
Supplemental:
Training Fully Connected Neural Networks is ∃R-Complete

A ∃R-Membership

Membership in ∃R is already proven by Abrahamsen, Kleist and Miltzow in [3]. For the sake of
completeness, while not being too repetitive, we shortly summarize their argument.

Applying a theorem from Erickson, van der Hoog and Miltzow [33], ∃R-membership can be shown
by describing a polynomial-time real verification algorithm. Such an algorithm gets a TRAIN-F2NN
instance I as well as a certificate Θ consisting of real-valued weights and biases as its input. The
instance I consists of a set D of data points, a network architecture and a target error γ. The algorithm
then needs to verify that the neural network described by Θ fits all data points in D with a total
error at most γ. The real verification algorithm is executed on a real RAM (see [33] for a formal
definition). Thus, ∃R-membership can be shown just like NP-membership, the main difference being
the underlying machine model (for NP-membership the verification algorithm must run on a word
RAM instead).

A real verification algorithm for TRAIN-F2NN loops over all data points in D and evaluates the
function described by the neural network for each of them. As in our case each hidden neuron uses
ReLU as its activation function, each such evaluation takes linear time in the size of the network.
The loss function can be computed in polynomial time on the real RAM (see also Definition 2 and
the text afterwards).

B ∃R-Hardness

In this section we present our ∃R-hardness reduction for TRAIN-F2NN. The reduction is mostly
geometric, so we start by reviewing the underlying geometry of the two-layer neural networks
considered in the paper in Appendix B.1. This is followed by a high-level overview of the reduction
in Appendix B.2 before we describe the gadgets in detail in Appendix B.3. Finally, in Appendix B.4,
we combine the gadgets into the proof of Theorem 3.

B.1 Geometry of Two-Layer Neural Networks

Our reduction below outputs a TRAIN-F2NN instance for a fully connected two-layer neural net-
work N with two input neurons, two output neurons, and m hidden neurons. As defined above, for
given weights and biases Θ, the network N realizes a function f(·,Θ) : R2 → R2. The goal of
this appendix is to build a geometric understanding of f(·,Θ). We point the interested reader to
these articles [6, 26, 49, 66, 92] investigating the set of functions exactly represented by different
architectures of ReLU networks.

The i-th hidden ReLU neuron vi realizes a function

fi : R2 → R
(x1, x2) 7→ ReLU(a1,ix1 + a2,ix2 + bi),

where a1,i and a2,i are the edge weights from the first and second input neuron to vi and bi is its bias.
We see that fi is a continuous piecewise linear function: If a1,i = a2,i = 0, then fi = max{bi, 0}
everywhere. Otherwise, the domain R2 is partitioned into two half-planes, touching along a so-called
breakline given by the equation a1,ix1 + a2,ix2 + bi = 0. The two half-planes are (see Figure 6)

• the inactive region {(x1, x2) ⊆ R2 | a1,ix1 + a2,ix2 + bi ≤ 0} in which fi is constantly 0,
and

• the active region {(x1, x2) ⊆ R2 | a1,ix1 + a2,ix2 + bi > 0} in which fi is positive and
has a constant gradient.

Now let ci,1, ci,2 be the weights of the edges connecting vi with the first and second output neu-
ron, respectively, and let f(·,Θ) = (f1(·,Θ), f2(·,Θ)). For j ∈ {1, 2}, the function f j(·,Θ) =∑m

i=1 ci,j · fi(·,Θ) is a weighted linear combination of the functions computed at the hidden neurons.
We make three observations:

17

Figure 6: A continuous piecewise linear function computed by a hidden ReLU neuron. It has exactly
one breakline; the left flat part is called the inactive region, whereas the right sloped part is the active
region.

• As each function computed by a hidden ReLU neuron has at most one breakline, the domain
of f j(·,Θ) is partitioned into the cells of a line arrangement of at most m breaklines. Inside
each of these cells f j(·,Θ) has a constant gradient.

• The position of the breakline that a hidden neuron vi contributes to f j(·,Θ) is determined
solely by the a·,i and bi. In particular it is independent of ci,j . Thus, the sets of breaklines
partitioning f1(·,Θ) and f2(·,Θ) are both subsets of the same set: the set of (at most m)
breaklines determined by the hidden neurons.

• Even if all m hidden neurons compute a function with a breakline, f j(·,Θ) might have fewer
breaklines: It is possible for a breakline to be erased by setting ci,j = 0, or for breaklines
created by different hidden neurons to cancel each other out (producing no breakline) or lie
on top of each other (combining multiple breaklines into one). In our reduction, we make
use of ci,j = 0 to erase some breaklines in a single output dimension, but we avoid the other
two cases of breaklines combining/canceling.

Note that these observations even imply another, stronger, statement: For each breakline, the change
of the gradient of f(·,Θ) when crossing the line is constant along the whole line (see also [26]). This
allows to distinguish the following types of breaklines, which will ease our argumentation later.
Definition 5. A breakline ℓ is concave (convex) in f j(·,Θ), if the restriction of f j(·,Θ) to any two
cells separated by ℓ in the breakline arrangement is concave (convex).

The type of a breakline is a tuple (t1, t2) ∈ {∧, 0,∨}2 describing whether the breakline is concave (∧),
erased (0), or convex (∨) in f1(·,Θ) and f2(·,Θ), respectively.

We have now established a basic geometric understanding of the function f(·,Θ) computed by the
neural network N . In our reduction we construct a data set which can be fit by a continuous piecewise
linear function with m breaklines if and only if a given ETR-INV instance has a solution. To
make sure that the continuous piecewise linear function translates to a solution of the constructed
TRAIN-F2NN instance, we need the following observation.
Observation 6. Let f : R2 → R2 be a continuous piecewise linear function that can be described
via a line arrangement L of m lines with the following properties:

• In at least one cell of L the value of f is constantly (0, 0).

• For each line ℓ ∈ L the change of the gradient of f when crossing ℓ is constant along ℓ.

Then there is a fully connected two-layer neural network with m hidden neurons computing f .

To see that this observation is true, consider the following construction. For each breakline add a
hidden neuron realizing the breakline with the inactive region towards the constant-(0, 0) cell, and
with the correct change of gradients in each output dimension. It is easy to see that the sum of all
these neurons computes f . For a precise characterization of the functions representable by 2-layer
neural networks with m hidden neurons, we refer to [26].

18

B.2 Reduction Overview

We show ∃R-hardness of TRAIN-F2NN by giving a polynomial-time reduction from ETR-INV
to TRAIN-F2NN. ETR-INV is a variant of ETR that is frequently used as a starting point for
∃R-hardness proofs in the literature [2, 59, 30, 3].

