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ABSTRACT

Graph neural networks have gained significant interest from the research commu-
nity for both node classification within a graph and graph classification within a set
of graphs. Attention mechanism applied on the neighborhood of a node improves
the performance of graph neural networks. Typically, it helps to identify a neigh-
bor node which plays more important role to determine the label of the node under
consideration. But in real world scenarios, a particular subset of nodes together,
but not the individual nodes in the subset, may be important to determine the la-
bel of a node. To address this problem, we introduce the concept of subgraph
attention for graphs. To show the efficiency of this, we use subgraph attention
with graph convolution for node classification. We further use subgraph attention
for the entire graph classification by proposing a novel hierarchical neural graph
pooling architecture. Along with attention over the subgraphs, our pooling archi-
tecture also uses attention to determine the important nodes within a level graph
and attention to determine the important levels in the whole hierarchy. Competi-
tive performance over the state-of-the-arts for both node and graph classification
shows the efficiency of the algorithms proposed in this paper.

1 INTRODUCTION

Graphs are the most suitable way to represent different types of relational data such as social
networks, protein interactions and molecular structures. Typically, A graph is represented by
G = (V,E), where V is the set of nodes and E is the set of edges. Further, each node vi ∈ V
is also associated with an attribute (or feature) vector xi ∈ RD. Recent advent of deep representa-
tion learning has heavily influenced the field of graphs. Graph neural networks are developed to use
the underlying graph as a computational graph and aggregate node attributes from the neighbors of a
node to generate the node embeddings (Kipf & Welling, 2017; Niepert et al., 2016). Different types
of attribute aggregation approaches are proposed in the literature (Hamilton et al., 2017). Attention
mechanisms on graphs show promising results for both node classification (Veličković et al., 2018)
and graph classification (Lee et al., 2019; 2018) tasks. There are different ways to compute attention
mechanisms on graph. Veličković et al. (2018) compute attention between a pair of nodes in the
immediate neighborhood to capture the importance of a node on the embedding of the other node
by learning an attention vector. Lee et al. (2018) compute attention between a pair of nodes in the
neighborhood to guide the direction of a random walk in the graph for graph classification. Lee et al.
(2019) propose self attention pooling of the nodes which is then used to capture the importance of
the node to generate the label of the entire graph.

Most of the attention mechanisms developed in graph literature use attention to derive the importance
of a node or a pair of node for different tasks. But in real world situation, calculating importance
up to a pair of nodes is not adequate. Often due to the presence of a substructure in the vicinity of
a node v determines its role (or label) in the graph, or determines the label of the entire graph. But
the influence of each node individually from that substructure to the node v may not be significant.
In Figure 1, each node (indexed from a to g) in the small synthetic graph can be considered as an
agent whose attributes determine its opinion (1:positive, 0: neutral, -1: negative) about 4 products.
Suppose the graph can be labelled +1 only if there is a subset of connected (by edges) agents who
jointly have positive opinion about all the product. In this case, the blue shaded connected sub-
graph (a, b, c) is important to determine the label of the graph. Please note, attention over the pairs
(Veličković et al., 2018) is not enough as (a, b) cannot make the label of the graph +1 by itself. Also
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multiple layers of such attention may not work as the aggregated features of a node get corrupted
after the feature aggregation by the first attention layer. With this motivation, we develop a novel
attention mechanism in the graph which operates in the subgraph level in the vicinity of a node. We
call it subgraph attention mechanism and use it for both node classification and graph classification
tasks, which we define formally next.

Node classification: Given a graph G = (V,E) with each node vi associated with an attribute
vector xi ∈ RD, and a subset of nodes Vs ⊆ V with each node vi ∈ Vs labelled with yi ∈ Ln (set
of discrete labels for the nodes of the graph), the task is to predict the label of a node vj ∈ Vu =
V \ Vs using the structure and the node attributes of the entire graph and the node labels from Vs.
Essentially, this leads to learning a function fn : V 7→ Ln for the given graph G.

Graph Classification: Given a set of M graphs G = {G1, G2, · · · , GM}, and a subset of graphs
Gs ⊆ G with each graph Gi ∈ Gs are labelled with Yi ∈ Lg (the subscript g stands for ‘graphs’), the
task is to predict the label of a graph Gj ∈ Gu = G \ Gs using the structure of the graphs and the
node attributes, and the graph labels from Gs. Again, this leads to learning a function fg : G 7→ Lg .
Here, Lg is the set of discrete labels for the graphs.

