test), 26 single column
drawer (20 train, 6 test), and 14 multi-column drawer (10 train, 4 test) object models. For both
datasets, we sampled object positions and orientations uniformly in the view frustum of the camera
up to a maximum depth dependent upon the object size. The objects and depth images are rendered
in Mujoco [34]. We apply random frame skipping and pixel dropping to simulate noise encountered
in real world sensor data. We consider three household objects — a microwave, a drawer, and a
toaster oven, in the real world objects dataset for evaluating DUST-net’s performance. The objects
are shown in Figure 10.

To generate the labels for screw displacements, we follow the same procedure as used by Jain et al.
[14]. Considering one of the objects, oi, as the base object, we calculate the screw displacements
between temporally displaced poses of the second object oj with respect to it. Given a sequence
of n images I1:n, we calculate a sequence of n � 1 screw displacements 1�oj = {1�2, ...

1
�n},

where each 1
�k corresponds to the relative spatial displacement between the pose of the object oj

in the first image I1 and the images Ik, k2{2...n}. Note 1�oj is defined in the frame Fo1j
attached

to the pose of the object oj in the first image I1. We then transform 1�oj to the camera frame
by defining the 3D line motion matrix D̃ between the frames Fo1j

and Foi [42], and transforming
the common screw axis 1S to the target frame Foi . The configurations 1

qk remain the same during
frame transformations. The 3D line motion matrix D̃ between two frames can be constructed using
the rotation matrix R and a translation vector t between two frames FA and FB , as:


Bl
Bm

�
= B

D̃A


Al
Am

�
, where,BD̃A =


R 0

[t]⇥R R

�
, [t]⇥ =

"
0 �t3 t2

t3 0 �t1

�t2 t1 0

#
(12)

where [t]⇥ denotes the skew-symmetric matrix corresponding to the translation vector t, and
(Al,A m) and (Bl,B m) represents the line l in frames FA and FB , respectively [42].
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MAAD / SL MAAD Screw Loss MAAD SL MAAD SL Precision
l m̂ kmk D(SGT , Spred) ✓i ✓l di dl �l �m̂ �kmk �✓ �d

vm-SoftOrtho 0.139 0.154 0.068 0.956 0.012 0.117 0.003 0.006 56.2 55.8 9.8 47.9 89.5
Direct F 0.240 0.261 0.062 0.104 0.010 0.208 0.002 0.006 8.4 7.9 9.8 48.5 75.3

ScrewNet 0.846 0.929 0.486 0.475 0.115 0.217 0.111 0.118 - - - - -
Abbatematteo et al. [11] 0.194 - - 0.111 0.223 - 0.045 - - - - - -

DUST-net 0.151 0.163 0.052 0.059 0.012 0.122 0.002 0.006 53.8 54.0 18.3 128.1 219.1

ScrewNet (Local) 0.178 0.443 0.068 0.033 0.057 0.118 0.015 0.015 - - - - -

Table 1: Mean error values on the MAAD and Screw Loss(SL) metrics for the simulated articulated
objects dataset [11]. Point estimates for DUST-net correspond to the modes of the distributions
predicted by DUST-net. Angular values {l, m̂, ✓i, ✓l} and distances {kmk , D, di, dl} are reported
in radian and meter, respectively. Numerical values are reported for the uncertainty parameters
{�i,�j}. Symbol � represents value not reported.

MAAD / SL MAAD Screw Loss MAAD SL MAAD SL Precision
l m̂ kmk D(SGT , Spred) ✓i ✓l di dl �l �m̂ �kmk �✓ �d

vm-SoftOrtho 0.284 0.243 0.221 1.137 0.030 0.086 0.012 0.027 26.9 31.1 5.7 54.5 60.9
Direct F 0.214 0.212 0.257 0.219 0.030 0.064 0.012 0.024 8.1 7.3 4.9 59.5 70.9

ScrewNet 0.846 0.929 0.486 0.475 0.115 0.217 0.111 0.118 - - - - -
Abbatematteo et al. [11] 0.989 - - 0.095 0.141 - 0.085 - - - - - -

DUST-net 0.220 0.219 0.178 0.189 0.029 0.063 0.012 0.029 49.3 48.3 7.7 72.0 131.9

ScrewNet (Local) 0.260 1.23 0.314 0.151 0.060 0.106 0.040 0.009 - - - - -

Table 2: Mean error values on the MAAD and Screw Loss(SL) metrics for the PartNet-Mobility
dataset [20–22]. Point estimates for DUST-net correspond to the modes of the distributions predicted
by DUST-net. Angular values {l, m̂, ✓i, ✓l} and distances {kmk , D, di, dl} are reported in radian
and meter, respectively. Numerical values are reported for the uncertainty parameters {�i,�j}.
Symbol � represents value not reported.

