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ABSTRACT

Automatic Piano Fingering is a hard task which computers can learn using data.
As data collection is hard and expensive, we propose to automate this process
by automatically extracting fingerings from public videos and MIDI files, using
computer-vision techniques. Running this process on 90 videos results in the
largest dataset for PIANO-FINGERING with more than 150K notes. We show that
when running a previously proposed model for automatic PIANO-FINGERING on
our dataset and then fine-tuning it on manually labeled piano fingering data, we
achieve state-of-the-art results. In addition to the fingering extraction method,
we also introduce a novel method for transferring deep-learning computer-vision
models to work on out-of-domain data, by fine-tuning it on out-of-domain aug-
mentation proposed by a Generative Adversarial Network (GAN).
For demonstration, we anonymously release a visualization of the output of our
process for a single video on https://youtu.be/Gfs1UWQhr5Q

1 INTRODUCTION

Learning to play the piano is a hard task taking years to master. One of the challenging aspects when
learning a new piece is the fingering choice in which to play each note. While beginner booklets
contain many fingering suggestions, advanced pieces often contain none or a select few. Automatic
prediction of PIANO-FINGERING can be a useful addition to new piano learners, to ease the learning
process of new pieces. As manually labeling fingering for different sheet music is an exhausting
and expensive task1, In practice previous work (Parncutt et al., 1997; Hart et al., 2000; Jacobs, 2001;
Kasimi et al., 2007; Nakamura et al., 2019) used very few tagged pieces for evaluation, with minimal
or no training data.

In this paper, we propose an automatic, low-cost method for detecting PIANO-FINGERING from
piano playing performances captured on videos which allows training modern - data-hungry - neural
networks. We introduce a novel pipeline that adapts and combines several deep learning methods
which lead to an automatic labeled PIANO-FINGERING dataset. Our method can serve two purposes:
(1) an automatic “transcript” method that detects PIANO-FINGERING from video and MIDI files,
when these are available, and (2) serve as a dataset for training models and then generalize to new
pieces.

Given a video and a MIDI file, our system produces a probability distribution over the fingers for
each played. Running this process on large corpora of piano pieces played by different artists, yields
a total of 90 automatically finger-tagged pieces (containing 155,107 notes in total) and results in the
first public large scale PIANO-FINGERING dataset, which we name APFD. This dataset will grow
over time, as more videos are uploaded to YouTube. We provide empirical evidence that APFD is
valuable, both by evaluating a model trained on it over manually labeled videos, as well as its
usefulness by fine-tuning the model on a manually created dataset, which achieves state-of-the-art
results.

The process of extracting PIANO-FINGERING from videos alone is a hard task as it needs to detect
keyboard presses, which are often subtle even for the human eye. We, therefore, turn to MIDI files to
obtain this information. The extraction steps are as follows: We begin by locating the keyboard and
identify each key on the keyboard (§3.2). Then, we identify the playing hands on top of the keyboard

1Nakamura et al. (2019) privately reported labeling time of 3-12 seconds per note.
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(a) A recreation of the piano, the hand pose estimation and the predicted fingering, which are colored in corre-
sponding colors to the fingers.

(b) Overlay of what we perceive on the original frame.

Figure 1: Example for detection of the overall system. We manage to automatically detect what
fingers pressed each keynote of the piano.

(§3.3), and detect the fingers given the hands bounding boxes (§3.4). Next, we align between the
MIDI file and its corresponding video (§3.6) and finally assign for every pressed note, the finger
which was most likely used to play it (§3.5). Albeit the expectation from steps like hand detection
and pose estimation, which were extensively studied in the computer-vision literature, we find that
in practice, state-of-the-art models do not excel in these tasks for our scenario. We therefore address
these weaknesses by fine-tuning an object detection model §3.3 on a new dataset we introduce
and train a CycleGAN (Zhu et al., 2017) to address the different lighting scenarios with the pose
estimation model §3.4.

2 BACKGROUND

PIANO-FINGERING was previously studied in multiple disciplines, such as music theory and com-
puter animation (Parncutt et al., 1997; Hart et al., 2000; Jacobs, 2001; Kasimi et al., 2007; Zhu et al.,
2013; Nakamura et al., 2019).