Figure 1: Example to moti-
vate subgraph attention

Contributions: In this paper, we propose a novel attention mecha-
nism (called subgraph attention) for graph neural networks, which
is based on the importance of a subgraph of dynamic size to deter-
mine the role of a node in the graph. To validate the efficiency of the
mechanism, we propose a node classification algorithm (referred as
SubGatt). Further, we propose a graph classification algorithm (re-
ferred as SubGattPool) using subgraph attention layer. SubGattPool
employs a mixture of hierarchical and global pooling strategies on
graph. Thorough experimentation on real world graphs shows the
merit of the proposed algorithms over the state-of-the-art.

2 RELATED WORK

A survey on network representation learning and graph neural net-
works can be found in Wu et al. (2019). Here we briefly discuss
some more prominent approaches for node classification and graph classification. Kipf & Welling
(2017) propose a version of graph convolution network (GCN) which learns a weighted mean of
neighbor node attributes to find the embedding of a node by minimizing the cross entropy loss for
node classification. Different extensions of GCN are available in literature for inductive learning
(Hamilton et al., 2017) and link prediction (Zhang & Chen, 2018). Veličković et al. (2018) propose
GAT which uses attention mechanism to learn the importance of a node to determine the label of
another node in the neighborhood of it in the graph convolution framework. A jumping knowledge
network using attention for node embedding is proposed by Xu et al. (2018). Recently, a GCN
based unsupervised approach (DGI) is proposed (Veličković et al., 2019) by maximizing mutual
information between patch representations and corresponding high-level summaries of a graph.

On the other hand, graph classification is a classical problem in machine learning. Graph kernel
(Vishwanathan et al., 2010; Shervashidze et al., 2011) based approaches remain to be the state-of-
the-art for graph classification for long time. Inspired by the advancements in NLP (Le & Mikolov,
2014), Yanardag & Vishwanathan (2015) propose Deep Graph Kernels which is a general frame-
work that learns hidden representations of sub-structures used in graph kernels. But most of the
existing graph kernels use hand-crafted features. Graph2vec (Narayanan et al., 2017) is another
graph embedding technique which creates a vocabulary of subgraphs and then generates the graph
embeddings by maximizing the likelihood of the set of subgraphs which belong to a graph. Re-
cently, different types of graph neural networks (GNN) are proposed for graph classification. To go
from node embeddings to a single representation for the whole graph, simple aggregation technique
such as taking the average of node embeddings in the final layer of a GCN (Duvenaud et al., 2015)
and more advanced deep learning architectures that operate over the sets (Gilmer et al., 2017; Zhang
et al., 2018) have been used. DIFFPOOL (Ying et al., 2018) is a recently proposed hierarchical GNN
which uses a GCN based pooling to create a set of hierarchical graphs in each level. Lee et al. (2019)
propose a self attention based pooling strategy which determines the importance of a node to find
the label of the graph. Different extensions of GNNs, such as Ego-CNN (Tzeng & Wu, 2019) and
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ChebyGIN (Knyazev et al., 2019) are proposed for graph classification. A theoretical framework to
analyze the representational power of GNNs is developed by Xu et al. (2019), and a neural architec-
ture GIN is proposed. As discussed in Section 1, attention mechanisms used in the existing GNN
literature only consider self-attention or the pair-wise attention between two nodes. Recently, atten-
tion over an area for a grid structure data (for e.g., images) is proposed by Li et al. (2019) and show
promising results for tasks like image captioning and machine translation. With this motivation, and
to fill the research gap, in this paper, we propose subgraph attention which generalizes attention to a
subgraph level and show its efficiency for node and graph classification.

3 SUBGRAPH ATTENTION MECHANISM

In this section, we describe the building blocks for subgraph attention layer for any arbitrary
graph. A Sub-Graph attention network (referred as SubGatt) can be built by stacking multiple
layers of subgraph attention. The input to the model is an attributed graph G = (V,E), where
V = {v1, v2, · · · , vN} is the set of N nodes and xi ∈ RD is the attribute vector of the node vi ∈ V .
The output of the model is a set of node features (or embeddings) hi ∈ RK , ∀i ∈ [N ] (K is poten-
tially different from D). We use [N ] to denote the set {1, 2, · · · , N} for any positive integer N . We
define the immediate (or first order) neighborhood of a node vi as Ni = {vj |(vi, vj) ∈ E}. For the
simplicity of notations, we assume an input graph G to be undirected for the rest of the paper, but
extending it for directed graph is straightforward.

3.1 SUBGRAPH SELECTION AND SAMPLING

For each node in the graph, we aim to find the importance of the nearby subgraphs to that node.
In general, subgraphs can be of any shape or size. Motivated by the prior works on graph kernels
Shervashidze et al. (2011), we choose to consider only a set of rooted subtrees as the set of candidate
subgraphs. So for a node vi, any tree of the form (vi), or (vi, vj) where (vi, vj) ∈ E, or (vi, vj , vk)
where (vi, vj) ∈ E and (vj , vk) ∈ E, and so on will form the set of candidate subgraphs of vi. We
restrict that maximum size (i.e., number of nodes) of a subtree is T . Also note that, the node vi is
always a part of any candidate subgraph for the node vi according to our design. For example, all
possible subgraphs of maximum size 3 for the node a in Figure 1 are: (a), (a,b), (a,d), (a,f), (a,b,c),
(a,b,f), (a,b,g), (a,d,e), (a,f,e) and (a,f,b).