Formally, ETR-INV is a special case of ETR in which the quantifier-free part φ of the input sentence
Φ ≡ ∃X1, . . . , Xn ∈ R : φ(X1, . . . , Xn) is a conjunction (only ∧ is allowed) of constraints, each of
which is either of the form X + Y = Z or X · Y = 1. Further, Φ either has no solution or one with
all values in [1/2, 2].

Theorem 7 ([2, Theorem 3.2]). ETR-INV is ∃R-complete.

Furthermore, ETR-INV exhibits the same algebraic universality we seek for TRAIN-F2NN:

Theorem 8 ([4]). Let α be an algebraic number. Then there exists an instance of ETR-INV, which
has a solution when the variables are restricted to Q[α], but no solution when the variables are
restricted to a field F that does not contain α.

The reduction starts with an ETR-INV instance Φ and outputs an integer m and a set of n data points
such that there is a fully connected two-layer neural network N with m hidden neurons exactly fitting
all data points (γ = 0) if and only if Φ is true. Recall that for fixed weights and biases Θ the neural
network N defines a continuous piecewise linear function f(·,Θ) : R2 → R2.

For the reduction we define several gadgets representing the variables as well as the linear and
inversion constraints of the ETR-INV instance Φ. Strictly speaking, a gadget is defined by a set of
data points that need to be fit exactly. These data points serve two tasks: Firstly, most of the data
points are used to enforce that f(·,Θ) has m breaklines with predefined orientations and at almost
predefined positions. Secondly, the remaining data points enforce relationships between the exact
positions of different breaklines.

Globally, our construction yields f(x,Θ) = (0, 0) for “most” x ∈ R2. Each gadget consists of a
constant number of parallel breaklines (enforced by data points) that lie in a stripe of constant width
in R2. Only within these stripes f(·,Θ) possibly attains non-zero values. Where two or more of
these stripes intersect, additional data points can encode relations between the gadgets. The semantic
meaning of a gadget is fully determined by the distances between its parallel breaklines. Thus each
gadget can be translated and rotated arbitrarily without affecting its meaning.

Simplifications. Describing all gadgets purely by their data points is tedious and obscures the
relatively simple geometry enforced by these data points. We therefore introduce two additional
constructs, namely data lines and weak data points, that simplify the presentation. In particular, data
lines impose breaklines, which in turn are needed to define gadgets. Weak data points are there to
ensure that the gadgets used in the reduction encode variables with bounded range and that we can
have features that are only active in one output dimension. How these constructs can be realized with
carefully placed data points is deferred to Appendices B.3.5 and B.3.6.

• A data line (ℓ; y) consists of a line ℓ ⊆ R2 and a label giving the ground truth value y ∈ R2.
When describing a single gadget, we want that all points p ∈ ℓ are exactly fit, that is,
f(p,Θ) = y. As soon as we consider several gadgets, their corresponding stripes in R2

might intersect and we do not require that the data lines are fit correctly inside these
intersections. As each data line will be enforced by placing finitely many data points on it,
we choose coordinates for these defining data points that do not lie in any of the intersections.

• A weak data point relaxes a regular data point and prescribes only a lower bound on the
value of the label. For example, we denote by (x; y1,≥ y2) that f1(x,Θ) = y1, and
f2(x,Θ) ≥ y2. Weak data points can have such an inequality label in the first, the second,
or both output dimensions.

B.3 Gadgets and Constraints

We describe all gadgets in isolation first and consider the interaction of two or more gadgets only
where it is necessary. In particular, we assume that f(x,Θ) is constantly zero for x ∈ R2 outside
of the outermost breaklines enforced by each gadget. After all gadgets have been introduced, we

19

p1 p2 p3

(a) If the points are collinear, then there is either
no breakpoint or there are at least two.

p1 p2

p3

(b) If the points are not collinear, then we need a
breakpoint of a certain type, here convex.

Figure 7: Three consecutive points p1, p2 and p3 in a cross section and possible interpolations through
them (solid and dashed).

describe the global arrangement of the gadgets in Appendix B.4. Recall that, since each gadget can
be freely translated and rotated, we can describe the positions of all its data lines and (weak) data
points relative to each other.

Not all gadgets make use of the two output dimensions. Some gadgets have the same labels in both
output dimensions for all of their data lines, and thus look the same in both output dimensions. For
these gadgets we simplify the usual notation of (y1, y2) ∈ R2 for labels to single-valued labels y ∈ R.
In our figures, data points and functions which look the same in both output dimensions are drawn in
black, while features only occurring in one dimension are drawn in orange and blue to distinguish the
dimensions from each other.

Let (ℓ1, yi), . . . , (ℓk, yk) be parallel data lines describing (parts of) a gadget and ℓ ⊆ R2 be an
oriented line intersecting all ℓi. Without loss of generality, we assume that the ℓi are numbered such
that ℓi intersects ℓ before ℓj if and only if i < j. Then, this defines a cross section through the
gadget: Formally, for each data line (ℓi, yi) the cross section contains a point pi = (xi, yi) ∈ R×R2,
where xi is the oriented distance between the intersections of ℓ1 and ℓi on ℓ. We say that two points pi
and pj in the cross section are consecutive, if |i− j| = 1. If ℓ is perpendicular to all ℓi, then the cross
section is orthogonal.

Each pi = (xi, yi) in a cross section is a point in R × R2. When drawing a cross section in the
following figures, we project it into a 2-dimensional coordinate system by marking xi along the
abscissa and yi along the ordinate; if a yi behaves differently in the two output dimensions, we draw
it twice distinguishing the two dimensions by color (and clearly marking which two drawn points
belong together).
Observation 9. For a single output dimension, whenever three consecutive points pi, pi+1, pi+2 are
not collinear in the cross section, then there must be a breakpoint (the intersection of a breakline b
with the cross section) strictly between pi and pi+2. Further, if pi+2 is above the line through pi
and pi+1, b must be convex (∨) in this output dimension. If otherwise pi+2 is below that line, b must
be concave (∧) in this output dimension.
Observation 10. Whenever three consecutive points p1, pi+1, pi+2 are collinear in one of the two
output dimensions, then there is either no breakpoint (active in this dimension) strictly between pi
and pi+2, or at least two.

Observations 9 and 10 are illustrated in Figure 7. In the analysis of each gadget, we use these
observations to prove that the data lines enforce breaklines of a certain type with a prescribed
orientation and (almost) fixed position.