The fingering prediction task is formalized as follows: Given a sequence of notes, associate each
note with a finger from the set {1, 2, 3, 4, 5} × {L,R}. This is subject to constraints such as the
positions of each hand, anatomical plausibility of transitioning between two fingers, the hands’ size,
etc. Each fingering sequence has a cost, which is derived from a transition cost between two fingers.

Early work modeled fingering prediction as a search problem, where the objective is to find the op-
timal fingering sequence to play all the notes with. A naive approach to finding the best sequence
is to exhaustively evaluate all possible transitions between one note to another which is not compu-
tationally feasible. By defining a transition matrix corresponding to the probability or “difficulty”
of transitioning from one note to another - one can calculate a cost function, which defines the
predicted sequence likelihood. Using a search algorithm on top of the transitions allows finding a
globally optimal solution. This solution is not practical as well, due to the exponential complexity,
and therefore heuristics or pruning are employed to reduce the space complexity. The transition ma-
trix can be manually defined by heuristics or personal estimation (Parncutt et al., 1997; Hart et al.,
2000), or instead, not relying on a pre-defined set of rules, and use a Hidden Markov Model (HMM)
to learn the transitions (Yonebayashi et al., 2007; Nakamura et al., 2014). In practice, (Yonebayashi
et al., 2007) leaves the parameter learning to future work, and instead they manually fine-tune the
transition matrix.

On top of the transition matrix, practitioners suggested using dynamic programming algorithms
to solve the search (Hart et al., 2000). Another option to solve the huge search space is to use a
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search algorithm such as Tabu search (Glover & Laguna, 1998) or variable neighborhood search
(Mladenović & Hansen, 1997), to find a global plausible solution (Balliauw et al., 2015; 2017).
These works are either limited by the defined transition rules, or by making different assumptions
to facilitate the search space. Such assumptions come in the form of limiting the predictions to a
single hand, limiting the evaluation pieces to contain no chords, rests or substantial lengths during
which player can take their hand off the keyboard. Furthermore, all of these works have very small
evaluation sets, which in practice makes it hard to compare different approaches, and does not allow
to use more advanced models such as neural networks.

In this work, we continue the transition of search-based methods that optimize a set of constraints
with learning methods that try to imitate human behavior by the use of large datasets. In practice,
these methods require lots of training data to achieve good performance, and fingering labeling is
particularly expensive and hard to obtain. One way to automatically gather rich fingering data with
full hand pose estimation is by using motion capture (MOCAP) gloves when playing the piano.
Zhu et al. (2013) suggests a rule-based and data-based hybrid method, initially estimating fingering
decisions using a Directed Acyclic Graph (DAG) based on rule-based comfort constraints which
are smoothed using data recorded from limited playing sessions with motion capture gloves. As
MOCAP requires special equipment and may affect the comfort of the player, other work, (Takegawa
et al., 2006) tried to automatically detect piano fingering from video and MIDI files. The pianist’s
fingernails were laid with colorful markers, which were detected by a computer vision program.
As some occlusions can occur, they used some rules to correct the detected fingering. In practice,
they implemented the system with a camera capturing only 2 octaves (out of 8) and performed a
very limited evaluation. The rules they used are simple (such as: restricting one finger per played
note, two successive notes cannot be played with the same finger), but far from capturing real-world
scenarios.

Previous methods for automatically collecting data (Takegawa et al., 2006; Zhu et al., 2013) were
costly, as apart of the equipment needed during the piece playing, and the data-collectors had to
pay the participating pianists. In our work, we rely solely on videos from YouTube, meaning costs
remain minimal with the ability to scale up to new videos.

Recently, Nakamura et al. (2019) released a relatively large dataset of manually labeled PIANO-
FINGERING by one to six annotators, consisting of 150 pieces, with partially annotated scores (324
notes per piece on average) with a total of 48,726 notes matched with 100,044 tags from multiple
annotators. This is the largest annotated PIANO-FINGERING corpus to date and a valuable resource
for this field. The authors propose multiple methods for modeling the task of PIANO-FINGERING,
including HMMs and neural networks, and report the best performance with an HMM-based model.
In this work, we use their dataset as a gold dataset for comparison and adapt their model to compare
to our automatically generated dataset.

