Appendix A: Additional numerical results for one-dimensional case

Here we report the simulation results under the setup of the main paper for $\tau \in \{0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9\}$.

Table 2: The estimation errors for different pairs of (n,m) when $\tau = 0.1$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	3.074	2.474	1.710	0.977	0.753	0.530
64	2.258	1.153	0.708	0.506	0.332	0.343
128	0.964	0.521	0.292	0.182	0.124	0.096
256	0.604	0.325	0.199	0.115	0.076	0.053
512	0.290	0.150	0.088	0.035	0.022	0.009
1024	0.167	0.091	0.038	0.022	0.013	0.006

Table 3: The estimation errors for different pairs of (n, m) when $\tau = 0.2$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	2.861	2.009	1.157	0.638	0.489	0.343
64	1.382	0.735	0.402	0.221	0.139	0.093
128	0.788	0.369	0.215	0.116	0.065	0.036
256	0.447	0.257	0.153	0.091	0.063	0.042
512	0.247	0.128	0.073	0.045	0.029	0.019
1024	0.124	0.058	0.031	0.017	0.008	0.003

Table 4: The estimation errors for different pairs of (n,m) when $\tau = 0.3$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	2.958	1.261	1.012	0.507	0.373	0.259
64	1.655	0.856	0.488	0.254	0.163	0.097
128	0.755	0.496	0.255	0.158	0.085	0.047
256	0.390	0.283	0.109	0.067	0.027	0.009
512	0.171	0.109	0.050	0.036	0.018	0.010
1024	0.113	0.052	0.029	0.017	0.009	0.004

Table 5: The estimation errors for different pairs of (n,m) when $\tau = 0.4$. The total sample size is N = nm.

n m	1	2	4	8	16	32
32	3.469	1.371	0.717	0.450	0.193	0.149
64	1.803	0.782	0.381	0.193	0.108	0.055
128	0.826	0.451	0.208	0.131	0.083	0.049
256	0.369	0.170	0.083	0.050	0.022	0.010
512	0.168	0.096	0.052	0.024	0.013	0.006
1024	0.086	0.048	0.025	0.013	0.008	0.004

Table 6: The estimation errors for different pairs of (n, m) when $\tau = 0.6$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	1.824	1.343	0.777	0.393	0.227	0.159
64	1.662	0.802	0.497	0.266	0.170	0.104
128	0.713	0.418	0.242	0.111	0.048	0.021
256	0.390	0.184	0.112	0.064	0.032	0.013
512	0.161	0.087	0.052	0.026	0.013	0.005
1024	0.117	0.060	0.027	0.016	0.007	0.003

Table 7: The estimation errors for different pairs of (n, m) when $\tau = 0.7$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	2.947	1.593	0.785	0.407	0.231	0.158
64	1.443	0.761	0.373	0.195	0.151	0.102
128	0.727	0.385	0.199	0.121	0.063	0.028
256	0.390	0.183	0.119	0.069	0.032	0.019
512	0.216	0.119	0.063	0.033	0.018	0.007
1024	0.111	0.059	0.027	0.012	0.007	0.003

Table 8: The estimation errors for different pairs of (n,m) when $\tau = 0.8$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	3.723	1.638	0.980	0.648	0.456	0.368
64	1.358	1.059	0.483	0.251	0.159	0.118
128	0.868	0.455	0.198	0.114	0.061	0.037
256	0.403	0.194	0.118	0.064	0.036	0.027
512	0.199	0.105	0.064	0.033	0.019	0.010
1024	0.101	0.055	0.031	0.018	0.008	0.004

Table 9: The estimation errors for different pairs of (n,m) when $\tau = 0.9$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	4.086	2.479	1.871	1.348	1.115	1.064
64	1.624	1.043	0.726	0.396	0.315	0.258
128	1.557	0.699	0.404	0.219	0.166	0.120
256	0.482	0.218	0.137	0.089	0.045	0.021
512	0.284	0.152	0.075	0.056	0.022	0.012
1024	0.178	0.078	0.042	0.023	0.012	0.005

Appendix B: Numerical results for three-dimensional case

Here consider a simulation with three-dimensional predictor. The sample is generated from the model $y_i = f_0(x_i) + (1 + x_{i1}^2)\sigma(\epsilon_i - F^{-1}(\tau))$, where $x_i = (x_{i1}, x_{i2}, x_{i2})$ is uniformly generated from $[0, 1]^3$, $f_0(x) = 4 \exp\{-x_1^2 + x_2^2\} - 4x_3$, and here F denotes a student's t-distribution with 4 degrees of freedom. Gaussian kernel is used with bandwidth specified as the median distance between two predictors. Other settings are the same as the one-dimensional case. The results for $\tau \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$ are reported in Tables 10–14. Qualitatively, the interpretations of the results are the same as before, distributed learning using simple averaging works satisfactorily, with errors decreasing with the increase of either m or n.