B.3.1 Variable Gadget

Recall that an instance of ETR-INV can be assumed to either have a solution with all variables
in [1/2, 2] or to have no solution at all. As already motivated in Section 6, variables are encoded as
the slope of f(·,Θ) at certain points. Recall that the gadget only affects a stripe of bounded width.
See Figure 8 for a cross section view through this stripe.

A variable gadget consists of four parallel breaklines b1, b2, b3, b4, numbered from left to right. Left
of b1 and right of b4 the value of f(·,Θ) is constantly 0. Between b2 and b3 the value of f(·,Θ) is
constantly 6. The gradient of f(·,Θ) between b1 and b2 is orthogonal to the breaklines and oriented
towards b2. We call the Euclidean norm of the gradient between b1 and b2 the slope of the variable

20

0

1

2

3

4

5

6

q

p1 p2 p3

p4

p5 p6 p7

p8

p9

p10 p11 p12

∨-break
∧-break

∧-break ∨-break

Figure 8: Orthogonal cross section view of a variable gadget. The black points pi are the projections
of the data lines ℓ1, . . . , ℓ12, the white point q is a weak data point imposing a lower bound on f(q,Θ).
The bars below the cross section indicate non-collinear triples, where convex (∨) and concave (∧)
breakpoints are needed. For example, there needs to be a convex breakpoint between p2 and p4.

gadget. The slope sX of a variable gadget for a variable X is at least 3/2 (if b1 = ℓ3 and b2 = ℓ5)
and at most 3 (if f(·,Θ) goes through the lowest possible value for the weak data point q). In order
to represent values in [1/2, 2] we say that a slope sX encodes the value X = sX − 1.

The gradient between b3 and b4 carries no semantic meaning. It is merely used to bring f(·,Θ) back
to 0, such that only a stripe in R2 is affected by the gadget. This part is thus fixed to a slope of 1 for
simplicity.

We realize a variable gadget using twelve parallel data lines, as described in the following table:

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12

distance to ℓ1 0 1 2 4 6 7 8 10 12 14 15 16
label 0 0 0 3 6 6 6 4 2 0 0 0

Lemma 11. Assume that at most four breaklines may be used. Then the twelve parallel data
lines ℓ1, . . . , ℓ12 as described in the table above realize a variable gadget with slope in [3/2,∞),
thus carrying a value in [1/2,∞).

Proof. We first prove that four breaklines are necessary to fit all data lines exactly. For this, consider
an orthogonal cross section through the data lines. It is easy to see that the variable gadget has
four non-collinear triples (see Figure 8) and that they pairwise share at most one point. Thus, by
Observation 9, four breaklines b1, b2, b3, b4 are indeed required.

As p1, p2, p3 are collinear, we can further conclude by Observation 10 that b1 has to intersect the
cross section at p3 or strictly between p3 and p4. Similarly, as p5, p6, p7 are collinear, we get that b2
has to intersect the cross section at p5 or strictly between p4 and p5. The remaining breaklines b3
and b4 can only intersect the cross section on p7 and p10, respectively. Since this holds at every
orthogonal cross section through the data lines, we further conclude that the breaklines are parallel to
each other and to the data lines.

The exact positions of b1 and b2 depend on each other. As f(·,Θ) must fit ℓ4, the distance between ℓ4
and b1 equals the distance between ℓ4 and b2. If b1 = ℓ3 and b2 = ℓ5, the slope of f(·,Θ) between b1
and b2 is exactly 3/2. This is the minimum possible slope, because ℓ3 and ℓ5 have to be fit. There is
no restriction on the maximum possible slope. Thus ℓ1, . . . , ℓ12 realize a variable gadget carrying a
value in [1/2,∞).

It remains to bound the value of the variable also from above, such that it is constrained to the
interval [1/2, 2]. To achieve this, we use a weak data point, named q in Figure 8. Recall that the label
of a weak data point is a lower bound to f(·,Θ).

21

p3

p4

p5

0

1

2

3

4

5

6

Figure 9: Partial cross section of a variable gadget with slope sX showing the lower (blue) and upper
(red) measuring lines. The contribution of this variable gadget at these lines is 3− sX and 3 + sX ,
respectively. As can be seen, this variable gadget has a slope of sX = 2, thus encoding X = 1.

Lemma 12. Let q be a weak data point at distance 3 + 2/3 to ℓ1 (and thus a distance of 1/3 to ℓ4)
with lower bound label ≥ 2. Then the slope of the variable gadget is at most 3.

Proof. Assume for the sake of contradiction that the slope of f(·,Θ) between b1 and b2 is strictly
larger than 3. Then the contribution of the variable gadget to f(q,Θ) is strictly less than 2, so the
lower bound label of q is not satisfied, a contradiction.

We conclude that with twelve data lines and one weak data point we can enforce four parallel
breaklines forming a variable gadget, with a minimum slope of 3/2 and a maximum slope of 3, thus
encoding a value in the interval [1/2, 2].

B.3.2 Measuring a Value from a Variable Gadget

For every particular variable gadget we consider the two parallel lines with distance 1 to ℓ4 to be
its measuring lines. We distinguish the lower measuring line (the one towards ℓ3) and the upper
measuring line (the one towards ℓ5). Note that, since the slope of the variable gadget is restricted to
be in the interval [3/2, 3], both measuring lines are always inside or at the boundary of the sloped
part (in other words, between breaklines b1 and b2), see Figure 9.

Let again sX be the slope of the variable gadget carrying the value of variable X . At any point p
on ℓ4, the contribution of the variable gadget to f(p,Θ) is exactly 3, assuming ℓ4 is fit exactly. From
this it follows that for a point pu on the upper measuring line the contribution to f(pu,Θ) is 3 + sX .
Thus, if we know the value of f(pu,Θ) and further that pu belongs to a single variable gadget only,
then we get X = sX − 1 = f(pu,Θ)− 4 for the value represented by the variable gadget. Similarly,
for a point pl on the lower measuring line the contribution to f(pl,Θ) is 3− sX . If pl belongs to a
single variable gadget only, then X = sX − 1 = 2− f(pl,Θ) is the represented value.

B.3.3 Enforcing Linear Constraints between Variables: Addition and Copying

Until now we always only considered one gadget in isolation. As soon as we have two or more
gadgets, their corresponding stripes may intersect. Inside these intersections, the different gadgets
interfere and below we describe how to use this interference to encode (non-)linear constraints. Let
us note, however, that data lines are not fit correctly inside these intersections any more. This is not
a problem because each data line is later replaced by just three collinear data points outside of any
intersections of stripes, see Appendix B.3.6 below. As we will see there, it is enough that these three
data points are fit exactly.