F Further Results

F.1 Accuracy of Point Estimates

Detailed numerical results for the synthetic articulated objects dataset and the PartNet-Mobility
dataset are shown in Tables 1 and 2, respectively. Results demonstrate that under both metrics,
the estimates obtained from DUST-net are considerably more accurate than those obtained from
the state-of-the-art methods. DUST-net also correctly estimates very high distribution concentration
parameters for the true, noise-free labels. The first baseline, vm-SoftOrtho, performs comparably
with DUST-net on both datasets when only MAAD estimates are considered. However, Tables 1 and
2 show that it produces a very high distance (⇡ 1m) between the predicted and ground-truth screw
axes. This error arises due to the soft-orthogonality constraint used by vm-SoftOrtho, as DUST-net
and the second baseline method, both of which handle the constraint implicitly, do not report high
errors on that metric. Meanwhile, the second baseline, Direct F , performs comparably with DUST-
net on both metrics for both datasets, but fails to capture the uncertainty over parameters with the
required accuracy.

F.2 Uncertainty Estimation

The detailed numerical results from the second set of experiments are shown in Table 3. In the noise-
less case, the singular values of the matrix von Mises-Fisher distribution increases until they reach
their maximum allowed value at �max = 50, while the precision parameters �j , j 2 {kmk , ✓, d}
for truncated normal distributions over remaining parameters become arbitrarily large.

�1 �2 �kmk �✓ �d �1 �2 �kmk �✓ �d �1 �2 �kmk �✓ �d �1 �2 �kmk �✓ �d

Label Noise No noise 15 15 50 50 50 12 12 50 50 50 10 10 50 50 50
SynArt 53.8 53.9 18.3 128.0 219.0 8.2 8.2 14.6 53.7 51.9 6.8 6.8 10.5 41.6 49.6 3.8 3.8 10.3 41.9 47.4
PartNet 49.3 48.3 7.7 72.0 132.0 6.4 6.3 9.4 29.5 29.2 4.9 4.7 8.9 34.0 37.9 3.2 3.1 9.4 31.2 32.1

Table 3: Testing variation of DUST-net’s confidence over predicted articulation model parameters
with input noise. DUST-net’s confidence over its predicted parameters decreases monotonically
as input noise is increased showing that DUST-net’s predicted distribution captures the network’s
confidence over the predicted articulation parameters effectively.
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MAAD / SL MAAD Screw Loss MAAD SL MAAD SL Precision
l m̂ kmk D(SGT , Spred) ✓i ✓l di dl �l �m̂ �kmk �✓ �d

Toaster ScrewNet 2.42 2.48 0.74 0.76 0.45 1.26 0.01 0.00 - - - - -
Oven DUST-net 0.17 0.31 0.52 0.59 0.44 0.64 0.01 0.01 2.5 0.1 11.6 10.8 75.5
Microwave ScrewNet 0.79 0.81 0.13 0.52 1.19 0.54 0.01 0.01 - - - - -

DUST-net 0.41 0.42 0.22 0.43 0.46 0.40 0.00 0.00 0.7 0.6 19.7 14.3 39.9
Drawer ScrewNet 0.69 0.24 0.49 0.24 0.72 0.97 0.08 0.08 - - - - -

DUST-net 0.42 0.50 0.32 0.74 0.75 0.56 0.07 0.08 0.2 0.1 12.3 31.6 55.2

Table 4: Mean error values on the MAAD and Screw Loss metric for estimation of articulation
model parameters for real-world objects when network was trained solely using simulated data.
ScrewNet predictions are reported in the camera frame. Angular values {l, m̂, ✓i, ✓l} and distances
{kmk , D, di, dl} are reported in radian and meter, respectively. Numerical values are reported for
the uncertainty parameters {�i,�j}. Symbol � represents value not reported.

F.3 Real objects

The numerical results from the sim-to-real transfer experiments are shown in Table 4. Results re-
port that while DUST-net outperforms ScrewNet in estimating the model parameters for real-world
objects, the estimated parameters are not yet accurate enough to be used directly for manipulating
these objects. However, a noteworthy insight from the results is that DUST-net also reported very
low confidence over the predicted parameters. This clearly delineates why it is beneficial to estimate
a distribution over the articulation model parameters instead of only point estimates, as discussed
earlier in the section 5.3.
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