3 OUR APPROACH: EXTRACTING FINGERING FROM ONLINE VIDEOS

There is a genre of online videos in which people upload piano performances where both the piano
and the hands are visible. On some channels, people not only include the video but also the MIDI
file recorded while playing the piece. We propose to use machine learning techniques to extract
fingering information from such videos, enabling the creation of a large dataset of pieces and their
fingering information. This requires the orchestration and adaptation of several techniques, which
we describe below.

The final output we produce is demonstrated in Figure 1, where we colored both the fingers and the
played notes based on the pose-estimation model (§3.4) and the predicted fingers that played them
(§3.5). Note that the ring fingers of both hands as well as the index finger of the left hand and the
middle finger of the right hand do not press any note in this particular frame, but may play a note in
others. We get the information of played notes from the MIDI events.

3.1 DATA SOURCE

We extract videos from youtube.com, played by different piano players on a specific channel
containing both video and MIDI files. In these videos, the piano is filmed in a horizontal angle
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directly to the keyboard, from which both the keyboard and hands are displayed (as can be seen in
Figure 1).

MIDI files A standard protocol for the interchange of musical information between musical instru-
ments, synthesizers, and computers Musical Instrument Digital Interface (MIDI) is a standard format
for the interchange of musical information between electronic musical instruments. It consists of a
sequence of events describing actions to carry out, when, and allows for additional attributes. In the
setup of piano recording, it records what note was played in what time for how long and its pressure
strength (velocity). We only use videos that come along with a MIDI file, and use it as the source
for the played notes and their timestamp.

3.2 KEYBOARD AND BOUNDARIES DETECTION

To allow a correct fingering assignment, we first have to find the keyboard and the bounding boxes of
the keys. We detect the keyboard as the largest continuous bright area in the video and identify key
boundaries using standard image processing techniques, taking into account the expected number of
keys and their predictable location and clear boundaries. For robustness and in order to handle the
interfering hands that periodically hide parts of the piano, we combine information from multiple
random frames by averaging the predictions from each frame.

3.3 HAND DETECTION

A straightforward approach for getting fingers locations in an image is to use a pose estimation
model directly on the entire image. In practice, common methods for full-body pose estimation
such as OpenPose (Cao et al., 2017) containing hand pose estimation (Simon et al., 2017), make
assumptions about the wrist and elbow locations to automatically approximate the hands’ locations.
In the case of piano playing, the elbow does not appear in the videos, therefore these systems don’t
work. We instead, turn to a pipeline approach where we start by detecting the hands, cropping them,
and passing the cropped frames to a pose estimation model that expects the hand to be in the middle
of the frame.

Object Detection (Viola & Jones, 2001; Redmon et al., 2016; Lin et al., 2017a;b), and specifically
Hand Detection (Simon et al., 2017; Kölsch & Turk, 2004; Sridhar et al., 2015) are well studied sub-
jects. However, out of the published work providing source code, the code was either complicated to
run (e.g. versioning, mobile-only builds, supporting specific GPU, etc.), containing private datasets,
or only detecting hands with no distinction between left and right, which is important in our case.

We, therefore, created a small dataset with random frames from different videos, corresponding
to 476 hands in total evenly split between left and right2. We then fine-tuned a pre-trained object
detection model (Inception v2 (Ioffe & Szegedy, 2015), based on Faster R-CNN (Ren et al., 2015),
trained on COCO challenge (Lin et al., 2014)) on our new dataset. The fine-tuned model works
reasonably well and some hand detection bounding boxes are presented in Figure 1. We release this
new dataset and the trained model alongside the rest of the resources developed in this work.

Having a working hand-detection model, we perform hand detection on every frame in the video.
If more than two hands are detected, we take the 2 highest probability defections as the correct
bounding boxes. If two hands are detected with the same label (“left-left” or “right-right”), we
discard the model’s label, and instead choose the leftmost bounding box to have the label “left” and
the other to have the label “right” - which is the most common position of hands on the piano.

3.4 FINGER POSE ESTIMATION

Having the bounding box of each hand is not enough, as in order to assign fingers to notes we
need the hand’s pose. How can we detect fingers that pressed the different keys? We turn to pose
estimation models, a well-studied subject in computer vision and use standard models (Wei et al.,
2016).

Using off-the-shelve pose estimation model, turned to often fail in our scenario. Some failure ex-
ample are presented in Figure 2c where the first pose is estimated correctly, but the rest either have

2The data was labeled by the first author using labelImg.
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(a) Pre-trained model on CycleGAN checkpoints. (b) Fine-tuned model on CycleGAN checkpoints.