For disjoint subsets A and B of the variables we can use an additional data point p to enforce a linear
constraint of the form

∑
A∈A A =

∑
B∈B B. Note that this type of constraint in particular allows us

to copy a value from one variable gadget to another (X = Y via A = {X},B = {Y }) or to encode
addition (X + Y = Z via A = {X,Y },B = {Z}).

22

The data point p is placed on a measuring line of each involved variable. For all variables in A the
data point p must be on the upper measuring line of the corresponding variable gadget. Similarly, for
variables in B the data point p must be on the lower measuring line. Therefore the variable gadgets
of the involved variables need to be positioned such that the needed measuring lines all intersect at
a common point, where p can be placed. This is trivial for |A|+ |B| ≤ 2, see Figure 10; but more
involved for more variables, see Figure 11. Using the equality constraint X = Y , we can copies
the value of a variable onto multiple variable gadgets, which can be positioned freely to obtain the
required intersections. We discuss the global layout to achieve this in more detail in Appendix B.4.

`X1

`X12

`X4

`Y1

`Y4
`Y12

p

Figure 10: Top-down view on the intersection of two variable gadgets corresponding to two vari-
ables X (red) and Y (blue). The dashed lines are their measuring lines. The point p is placed at the
intersection of the upper measuring line for X and lower measuring line for Y , and receives label 6
to enforce the constraint X = Y .

`X3

`X4

`Y3`Y4`Y5

`Z3`Z4`Z5

`X5

p

Figure 11: Top-down view of the “interesting part” of the intersection of three variable gadgets
corresponding to variables X (red), Y (orange), and Z (blue). The dashed lines are upper the
measuring lines for X and Y and the lower measuring line for Z, intersecting in a single point p with
label 10. This realizes the constraint X + Y = Z.

Lemma 13. The constraint
∑

A∈A A =
∑

B∈B B can be enforced by a data point p placed as
described above with label y = 4|A|+ 2|B|.

23

Proof. First, let us consider a variable A ∈ A and let sA be the slope of the corresponding variable
gadget. Data point p is placed on the upper measuring line of the variable gadget, so it contributes
3 + sA to f(p,Θ). Similarly, for a variable B ∈ B let sB be the slope of its corresponding variable
gadget. Here p is placed on the lower measuring line and this variable gadget contributes 3− sB to
f(p,Θ).

The overall contribution of the variable gadgets of all involved variables adds up to

f(p,Θ) =
∑
A∈A

(3 + sA) +
∑
B∈B

(3− sB)

=
∑
A∈A

(4 +A) +
∑
B∈B

(2−B),

where we used that the value represented by a variable gadget is its slope minus 1. Choose the label
of p to be y = 4|A| + 2|B|. Then, p is fit exactly if and only if the linear constraint

∑
A∈A A =∑

B∈B B is satisfied.

Lemma 13 is more general than we actually require it for our reduction. The only linear constraint in
an instance of ETR-INV is the addition X + Y = Z. In our reduction we also need the ability to
copy values, i.e., a constraint of the form X = Y . These are the only linear constraints required and
can be encoded with data points using only two different labels:

Observation 14. To encode the addition constraint X + Y = Z of ETR-INV the data point has
label 10. For the copy constraint X = Y the data point has label 6.

Until now we never distinguished between the two output dimensions of variable gadgets. Let us
note here that it is enough for the data point enforcing the linear constraint to be active in only one
output dimension. This holds, because each variable gadget has exactly the same breaklines (and
therefore represents the same value) in both output dimensions. In particular, it may also be a weak
data point with a lower bound label of ≥ 0 in the other output dimension. This relaxation is used to
realize inversion constraints in the following section.

B.3.4 Inversion Gadget

We introduce an inversion gadget which is in essence the superposition of two variable gadgets. This
gadget uses data lines with different labels in the two output dimensions to enforce the presence of
five parallel breaklines b1, . . . , b5, instead of the usual four for a normal variable gadget, see Figure 12.
In each output dimension, the continuous piecewise linear function defined by these five breaklines
looks like a normal variable gadget, so four of the five breaklines are required. This yields that the
two variable gadgets in the two output dimensions share three breaklines and have one exclusive
breakline each (which is erased in the other output dimension). As for a normal variable gadget,
the last two breaklines (b4 and b5) are just there to bring f(·,Θ) back to 0 outside of the stripe of
the inversion gadget. In the first output dimension the slope between b1 and b2 encodes the value
while b3 is erased. Similarly, in the second output dimension the sloped between b2 and b3 encodes
the value while b1 is erased. Note that b2 is involved in both sloped parts and therefore changing the
value encoded by the variable gadget in one dimension has a directed effect on the value encoded
by the variable gadget in the other dimension. As we will see, with carefully placed data lines this
dependency encodes an inversion constraint.

We define an inversion gadget using 13 parallel data lines, positioned relatively to each other as in the
following table:

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12 ℓ13

distance to ℓ1 0 1 2 4 7 9 10 11 13 15 17 18 19
label in dim. 1 0 0 0 3 6 6 6 6 4 2 0 0 0
label in dim. 2 0 0 0 0 3 6 6 6 4 2 0 0 0

Lemma 15. Assume that at most five breaklines may be used. Then the 13 parallel data lines as
described in the table above realize an inversion gadget carrying two values X and Y satisfying
X · Y = 1.

24

p4

p5

0

1

2

3

4

5

6

3
sX

3
sY

3

p1 p2 p3

p8p6 p7

p13

p9

p10

p11 p12

(∨,0)-break
(∧,∨)-break

(∧,∨)-break

(0,∧)-break
(∧,∧)-break

(∨,∨)-break

Figure 12: Cross section view of the inversion gadget. The points p1, . . . , p13 are the projections of
the data lines ℓ1, . . . , ℓ13. Points p4 and p5 have different labels in the first (red) and second (blue)
output dimension. Non-collinear triples of points force breaklines in-between them.

Proof. Again, we start by showing that at least five breaklines are necessary. First off, there must
again be the two fixed breaklines b4 and b5 on the data lines ℓ8 and ℓ11, by the same arguments as
for the normal variable gadget (see proof of Lemma 11). There are four more relevant triples of
non-collinear points, requiring the following breaklines:

• Triple p2, p3, p4 enforces a (∨, 0)-breakline between ℓ2 and ℓ4. Actually, since p1, p2, p3
are collinear, the breakline must be between ℓ3 and ℓ4.