Table 10: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when $\tau = 0.1$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	4.975	3.784	2.871	2.004	1.511	1.281
64	4.624	2.944	1.450	1.129	0.754	0.597
128	2.315	1.651	1.087	0.513	0.352	0.215
256	1.389	0.774	0.390	0.184	0.079	0.043
512	0.616	0.419	0.181	0.090	0.044	0.019
1024	0.442	0.207	0.128	0.074	0.041	0.019

Table 11: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when $\tau = 0.3$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	3.914	2.073	1.539	0.803	0.437	0.274
64	2.444	0.994	0.780	0.388	0.226	0.165
128	0.825	0.589	0.283	0.154	0.078	0.032
256	0.535	0.265	0.167	0.102	0.051	0.029
512	0.310	0.169	0.079	0.057	0.026	0.013
1024	0.143	0.085	0.041	0.018	0.011	0.006

Table 12: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when $\tau = 0.5$. The total sample size is N = nm.

n m n	1	2	4	8	16	32
32	3.451	2.637	1.702	1.255	0.780	0.665
64	1.934	0.889	0.566	0.267	0.139	0.064
128	0.974	0.582	0.380	0.173	0.116	0.072
256	0.550	0.361	0.157	0.081	0.058	0.032
512	0.293	0.134	0.083	0.035	0.018	0.008
1024	0.140	0.071	0.032	0.018	0.010	0.004

n m n	1	2	4	8	16	32
32	3.440	2.547	1.310	0.762	0.605	0.501
64	3.128	1.329	0.842	0.384	0.167	0.084
128	1.129	0.616	0.369	0.147	0.084	0.034
256	0.702	0.363	0.195	0.105	0.070	0.031
512	0.379	0.192	0.110	0.049	0.024	0.009
1024	0.156	0.077	0.034	0.019	0.011	0.006

Table 13: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when $\tau = 0.7$. The total sample size is N = nm.

Table 14: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when $\tau = 0.9$. The total sample size is N = nm.

n m	1	2	4	8	16	32
32	5.208	5.104	3.099	2.217	1.415	1.253
64	3.367	2.324	1.322	0.770	0.423	0.257
128	2.656	1.370	0.830	0.399	0.278	0.215
256	1.056	0.706	0.329	0.226	0.134	0.091
512	0.686	0.376	0.209	0.106	0.059	0.027
1024	0.392	0.233	0.138	0.066	0.042	0.020

Appendix C: Proof of Lemmas

Proof of Lemma 1. By the standard symmetrization argument (Pollard, 1984), we have

$$E\left[\sup_{f\in\mathcal{H}}\frac{|\frac{1}{N}\sum_{i}(\rho_{\tau}(y_{i}-f(x_{i}))-\rho_{\tau}(y_{i}-f_{0}(x_{i})))-E[\rho_{\tau}(y-f(x))-\rho_{\tau}(y-f_{0}(x))]|}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}}\right]$$

$$=E\left[\sup_{f\in\mathcal{H}}\left|(P-P_{N})\frac{\rho_{\tau}(y-f(x))-\rho_{\tau}(y-f_{0}(x))}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}}\right|\right]$$

$$\leq CE\left[\sup_{f\in\mathcal{H}}\left|\frac{\frac{1}{N}\sum_{i}\sigma_{i}(f-f_{0})(x_{i})}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}}\right|\right]$$

$$\leq C\mathcal{R}(u), \qquad (A.1)$$

where the second to last inequality follows from the contraction inequality for the Rademacher complexity (see, e.g., Theorem 2.2 of Koltchinskii (2011)), and the last bound follows from (4).