(c) Pre-trained model on real-world data. (d) Fine-tuned model on real-world data.

Figure 2: Output of CycleGAN on 5 images, with 5 different checkpoints. The colors drawn on the
hands depict the pose estimation of the hands.

wrong finger positions, shorter, or broken fingers. The videos we use contain visual effects (e.g.
LED lights are turned on every time a key is pressed), and such the pose-estimation models exhibit
two failures: (1) when the LED colors are warm (red, orange, yellow), the model sees the light as
an extension to the finger, and as such poorly estimates where the keypoints are for each finger;
(2) when the LED colors are cool (green, blue, white), the over-saturation seems to overwhelm the
model, and it mistakenly estimates the hand’s pose as much shorter, considering the lit parts of the
piano as part of the background. Some examples of these errors are presented in Figure 2c. Further-
more, the videos are usually very dark, high-contrast, and blurry due to motion blur, which standard
datasets (Tompson et al., 2014; Yuan et al., 2017; Simon et al., 2017) and models trained on top of
them rarely encounter.

Given the observation that pose-estimation works well on well lid-images, how can we augment
the pose estimation model to other lighting situations? This scenario is similar to sim2real works
(Sadeghi et al., 2018; Gupta & Booher; Gamrian & Goldberg, 2018) where one wants to transfer
a model from simulations to the real-world. These works learn a mapping function G1 : T → S
that transfer instances xi from the target domain T (the real-world) into the source domain S (the
simulation), where the mapping is usually achieved by employing a CycleGan (Zhu et al., 2017).
Then, models which are trained on the source domain are used on the transformation of the target
domain G1(xi) and manage to generalize on the target domain. In our setup, we seek a mapping
G2 : S → T that transforms the source domain (i.e the well-lid videos) into the target data (i.e
the challenging lighted scenarios). After obtaining the transformation function G2, we employ the
pose estimation model f on the source domain, use the transformation separately, and align the
prediction to the new representation. This novel setup benefits from performance boost as we only
use the transformation function offline, before training and avoid using it for every prediction. We
also benefit of better generalization as we keep good performance on the source domain, and gain
major performance on the target domain.

We manually detect videos and assign them into their group (well-lit or poorly-lit). Then, we auto-
matically detect and crop hands from random frames, resulting in 21,747 well-lit hands, and 12,832
poorly lit hands. We then trained a CycleGAN for multiple epochs and chose 15 training check-
points that produced different lighting scenarios (some examples can be seen in Figure 2). We then
fine-tune a pose-estimation model on the original, well lit frames, and on the 15 transformed frames.
This procedure results in a model that is robust to different lighting scenarios, as we show in Figures
2b and 2d, demonstrating its performance on different lighting scenarios.
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3.5 PRESSED FINGER ESTIMATION

Given that we know which notes were pressed in any given frame (see §3.6 below), there is still
uncertainty as to which finger pressed them. This uncertainty either comes from imperfect pose
estimation, or multiple fingers located on top of a single note. We model the finger press estimation
by calculating the probability of a specific finger to have been used, given the hand’s pose and the
pressed note:

argmaxi,jP (fi, hj |nk)

where i ∈ [1, 5] for the 5 fingers, hj ∈ {hl, hr} stands for the hand being used (left or right) and
nk ∈ [1, 88] corresponding to the played key.

We chose to estimate the pressed fingers as a Gaussian distribution N (µ, σ2), where µ and σ are
defined as follows:

σ(nk) = Xnk+1
−Xnk

, µ(nk) = Xnk
+ 0.5 ∗ σ

µ is the center of the key on the x axis and σ is its width. The score of each finger given a note in a
specific frame is defined as:

g(fi, hj |nk, frame) = f(Xfi,hj |frame|µ(nk), σ(nk)2)

The probability of a given finger to have played a note given a note and a frame: (normalizing g for
all fingers)

p(fi, hj |nk, frame) =
g(fi, hj |nk, frame)

Σ5
n=1Σm∈{l,r}g(fn, hm|nk, frame)

As most keyboard presses last more than one frame, we make use of multiple frames to overcome
some of the errors from previous steps and to estimate a more accurate prediction. For this reason,
we aggregate the frames that were used during a key press. We treat the first frame as the main
signal point, and assign each successive frame an exponentially declining weight

p(fi, hj |nk, framek1
, ...framekn

) =
Σn

l=10.5l ∗ p(fi, hj |nk, framekl
)

Σn
l=10.5l

Figure 3: Precision and recall based
on confidence for all 6,894 manually
tagged notes

As finger changes can occur in later frames. Finally, we
normalize the weighted sum of probabilities to achieve a
probability distribution for all frames.