• Triple p3, p4, p5 enforces a (∧,∨)-breakline between ℓ3 and ℓ5.

• Triple p4, p5, p6 enforces a (∧,∨)-breakline between ℓ4 and ℓ6.

• Triple p5, p6, p7 enforces a (0,∧)-breakline between ℓ5 and ℓ7. Actually, since p6, p7, p8
are collinear, the breakline must be between p6 and p7.

We need to fulfill all four of these requirements with only three remaining breaklines. By looking
at the types we see that this is only possible if the triples p3, p4, p5 and p4, p5, p6 enforce the same
breakline. This breakline must then be between ℓ4 and ℓ5.

As we now know the locations and types of all breaklines, we can analyze the relationship between
the values X and Y carried on the two variable gadgets. The distance between ℓ4 and ℓ5 is 3 by
construction. This distance can be subdivided into the distance from ℓ4 to b2, and from b2 to ℓ5.
Between ℓ4 and b2 function f1(·,Θ) rises from 3 to 6, thus the distance between ℓ4 and b2 must
be (6− 3)/sX . Similarly, between b2 and ℓ5 function f2(·,Θ) rises from 0 to 3, thus the distance
between b2 and ℓ5 must be (3 − 0)/sY . These distances add up to 3, and thus the gadget encodes
the constraint 3/sX + 3/sY = 3, or equivalently 3sY + 3sX = 3sXsY . Using that X = sX − 1
and Y = sY − 1 we get

3(Y + 1) + 3(X + 1) = 3(X + 1)(Y + 1)

which is true if and only if
X · Y = 1.

To encode an X · Y = 1 constraint of ETR-INV, we first identify two normal variable gadgets
carrying the variables X and Y . Then the inversion gadget is placed so that it intersects both. In the
intersection with the X-variable gadget we copy X to the first dimension of the inversion gadget and
in the intersection with the Y -variable gadget we copy Y to the second dimension of the inversion

25

`∗1 `∗4 `∗5 `∗13

`Y12

`Y1

`X12

`X1

`Y4

`X4

pX

pY

Figure 13: Top-down view on two variable gadgets (horizontal), denoted as X (blue) and Y (red)
(the data lines are solid and the measuring lines are dashed). The sloped gadget is an inversion gadget
linking the two variable gadgets. Two weak data points pX and pY copy X and Y to the first and
second dimension of the inversion gadget, respectively.

gadget. This copying can be done as described in Appendix B.3.3 using weak data points. See
Figure 13 for a top-down view on this construction. As variable gadgets carry the same value in both
output dimensions, enforcing the inversion constraint on just one dimension of each variable gadget
(X and Y) is sufficient.

Note that the sloped parts of an inversion gadget differ in the two output dimensions. In particular the
measuring lines in the first dimension have distance 1 to ℓ4, while the measuring lines in the second
dimension have distance 1 to ℓ5. Thus the weak data points used for copying need to be placed on the
measuring lines of the correct dimension.

B.3.5 Realizing Weak Data Points: Cancel Gadgets

Recall that, for our construction so far, we used weak data points with labels of the form ≥ y in one
or both output dimensions. We now introduce a gadget which can be used to realize such a weak
data point using only non-weak data points (with constant labels). For each weak data point p we
introduce a cancel gadget, consisting of three parallel breaklines that form a stripe containing p but
that shall not contain any other (weak) data point.

A cancel gadget can be active in either one of the two output dimensions, or in both of them. If a
cancel gadget is active in some output dimension, the breaklines form a ∨ shape of variable height in
that dimension. On the other hand, if the cancel gadget is inactive in some output dimension, the
breaklines are all inactive (type 0) and the gadget contributes nothing to f(·,Θ) in this dimension.
The following table shows the locations and labels of the eight data lines that define a cancel gadget.
The cancel gadget is illustrated in Figure 14.

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

distance to ℓ1 0 1 2 3 5 6 7 8
label in active dimension(s) 0 0 0 −1 −1 0 0 0
label in inactive dimension(s) 0 0 0 0 0 0 0 0

26

0

−1
−2
−3

p1 p2 p3 p6 p7 p8p4 p5

(0,∧)-br.

(0,∧)-br.
(0,∨)-break

(0,∨)-break

(a) The cancel gadget can be asymmetric.

0

−1
−2
−3

p1 p2 p3 p6 p7 p8p4 p5

(0,∧)-br.

(0,∧)-br.
(0,∨)-break

(0,∨)-break

(b) A cancel gadget has a maximum contribution to the
weak data point of −2.

Figure 14: Cross sections of a cancel gadget which is inactive in the first (red) dimension and active
in the second (blue) dimension. It is used to “cancel” a weak data point in the active dimension (blue)
that lies on the dashed vertical line. In the inactive dimension (red) it does not contribute anything
to f(·,Θ), i.e., all breaklines are erased (type 0).

Lemma 16. Assume that at most three breaklines may be used. The eight data lines as described
above realize a cancel gadget that contributes 0 to f(p,Θ) in an inactive dimension and an arbitrary
amount c ∈ (−∞,−2] to f(p,Θ) in an active dimension to any point p with equal distance to ℓ4
and ℓ5.

Proof. Again we start by arguing that three breaklines are necessary in each active output dimension.
There are the following non-collinear triples, each enforcing a breakline:

• Triple p2, p3, p4 enforces a ∧-breakline between ℓ2 and ℓ4. Actually, since p1, p2, p3 are
collinear, the breakline must be between ℓ3 and ℓ4.

• Triple p3, p4, p5 enforces a ∨-breakline between ℓ3 and ℓ5.

• Triple p4, p5, p6 enforces a ∨-breakline between ℓ4 and ℓ6.

• Triple p5, p6, p7 enforces a ∧-breakline between ℓ5 and ℓ7. Actually, since p6, p7, p8 are
collinear, the breakline must be between ℓ5 and ℓ6.

We see that the two ∧-breaklines must be in disjoint intervals, so we indeed need two different
breaklines. We have one breakline remaining to satisfy the two ∨-type enforcements. Thus we get b1
of type ∧ between ℓ3 and ℓ4, b2 of type ∨ between ℓ4 and ℓ5, and b3 of type ∧ between ℓ5 and ℓ6. All
breaklines must be inactive (type 0) in an inactive output dimension.

