Appendix A: Additional numerical results for one-dimensional case

Here we report the simulation results under the setup of the main paper for 7 €
{0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9}.

Table 2: The estimation errors for different pairs of (n, m) when 7 = 0.1. The total sample size is
N =nm.

1 2 4 8 16 32

Table 3: The estimation errors for different pairs of (n, m) when 7 = 0.2. The total sample size is
N =nm.

1 2 4 8 16 32

Table 4: The estimation errors for different pairs of (n, m) when 7 = 0.3. The total sample size is
N =nm.

1 2 4 8 16 32

Table 5: The estimation errors for different pairs of (n,m) when 7 = 0.4. The total sample size is
N = nm.

1 2 4 8 16 32
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Table 6: The estimation errors for different pairs of (n, m) when 7 = 0.6. The total sample size is

N =nm.

1 2 4 8 16 32

Table 7: The estimation errors for different pairs of (n,m) when 7 = 0.7. The total sample size is

N =nm.

1 2 4 8 16 32

Table 8: The estimation errors for different pairs of (n, m) when 7 = 0.8. The total sample size is

N = nm.

1 2 4 8 16 32

Table 9: The estimation errors for different pairs of (n, m) when 7 = 0.9. The total sample size is

N =nm.

1 2 4 8 16 32
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Appendix B: Numerical results for three-dimensional case

Here consider a simulation with three-dimensional predictor. The sample is generated from the
model y; = fo(xi) + (1 + 22)o(e; — F~1(7)), where x; = (241, Zs2, T;2) is uniformly generated
from [0,1]3, fo(z) = 4exp{—2? + 23} — 4x3, and here F denotes a student’s t-distribution with
4 degrees of freedom. Gaussian kernel is used with bandwidth specified as the median distance
between two predictors. Other settings are the same as the one-dimensional case. The results for
7 € {0.1,0.3,0.5,0.7,0.9} are reported in Tables Qualitatively, the interpretations of the
results are the same as before, distributed learning using simple averaging works satisfactorily, with
errors decreasing with the increase of either m or n.

Table 10: For the 3-dimensional case, the estimation errors for different pairs of (n,m) when 7 = 0.1.
The total sample size is N = nm.

1 2 4 8 16 32

Table 11: For the 3-dimensional case, the estimation errors for different pairs of (n,m) when 7 = 0.3.
The total sample size is N = nm.

1 2 4 8 16 32

Table 12: For the 3-dimensional case, the estimation errors for different pairs of (n,m) when 7 = 0.5.
The total sample size is N = nm.

1 2 4 8 16 32
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Table 13: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when 7 = 0.7.
The total sample size is N = nm.

1 2 4 8 16 32

Table 14: For the 3-dimensional case, the estimation errors for different pairs of (n, m) when 7 = 0.9.
The total sample size is N = nm.

1 2 4 8 16 32

Appendix C: Proof of Lemmas

Proof of Lemmal(i} By the standard symmetrization argument (Pollard, [T984), we have

Bl sup I 22 (or (i = f(:0)) = pr(yi — fo(2:))) — Elpr(y — f(x)) — pr(y — fo(2))]|
fen u= | f = foll + [If — follx
_ “u Py = (@) = pr(y — fo(x))
= P | S = AT 1~ Sl ”
%Zi oi(f — fo)(xs)
= P U‘lllf—fo||+|f—fo||HH
< CR(u), (A.1)

where the second to last inequality follows from the contraction inequality for the Rademacher
complexity (see, e.g., Theorem 2.2 of [Koltchinskii| (2011)), and the last bound follows from (@).

For the left-hand side of (A1), since (using the Lipschitz continuity of p,)

pr(y — (@) — pr(y — folz))
u Y f = foll + | f — folln

o fa) — fo(x) ‘
u= Y f = foll + I f — folln
Ilf — folloo
S O Al I fol
S 07

and

ar pr(y — f(x)) — pr(y — fo(x))
v ( wf — foll + 1 — follw )

F@) — folx) )
Cvar (ulllf — fol + 1f = follx

IN

IN

Cu?,
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using the concentration inequality (see, e.g., the Bousquet bound in Chapter 2 of Koltchinskii| (2011)),

% 2ipr (Wi — f(@) — pr(yi — fo(x)) — Elpr(y — f () — pr(y — fo(x))]]

sup

feH u | f = foll + II.f = folln
|% Yilor (i — f(@3)) = pr(yi — fo(x:))) — Elp-(y — f (@) — p-(y — fo(2))]|
= Pl 17— foll 17— Folln
+Cuv/t/n + C(t/n),

with probability at least 1 — e~“*. We can then set t = NR?(u)/u? to get

- |4 > (pr (yi = (i) — pr(yi — fo(@i)) — Elp-(y — f(2)) — pr(y — fo())]|
fen W F = foll + 17 — ol
< CR(u), (A.2)

with probability at least 1 — e =N R*(w)/v* | which finishes the proof. |

Proof of Lemma 2} Define the class of functions G = {g(x,y, f) = p-(y — f(x)) — p(y —

fo(@)) + (1 — {y — fo(z) < 0})(f(2) — fo()) : |f = foll < u,[If = follx < 1}. Obviously
lg(z,y, f1) — g(x,y, f2)| < C|fi(x) — f2(x)| and thus the covering number of G is bounded by

N(e,G. Lee) < N(Ce, H(1), Luc) < exp{(C/e)/}.

Suppose ||f — foll < wand || f — follx < 1. We can also easily see that |gl(3;,y, HI 3§ ?’|f(3:) —
Fo(@)|- I{le] < |f(x) = fo(x)[}. Thus we have [|g(w, y, )| < Cullf - foll > < Cu=2x = Cu®
(using the sup-norm assumption) and ||g(z, ¥, f)|lee < C||f = folleo < Cul=1/,

Using Theorem 3.12 of [Koltchinskii| (201 1)), which provides an upper bound of the Rademacher
complexity in terms of the covering number, we get

us 1 1/ ulfl/a 1 2/a
Elsup(P, — P)g] < A - .
st < 037 () ()

Using Talagrand’s concentration inequality, we have with probability 1 — e~ ¢,

[t tul= %
sup(P, — P)g < CE[sup(P,, — P)g| + C EU% +C un )

geg 9eg

—2s/a

and setting t = proves the lemma. (]

16