In our dataset, we release all probabilities for each played
note, along with the maximum likelihood finger estima-
tion. We define the “confidence” score of the extraction
from a single piece, as the product of the highest probabil-
ity for a finger for each note. Figure 3 shows the precision
and recall of the predictions based on a cutoff for the high-
est probability of the note. We see a positive correlation
between confidence threshold and precision, and a nega-
tive correlation between confidence and recall, meaning
we can get relatively high precision for a small number
of notes, or relatively low precision for a high number of
notes.

3.6 VIDEO AND MIDI ALIGNMENT

We consider the MIDI and video files to be complementary, as they were recorded simultaneously.
The MIDI files are the source to which keys were pressed, in what time, and for how long. The
videos are the source for the piano, hands, and fingers locations. These two sources are not syn-
chronized, but as they depict the same piano performance, a perfect alignment exist (up to the video
frequency resolution).

We extract the audio track from the video, and treat the first audio peak as the beginning of the piece,
clipping the prior part of the video and aligning it with the first event from the MIDI file. In practice,
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we determine this starting point as the first point in the signal where the signal amplitude is higher
than a fifth of the mean absolute value of the entire signal.

This heuristic achieves a reasonable alignment, but we observe some alignment mismatch of 80-
200ms. We tackle the misalignment by using a signal from the final system confidence (Section
3.5), where every piece gets a final score estimation after running the whole process, depicting the
system confidence on the predicted notes. We look for an alignment that maximizes the system
confidence over the entire piece:

alignment(MIDI, V ideo) = argmaxiscore(MIDIt0 , V ideoti)

where MIDIt0 is the starting time of the MIDI file, and V ideotj is the alignment time of the video.
V ideot0 is obtained by the heuristic alignment described in the previous paragraph. We use the
confidence score as a proxy of the alignment precision and search the alignment that maximizes
the confidence score of the system. More specifically, given the initial offset from the audio-MIDI
alignment, we take a window of 1 second in frames (usually 25) for each side and compute the score
of the final system on the entire piece. We choose the offset that results in the best confidence score
as the alignment offset.

3.7 THE RESULTING DATASET: APFD

We follow the methods described in this section, and use it to label 90 piano pieces from 42 different
composers with 155,107 notes in total. On average, each piece contains 1,723 notes.

4 RESULTS

In this section, we present multiple evaluations of our overall system. We begin by evaluating the
entire process where we assess how the overall system performs on predicting the pressed fingering.
Next, we use the dataset we collected and train a PIANO-FINGERING model. We fine-tune this
model on a previously manually-annotated dataset for PIANO-FINGERING and show using our data
achieves better performance.

As piano pieces are usually played by two hands, we avoid modeling each hand separately, and
instead use their symmetry property, and simply flip one hand’s notes, matching it to the piano
scale, following previous work practice (Nakamura et al., 2019).

For evaluation, we use the match rate between the prediction and the ground truth. For cases where
there is a single ground truth, this is equivalent to accuracy measurement. When more than one
labeling is available, we simply average the accuracies with each labeling.3

4.1 FINGER PRESS ESTIMATION EVALUATION

As the pose estimation is one of the major components directly affecting our system’s performance,
we isolate this part in order to estimate the gain from fine-tuning using the CycleGAN (Section 3.4).

We manually annotated five random pieces from our dataset by marking the pressing finger for each
played note in the video. Then, by using our system (§3.5), we estimate what finger was used for
each key. We use the confidence score produced by the model as a threshold to use or discard
the key prediction of the model, and report precision, recall and F1 scores of multiple thresholds.
Moreover, we compare the scores of these pieces with and without using the CycleGAN. We do so
for the five annotated pieces and report these results in Table 1. When considering a high confidence
score (>90%) both the pre-trained and fine-tuned models correctly mark all considered notes (which
consist of between 34-36% of the data). However, when considering decreasing confidences, the
fine-tuned model manages to achieve higher precision and higher recall, contributing to an overall
higher f1 score. With no confidence threshold (i.e using all fingering predictions), the pre-trained
model achieves 93% F1, while the fine-tuned one achieves 97% F1, a 57% error reduction.