We can now analyze the possible contribution of the cancel gadget in an active output dimension
to a point p equidistant to ℓ4 and ℓ5. Any contribution c ∈ (−∞,−2] can be realized by placing
breakline b1 at distance −1/(c + 1) left of ℓ4, breakline b3 at distance −1/(c + 1) right of ℓ5 and
breakline b2 equidistant between ℓ4 and ℓ5. A contribution c > −2 can not be realized, as otherwise
there would need to be two convex breaklines, because p3, p4, p and p, p5, p6 are both non-collinear
triples requiring a convex breakline.

Since the breaklines are at the exact same positions in both output dimensions we can observe the
following:
Observation 17. If the cancel gadget is active in both output dimensions, it contributes the same
amount to the weak data point in both dimensions.

The cancel gadget is placed such that the weak data point is equidistant to ℓ4 and ℓ5. The inequality
label ≥ y of the weak data point is converted into the constant label y − 2.

As shown above, the cancel gadget can contribute any value c ∈ (−∞,−2] to the data point. Thus,
the data point can be fit perfectly if and only if the other gadgets contribute at least a value of y to the
data point, that is, the intended weak constraint is met.

27

v1 v2 v3

≤ w

≥ α

≤ w

`12

`1

`8

`1

Figure 15: Data lines defining a variable gadget (blue) and a cancel gadget (red) and their intersections
with the vertical lines v1, v2, v3. We add a data point at each intersection. The values α and w describe
the minimal distance between data lines of different gadgets, and the maximal distance between data
lines of the same gadget, respectively. In orange, we highlighted three matching breakpoint intervals
(in this case forcing a ∧-breakpoint between ℓ4 and ℓ6 of the variable gadget).

Lastly, let us note that a cancel gadget could also be constructed such that it has a ∧ shape and
contributes a positive value in [2,∞) to the data point. This would allow constraints of the form ≤ y
as well. Combining two cancel gadgets, one positive and one negative, would even allow a data
point to attain an arbitrary value in R (in one of the two dimensions), but this is not needed for our
reduction.

B.3.6 Realizing Data Lines using Data Points

We previously assumed that our gadgets are defined by data lines, but in the TRAIN-F2NN problem,
we are only allowed to use data points. In this section, we argue that a set of data lines can be
realized by replacing each data line by three data points. This in turn allows us to define the gadgets
described throughout previous sections solely using data points. This section is devoted to showing
the following lemma, which captures this transformation formally. Note that our replacement of
data lines by data points does not work in full generality, but we show it for all the gadgets that we
constructed.
Lemma 18. Assume we are given a set of gadgets (variable gadgets, inversion gadgets and cancel
gadgets), in total requiring m breaklines. Further assume that the gadgets are placed in R2 such that
no two parallel gadgets overlap. Then each data line can be replaced by three data points such that a
continuous piecewise linear function with at most m breaklines fits the data points if and only if it fits
the data lines.

For the proof consider the line arrangement induced by the data lines. We introduce three vertical
lines v1, v2, v3 to the right of all intersections between the data lines. The vertical lines are placed at
unit distance to one another. In our construction, no data line is vertical, thus each data line intersects
each of the vertical lines exactly once. We place one data point on each intersection of each vertical
line with a data line. The new data point inherits the label of the underlying data line. Furthermore,
on each vertical line, we ensure that the minimum distance α between any two data points belonging
to different gadgets is larger than the maximum distance w between data points belonging to the same
gadget. This can be achieved by placing the v1, v2 and v3 far enough to the right and by ensuring a
minimum distance between parallel gadgets. See Figure 15 for an illustration.

Along each of the three vertical lines the data points form cross sections of all the gadgets, similar
to the cross sections shown in Figures 8, 12 and 14 (note however that here the cross sections are
not orthogonal). We have previously analyzed cross sections of individual gadgets in the proofs of
Lemmas 11, 15 and 16. There we identified certain intervals between some of the data lines that need
to contain a breakpoint (the intersection of a breakline and the cross section). If we now consider

28

Table 1: Location and type of the breaklines in variable gadgets, inversion gadgets, and cancel
gadgets.

Location Type

b1 [ℓ3, ℓ4) (∨,∨)
b2 (ℓ4, ℓ5] (∧,∧)
b3 on ℓ7 (∧,∧)
b4 on ℓ10 (∨,∨)

(a) Variable gadget.

Location Type

b1 [ℓ3, ℓ4) (∨, 0)
b2 (ℓ4, ℓ5) (∧,∨)
b3 (ℓ5, ℓ6] (0,∧)
b4 on ℓ8 (∧,∧)
b5 on ℓ11 (∨,∨)

(b) Inversion gadget.

Location Type

b1 [ℓ3, ℓ4) (0,∧)
b2 (ℓ4, ℓ5) (0,∨)
b3 (ℓ5, ℓ6] (0,∧)

(c) Cancel gadget.

the cross sections of all gadgets along the vertical lines, we refer to these intervals as breakpoint
intervals. A breakpoint interval may degenerate to just one point (we have seen this for example for
the fixed-slope side of a variable gadget). By our placement of the vertical lines, the cross sections
(and thus also the breakpoint intervals) of different gadgets do not overlap.

Any two data lines bounding a breakpoint interval on v1 also bound a breakpoint interval on v2 and v3.
We call the three breakpoint intervals on v1, v2 and v3 which are bounded by the same data lines
matching breakpoint intervals.

In total there are 3m breakpoint intervals. We show that the only way to stab each of them exactly
once using m breaklines is if each breakline stabs exactly three matching breakpoint intervals. The
first observation towards this is that each breakline can only stab a single breakline interval per
vertical line because all breakline intervals are pairwise disjoint. Thus, having m breakpoint intervals
on each vertical line, each of the m breaklines has to stab exactly three intervals, one per vertical line.
In a first step, we show that each breakline has to stab three breakpoint intervals belonging to the
same gadget.

Claim 19. Each breakline has to stab three breakpoint intervals of the same gadget.

Proof. The proof is by induction on the number of gadgets. For a single gadget the claim trivially
holds. For the inductive step, we consider the lowest gadget g (on v1, v2 and v3) and assume for
the sake of contradiction that there is a breakline b stabbing a breakpoint interval of g on v2 and a
breakpoint interval of a different gadget g′ above g on v1. By construction, the minimum distance α
between different gadgets is larger than the maximum width w of any gadget on all three vertical
lines. Thus, the distance of any breakpoint interval of g′ to any breakpoint interval of g on v1 is larger
than the width of g on v3. Therefore, we know that the breakline b intersects v3 below any breakpoint
intervals of g, which is the lowest gadget on v3. Thus it stabs at most two breakpoint intervals in total
and therefore not all intervals can be stabbed. The same reasoning holds if the roles of v1 and v3 are
flipped. All breaklines stabbing breakpoint intervals of g on v2 must therefore also stab breakpoint
intervals of g on v1 and v3. Applying the induction hypothesis on the remaining gadgets, it follows
that each breakline only stabs breakpoint intervals of the same gadget.