For the left-hand side of (A.1), since (using the Lipschitz continuity of ρ_{τ})

$$\begin{aligned} & \left| \frac{\rho_{\tau}(y - f(x)) - \rho_{\tau}(y - f_0(x))}{u^{-1} \| f - f_0 \| + \| f - f_0 \|_{\mathcal{H}}} \right| \\ \leq & C \left| \frac{f(x) - f_0(x)}{u^{-1} \| f - f_0 \| + \| f - f_0 \|_{\mathcal{H}}} \right| \\ \leq & C \frac{\| f - f_0 \|_{\infty}}{u^{-1} \| f - f_0 \| + \| f - f_0 \|_{\mathcal{H}}} \\ \leq & C, \end{aligned}$$

and

$$\begin{aligned} &Var\left(\frac{\rho_{\tau}(y-f(x))-\rho_{\tau}(y-f_{0}(x))}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}}\right)\\ \leq & CVar\left(\frac{f(x)-f_{0}(x)}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}}\right)\\ \leq & Cu^{2}, \end{aligned}$$

using the concentration inequality (see, e.g., the Bousquet bound in Chapter 2 of Koltchinskii (2011)),

$$\sup_{f \in \mathcal{H}} \frac{\left|\frac{1}{N}\sum_{i}(\rho_{\tau}(y_{i}-f(x_{i}))-\rho_{\tau}(y_{i}-f_{0}(x_{i})))-E[\rho_{\tau}(y-f(x))-\rho_{\tau}(y-f_{0}(x))]\right|}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}} \\ \leq CE\left[\sup_{f \in \mathcal{H}} \frac{\left|\frac{1}{N}\sum_{i}(\rho_{\tau}(y_{i}-f(x_{i}))-\rho_{\tau}(y_{i}-f_{0}(x_{i})))-E[\rho_{\tau}(y-f(x))-\rho_{\tau}(y-f_{0}(x))]\right|}{u^{-1}\|f-f_{0}\|+\|f-f_{0}\|_{\mathcal{H}}}\right] \\ +Cu\sqrt{t/n}+C(t/n),$$

with probability at least $1 - e^{-Ct}$. We can then set $t = N\mathcal{R}^2(u)/u^2$ to get

$$\sup_{f \in \mathcal{H}} \frac{\left|\frac{1}{N} \sum_{i} (\rho_{\tau}(y_{i} - f(x_{i})) - \rho_{\tau}(y_{i} - f_{0}(x_{i}))) - E[\rho_{\tau}(y - f(x)) - \rho_{\tau}(y - f_{0}(x))]\right|}{u^{-1} \|f - f_{0}\| + \|f - f_{0}\|_{\mathcal{H}}}$$

$$\leq C\mathcal{R}(u), \qquad (A.2)$$

with probability at least $1 - e^{-CN\mathcal{R}^2(u)/u^2}$, which finishes the proof.

Proof of Lemma 2. Define the class of functions $\mathcal{G} = \{g(x, y, f) = \rho_{\tau}(y - f(x)) - \rho_{\tau}(y - f_0(x)) + (\tau - I\{y - f_0(x) \le 0\})(f(x) - f_0(x)) : ||f - f_0|| \le u, ||f - f_0||_{\mathcal{H}} \le 1\}$. Obviously $|g(x, y, f_1) - g(x, y, f_2)| \le C|f_1(x) - f_2(x)|$ and thus the covering number of \mathcal{G} is bounded by

 $N(\epsilon, \mathcal{G}, L_{\infty}) \le N(C\epsilon, \mathcal{H}(1), L_{\infty}) \le \exp\{(C/\epsilon)^{2/\alpha}\}.$

Suppose $||f - f_0|| \le u$ and $||f - f_0||_{\mathcal{H}} \le 1$. We can also easily see that $|g(x, y, f)| \le C|f(x) - f_0(x)| \cdot I\{|e| \le |f(x) - f_0(x)|\}$. Thus we have $||g(x, y, f)|| \le Cu||f - f_0||_{\infty}^{1/2} \le Cu^{\frac{3}{2} - \frac{1}{2\alpha}} = Cu^s$ (using the sup-norm assumption) and $||g(x, y, f)||_{\infty} \le C||f - f_0||_{\infty} \le Cu^{1-1/\alpha}$.

Using Theorem 3.12 of Koltchinskii (2011), which provides an upper bound of the Rademacher complexity in terms of the covering number, we get

$$E[\sup_{g \in \mathcal{G}} (P_n - P)g] \leq C\left(\frac{u^s}{\sqrt{n}}\left(\frac{1}{u^s}\right)^{1/\alpha} + \frac{u^{1-1/\alpha}}{n}\left(\frac{1}{u^s}\right)^{2/\alpha}\right).$$

Using Talagrand's concentration inequality, we have with probability $1 - e^{-t}$,

$$\sup_{g \in \mathcal{G}} (P_n - P)g \le CE[\sup_{g \in \mathcal{G}} (P_n - P)g] + C\sqrt{\frac{t}{n}u^{2s}} + C\frac{tu^{1-\frac{1}{\alpha}}}{n},$$

and setting $t = u^{-2s/\alpha}$ proves the lemma.