4.2 AUTOMATIC PIANO FINGERING PREDICTION

3This matches the general match rate evaluation metric in (Nakamura et al., 2019).
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Confidence c > 0.9 c > 0.75 c > 0.5 c > 0
Metrics p r f1 p r f1 p r f1 p r f1
Pretrained 1.0 0.34 0.51 0.99 0.49 0.65 0.95 0.78 0.86 0.88 1.0 0.93
FT Single Frame 0.99 0.36 0.53 0.99 0.52 0.68 0.97 0.8 0.88 0.9 1.0 0.95
FT Multiple Frames 1.0 0.35 0.52 0.99 0.5 0.67 0.98 0.8 0.88 0.94 1.0 0.97

Table 1: Precision, Recall, F1 scores for 6,894 notes we manually tagged across 5 different pieces, at
different confidence points. The first row depict the performance of the system with the vanilla pose
estimation. The second and the third rows present the results on the fine-tuned (FT) pose estimation
model 3.4 on a single and multiple frames accordingly.

Training/Dataset APFD PIG
Previous Neural — 61.3
Previous SOTA — 64.5
Human Agreement — 71.4
PIG 49.9 64.1
+ Fine-tune APFD 73.6 54.4
APFD 73.2 55.2
+ Fine-tune PIG 62.9 66.8

Table 2: Results of training and fine tun-
ing on different dataset.

In order to assess the value of APFD, we seek to show its
usefulness on the end task: Automatic Piano Fingering.
To this end, we train a standard sequence tagging neural
model using our dataset, evaluating on the subset of the
videos we manually annotated. Then, we fine-tune this
model on PIG (Nakamura et al., 2019), a manually la-
beled dataset, on which we achieve superior results than
simply training on that dataset alone.

We model the PIANO-FINGERING as a sequence label-
ing task, where given a sequence of notes n1, n2, ..., nn

we need to predict a sequence of fingering: y1, y2, ..., yn,
where yi ∈ {1, 2, 3, 4, 5} corresponding to 5 fingers of one hand. We employ a standard sequence
tagging technique, by embedding each note and using a BiLSTM on top of it. On every contextual-
ized note we then use a Multi-Layer-Perceptron (MLP) to predict the label. The model is trained to
minimize cross-entropy loss. This is the same model used in (Nakamura et al., 2019), referred to as
DNN (LSTM).

4.2.1 PIANO FINGERING MODEL

Nakamura et al. (2019) didn’t use a development set, therefore in this work, we leave 1 piece from the
training set and make it a development set. Our dataset—APFD—is composed of 90 pieces, which
we split into 75/10 for training and development sets respectively, and use the 5 manually annotated
pieces as a test set. We note that the development set is silver data (automatically annotated) and
probably contains mistakes. The results are summarized in Table 1. We run the same architecture
by (Nakamura et al., 2019) with some different hyperparameters and achieve 71.4%/64.1% on our
and PIG’s test set respectively. To evaluate the usefulness of our data to PIG’s data, we use the
model trained on our silver data and fine-tune it on PIG. This results in 66.8% accuracy, 2.3%
above the previous state-of-the-art model which was achieved by an HMM (Nakamura et al., 2019).
We attribute this gain in performance to our dataset, which both increases the number of training
examples and allows to train bigger neural models which excel with more training examples. We
also experiment in the opposite direction and fine-tune the model trained on PIG with our data,
which result in 73.6% accuracy, which is better than training on our data alone, achieving 73.2%
accuracy.