We can therefore analyze the situation for each gadget in isolation. The main underlying idea is to use
the type of the required breakline. Each breaklines must stab three breakpoint intervals of the same
type. Let us summarize the findings about required breakline locations and types from the proofs of
Lemmas 11, 15 and 16 in Table 1.

Claim 20. To stab all breakpoint intervals of a variable gadget with only four breaklines, each of
them has to stab three matching breakpoint intervals.

Proof. See Table 1a. On the three vertical lines, there are six breakpoint intervals for breaklines of
type (∨,∨) in total. If only two breaklines should stab these six breakpoint intervals, one breakline
needs to stab at least two of the single-point intervals. If a breakline goes through two of the single
points, it also goes through the third point, and can thus not go through the proper intervals. Therefore
one breakline must stab the single-point intervals, and the other one stabs the proper breakpoint
intervals.

29

The same argument can be made for the breakpoint intervals of type (∧,∧), and thus each breakline
stabs three matching breakpoint intervals.

Claim 21. To stab all breakpoint intervals of an inversion gadget with only five breaklines, each of
them has to stab three matching breakpoint intervals.

Proof. See Table 1b. All five sets of three matching breakpoint intervals have a different type of
required breakline, thus each breakline stabs three matching breakpoint intervals.

Claim 22. To stab all breakpoint intervals of a cancel gadget with only three breaklines, each of
them has to stab three matching breakpoint intervals.

Proof. See Table 1c. There is only one set of three breakpoint intervals for a breakline of type (0,∨),
so it is trivially matched correctly.

We can see that the breakpoint intervals for a breakline of type (0,∧) have a distance of 2 from each
other, and each have a width of 1. If the two breaklines of this type would not stab three matching
breakpoint intervals, one of them would need to stab two matching intervals and one non-matching
interval. As the distance between the vertical lines is equal and the breakpoint intervals are further
apart from each other than their width, there is no way for a breakline to lie in this way. We conclude
that all breaklines stab three matching breakpoint intervals.

From Claims 20 to 22 it also follows that within a single gadget, between the vertical lines no two
breaklines can cross each other, nor can they cross a data line. Together with Claim 19, we can finally
prove Lemma 18.

Proof of Lemma 18. By Claim 19 it follows that every breakline must stab three breakpoint intervals
of the same gadget. By Claims 20 to 22 it follows then that each breakline must stab three matching
breakpoint intervals, and therefore the breaklines do not cross any data lines between the three vertical
lines.

It remains to show that the data points already ensure that each breakline b is parallel to the two
parallel data lines d and d′ enclosing it. To this end, consider the parallelogram defined by d, d′, v1, v3
(see Figure 16) and let j be an output dimension in which b is active (not erased). Since no other
breakline intersects this parallelogram, we obtain that f j has exactly two linear pieces within the
parallelogram, which are separated by b. Moreover, since b stabs matching breakpoint intervals, the
three data points on d must belong to one of the pieces. Since these points have the same label, it
follows that the gradient of this piece in output dimension j must be orthogonal to d (and, thus, to d′

as well). Applying the same argument on the data points on d′, we obtain that the gradient of the other
piece must be orthogonal to d and d′ as well. This implies that also the difference of the gradients
of the two pieces is orthogonal to d and d′. Finally, since b must be orthogonal to this difference of
gradients, we obtain that it is parallel to d and d′.

B.4 Global Construction Layout

We can now finalize proving ∃R hardness of TRAIN-F2NN For each variable X of the ETR-INV
formula, we build a horizontal canonical variable gadget carrying this variable at the bottom of the
construction. As argued previously, the variable gadgets naturally ensure X ≥ 1/2 for all variables X
and the added weak data point with label ≥ 2 ensures X ≤ 2.

The constraints of the form X + Y = Z are enforced by copying the three involved variables onto
three new variable gadgets. These three new variable gadgets are positioned to intersect above all
horizontal variable gadgets in a way such that their correct measuring lines intersect in a single point.
This allows a data point enforcing the constraint to be placed.

For the k inversion constraints of the form X ·Y = 1 we build an array of k parallel inversion gadgets
intersecting all canonical variable gadgets. Each inversion gadget is connected to the two variable
gadgets of the variables involved in the constraint (by copying their values into the two dimensions of
the inversion gadget).

30

v1 v3

b

d′

d

Figure 16: The parallelogram enclosed by the two data lines d, d′ and the vertical lines v1, v3. The
three data points (black) on each data line enforce the gradient in both cells to be orthogonal to the
data lines. As a consequence, the breakline b (blue) separating the cells has to be parallel to the data
lines.

Finally, we add a cancel gadget for each weak data point such that the cancel gadget contains only
this data point but no other data points.

The complete layout can be seen in Figure 17, and an overview over all used gadgets and constructions
can be seen in Table 2.

X1

X2

X3

X4

X1 +X2 −X3 = 0

=

=

=

=

=

=

X1 +X3 −X4 = 0

=1=2

=1

=2

X4 ·X3 = 1

X1 ·X4 = 1

≤ 2

≤ 2

≤ 2

≤ 2

Figure 17: The layout of all gadgets and additional data points for the complete reduction. Each
gadget is simplified to a single line for clarity. Solid: Variable gadgets. Dashed: Inversion gadgets.
Gray: Cancel Gadgets. A point with label =i indicates a copy that is only active in output dimension i.

Proof of Theorem 3. For ∃R-membership we refer to Appendix A. For ∃R-hardness, we reduce
from the ∃R-complete problem ETR-INV to TRAIN-F2NN. Given an instance of ETR-INV, we

31

Table 2: An overview of all parts of the construction.
Gadget #Breaklines #Data Points Labels

variable gadget 4 37 (0, 0), (2, 2), (3, 3), (4, 4), (6, 6)
inversion gadget 5 39 (0, 0), (2, 2), (0, 3), (3, 6), (4, 4), (6, 6)
addition 0 1 (10, 10)
copy 0 1 (−2, 6), (6,−2), (6, 6)
cancel gadget 3 24 (0, 0), (0,−1), (−1, 0), (−1,−1)

construct an instance of TRAIN-F2NN with γ = 0 as described in the previous paragraphs and shown
in Figure 17.