5 DISCUSSION AND FUTURE WORK

In this work, we present an automatic method for detecting PIANO-FINGERING from MIDI and
video files of a piano performance. We employ this method on a large set of videos, and create
the first large scale PIANO-FINGERING dataset, containing 90 unique pieces, with 155,107 notes
in total. We show this dataset—although being noisy–is valuable, by training a neural network
model on it, fine-tuning on a gold dataset, where we achieve state-of-the-art results. In future work,
we intend to improve the data collection by improving the pose-estimation model, better handling
high speed movements and the proximity of the hands, which often cause errors in estimating their
pose. Furthermore, we intend to design improved neural models that can take previous fingering
predictions into account, in order to have a better global fingering transition.
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neighborhood search algorithm to generate piano fingerings for polyphonic sheet music. Interna-
tional Transactions in Operational Research, 24(3):509–535, 2017.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation
using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7291–7299, 2017.

Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learning tasks via
image-to-image translation. arXiv preprint arXiv:1806.07377, 2018.

Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial optimization, pp.
2093–2229. Springer, 1998.

Anchit Gupta and Jonathan Booher. Cyclegan for sim2real domain adaptation.

Melanie Hart, Robert Bosch, and Elbert Tsai. Finding optimal piano fingerings. The UMAP Journal,
21(2):167–177, 2000.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

J Pieter Jacobs. Refinements to the ergonomic model for keyboard fingering of parncutt, sloboda,
clarke, raekallio, and desain. Music Perception: An Interdisciplinary Journal, 18(4):505–511,
2001.

Alia Al Kasimi, Eric Nichols, and Christopher Raphael. A simple algorithm for automatic generation
of polyphonic piano fingerings. In ISMIR, 2007.
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Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097–1100, 1997.

Eita Nakamura, Nobutaka Ono, and Shigeki Sagayama. Merged-output hmm for piano fingering of
both hands. In ISMIR, pp. 531–536, 2014.

Eita Nakamura, Yasuyuki Saito, and Kazuyoshi Yoshii. Statistical learning and estimation of piano
fingering. arXiv preprint arXiv:1904.10237, 2019.

Richard Parncutt, John A Sloboda, Eric F Clarke, Matti Raekallio, and Peter Desain. An ergonomic
model of keyboard fingering for melodic fragments. Music Perception: An Interdisciplinary
Journal, 14(4):341–382, 1997.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

9



Under review as a conference paper at ICLR 2020

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. Sim2real viewpoint invariant
visual servoing by recurrent control. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4691–4699, 2018.

Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint detection in single
images using multiview bootstrapping. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 1145–1153, 2017.

Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, and Christian Theobalt. Fast and robust hand
tracking using detection-guided optimization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3213–3221, 2015.

Yoshinari Takegawa, Tsutomu Terada, and Shojiro Nishio. Design and implementation of a real-time
fingering detection system for piano performance. In ICMC, 2006.

Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time continuous pose recovery
of human hands using convolutional networks. ACM Transactions on Graphics, 33, August 2014.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
CVPR (1), 1(511-518):3, 2001.

Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional pose machines.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–
4732, 2016.

Yuichiro Yonebayashi, Hirokazu Kameoka, and Shigeki Sagayama. Automatic decision of piano
fingering based on a hidden markov models. In IJCAI, pp. 2915–2921, 2007.

Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and Tae-Kyun Kim. Bighand2. 2m bench-
mark: Hand pose dataset and state of the art analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4866–4874, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017 IEEE Interna-
tional Conference on, 2017.

Yuanfeng Zhu, Ajay Sundar Ramakrishnan, Bernd Hamann, and Michael Neff. A system for auto-
matic animation of piano performances. Computer Animation and Virtual Worlds, 24(5):445–457,
2013.

Appendices
A DATASET SAMPLES

For every video our system extracts PIANO-FINGERING from it also outputs the video overlayed by
the estimation of the piano keys, an indication of which notes are played, and what fingers are being
used to play them (the key’s color), up to two bounding boxes, for both hands (where light blue
means left hand, and light green means right hand), and the pose estimation for each hand.

We include the output videos for all of the pieces we manually annotated to visually demonstrate our
system and its accuracy on different playing cases. The videos were uploaded to a new, anonymous
YouTube channel, and each contain a link to the original video in the description.

River Flows in You: https://youtu.be/Gfs1UWQhr5Q
Faded: https://youtu.be/LU2ibOW6z7U
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Moonlight Sonata 1st Movement: https://youtu.be/wp8j239fs9o
Rondo Alla Turca: https://youtu.be/KqTaPfoIuuE
Nocturne in E Flat Major (Op. 9 No. 2): https://youtu.be/xXHUUzTa5vU
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