Let m be the minimum number of breaklines needed to realize all gadgets of the above construction:
We need four breaklines per variable gadget (Lemma 11), five breaklines per inversion gadget
(Lemma 15) and three breaklines per cancel gadget (Lemma 16). We obtain the following chain of
equivalences, completing our reduction:

The ETR-INV instance is a yes-instance.

⇔ There exists a satisfying assignment of the variables of the ETR-INV instance.

⇔ There exists a continuous piecewise linear function fitting all data points of the TRAIN-
F2NN instance constructed above and fulfills the conditions of Observation 6 with m
breaklines.

⇔ There exists a fully connected two-layer neural network with m hidden ReLU neurons
fitting all the data points.

⇔ The TRAIN-F2NN instance is a yes-instance.

The first and the last equivalence are true by definition.

To see that the second equivalence is true, first assume that there is a satisfying assignment of the
variables of the ETR-INV instance. Then these values can be used to find suitable slopes for the
variable gadgets, inversion gadgets and cancel gadgets in the construction (recall that the slope is the
value plus 1). The superposition of all these gadgets yields the desired continuous piecewise linear
function. The function satisfies Observation 6 because, first, the gadgets are built in such a way that
functions fitting all data points are constantly zero everywhere except for within the gadgets, and
second, the gradient condition is satisfied for each gadget separately and, hence, also for the whole
function. For the other direction assume that such a continuous piecewise linear function exists. By
Lemmas 16 and 18 the data points enforce exactly the same continuous piecewise linear function as
the conceptual data lines and weak data points would. By Lemmas 11, 12 and 15 this continuous
piecewise linear function has the shape of the gadgets. Now using that all data points are fit, the
slopes of the variable gadgets, and inversion gadgets indeed correspond to a satisfying assignment of
ETR-INV.

For the third equivalence, Observation 6 guarantees that such a fully connected two-layer neural
network with m hidden ReLU neurons exists. To show the other direction, first note that the function
realized by a fully connected two-layer neural network with m hidden ReLU neurons is always a
continuous piecewise linear function with at most m breaklines and satisfying the gradient condition.
To see that the other condition of Observation 6 is satisfied, note that the only way to fit all data points
with a continuous piecewise linear function of this type is such that it is constantly zero outside all
the gadgets.

The TRAIN-F2NN instance can be constructed in polynomial time, as the gadgets can be arranged
in such a way that all data points (residing on intersections of lines) have coordinates which can be
encoded in polynomial length.

The number of hidden neurons m is linear in the number of variables and the number of constraints
of the ETR-INV instance. The number of data points can be bounded by 10m, thus the number of
hidden neurons is linear in the number of data points.

32

As can be gathered from Table 2, the set of used labels is

{(-2,6),(-1,-1),(-1,0),(0,-1),(0,0),(0,3),(2,2), (3,3),(3,6),(4,4),(6,-2),(6,6), (10,10)}

with cardinality 13 as claimed.

Remark 23. Note that if the ETR-INV instance is satisfiable, each variable gadget and inversion
gadget in a corresponding solution Θ to the constructed TRAIN-F2NN instance has a slope of at
most 3 in each dimension. Furthermore, no cancel gadget needs to contribute less than −12 to satisfy
its corresponding weak data point. Thus, there must also be a solution Θ′, where each cancel gadget
is symmetric, and thus the function f(·,Θ′) is Lipschitz continuous with a low Lipschitz constant L,
which in particular does not depend on the given ETR-INV instance. Checking all the different ways
how our gadgets intersect, one can verify that L = 25 is sufficient.

C Algebraic Universality

It remains to prove algebraic universality of TRAIN-F2NN. Intuitively, it suffices to show that the
transformations of a solution of an ETR-INV instance to a solution of the corresponding TRAIN-
F2NN instance and vice-versa in the above proof of Theorem 3 require only basic field arithmetic,
that is, addition, subtraction, multiplication, and division.
Lemma 24. Let I be an instance of ETR-INV and N be the instance of TRAIN-F2NN built
from I by our reduction. We denote by k and ℓ the number of variables in a solution of I and N
respectively. In ETR-INV, these are the variables X1, . . . , Xk. In TRAIN-F2NN, these are the
weights and biases of the neural network, in some predefined order. The set V (I) ⊆ Rk denotes the
set of solutions to I , and the set V (N) ⊆ Rℓ denotes the set of solutions to N , respectively. Let F be
a field extension of Q. Then,

V (I) ∩ Fk = ∅ ⇐⇒ V (N) ∩ Fℓ = ∅.

Proof. We first show that V (N)∩Fℓ ̸= ∅ implies V (I)∩Fk ̸= ∅: Let Θ ∈ V (N)∩Fℓ be a solution
of the TRAIN-F2NN instance N . For each variable X of the encoded ETR-INV instance I there is
the canonical variable gadget corresponding to X whose slope sX satisfies X = sX − 1. There is a
unique hidden neuron vi contributing the first breakline of that variable gadget. Using the notation
from Appendix B.1, the slope of this variable gadget is a2,i · ci,1, because the variable gadget is
horizontal (implying that a1,i = 0) and its output is equal in both output dimensions (implying
ci,1 = ci,2). Thus, X = a2,i · ci,1 − 1, which is clearly in F. Moreover, the vector of all values of the
variables carried on the variable gadget (which is a solution as proven in the proof of Theorem 3) is
in V (I) ∩ Fk, showing that this set is not empty.

We now prove the opposite direction. Let X1, . . . , Xn ∈ V (I) ∩ Fk be a solution of the ETR-INV
instance I . In our reduction, we place our data points on rational coordinates, and thus all implied
data lines can be described by equations with rational coefficients. There exists a unique continuous
piecewise linear function f which fits these data points, corresponds to the solution X1, . . . , Xn,
and has the property that all cancel gadgets are symmetric. This function can be realized by a fully
connected two-layer neural network. All the gradients of linear pieces in this function can be obtained
through elementary operations from the values X1, . . . , Xn and rational numbers. Furthermore,
all breaklines can be described by equations with coefficients derivable from these same numbers.
Thus, there exist weights and biases Θ ∈ Fℓ for the neural network which realize function f . As Θ
realizes f , it fits all data points, and thus Θ ∈ V (N), showing that Θ ∈ V (N) ∩ Fℓ ̸= ∅.

Now Theorem 4, the algebraic universality of TRAIN-F2NN, follows directly from the algebraic
universality of ETR-INV (Theorem 8) combined with Lemma 24.

33