Depending on the maximum size (T ) of a rooted subtree, the number of candidate subgraphs for
a node can be very large. For example, the number of rooted subgraphs for the node vi is dvi ×∑
vj∈N (vi)

(dvj −1)×
∑

vk∈N (vj)\{vi}
|N (vk)\{vi, vj}|, where dv is the degree of a node v and T = 4.

Clearly, computing attention over these many subgraphs for each node is computationally difficult.
So we employ a subgraph subsampling technique, inspired by the node subsampling techniques for
network embedding (Hamilton et al., 2017). First, we fix the number of subgraphs to sample for each
node. Let the number beL. For each node in the input graph, if the total number of rooted subtrees of
size T is more than (or equal to) L, we randomly sample L number of subtrees without replacement.
If the total number of rooted subtrees of size T is less than L, we use round robin sampling (i.e.,
permute all the subtrees, picking up samples from the beginning of the list; after consuming all the
trees, again start from the beginning till we complete picking L subtrees). For each node, sample of
subtrees remains same for one epoch of the algorithm (explained in Section 3.2) and new samples
are taken in each epoch. In any epoch, let us use the notation Si = {Si1, · · · , SiL} to denote the set
(more precisely it is a multiset as subgraphs can repeat) of sampled subgraph for the node vi.

3.2 SUBGRAPH ATTENTION NETWORK

This subsection describes the attention mechanism on the set of rooted subtrees selected for each
epoch of the algorithm. As mentioned, the node of interest is always positioned as the root of each
subgraph generated for that node. Next step is to generate a feature for the subgraph. We tried
different simple feature aggregations (for e.g., mean) of the nodes that belong to the subgraph as
the feature of the subgraph. It turns out that concatenation of the features of nodes gives better
performance. But for the attention to work, we need equal length feature vectors (the length is TD)
for all the subgraphs. So if a subgraph has less than T nodes, we append zeros at the end to assign
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equal length feature vector for all the subgraphs. For example, if the maximum size of a subgraph
is T = 4, then the feature of the subgraph (vi, vj , vk) is [xi||xj ||xk||0] ∈ R4D, where || is the
concatenation operation and 0 is the zero vector in RD. Let us denote this derived feature vector of
any subgraph Sil as x̂il ∈ RTD, ∀i ∈ [N ] and ∀l ∈ [L].

Next, we use self-attention on the features for the sampled subgraphs for each node as described
here. As the first step, we use a shared linear transformation, parameterized by a trainable weight
matrixW ∈ RK×TD, to the feature of all the sampled subgraphs Sil, ∀i ∈ [N ] and ∀l ∈ [L] selected
in an epoch. Next we introduce a trainable self attention vector a ∈ RK to compute the attention
coefficient αil which captures the importance of the subgraph Sil on the node vi, as follows:

αil =
exp(σ(aTWx̂il))∑

l′∈[L]

exp(σ(aTWx̂il′))
, hi = σ

( L∑
l=1

αilWx̂il

)
∈ RK , ∀i ∈ [N ] (1)

Here σ() is a non-linear activation function. We have used Leaky ReLU as the activation function
for all the experiments. αil gives normalized attention scores over the set of sampled subgraphs for
each node. We use them to compute the representation hi of a node vi as shown in Eq. 1. The
main difference between our attention mechanism to that described in Veličković et al. (2018) is
that we propose attention over the subgraphs, whereas they propose attention over the immediate
neighboring nodes. Needless to say, one can easily extend the above subgraph attention by multi-
head attention by employing few independent attention mechanisms of Eq. 1 and concatenate the
resulting representations (Vaswani et al., 2017). This completes one full subgraph attention layer.
We can stack such multiple layers to design a full subgraph attention network (SubGatt).

3.3 LEARNING AND NODE CLASSIFICATION

To use subgraph attention network for node classification, we use a softmax (or logistic sigmoid,
depending on the number of classes to predict) as the final layer on top of the node representations.
We use standard back propagation algorithm with ADAM optimization to learn the parameters of
SubGatt by minimizing the cross entropy loss. For one subgraph attention layer, we just need to
learn the linear transformation matrix W ∈ RK×TD and the attention vector a ∈ RK . Hence the
number of parameters to learn is limited for a smaller value of T (maximum size of a subgraph).

Runtime Complexity of a subgraph attention layer: First we need to compute the set of possible
subgraphs (i.e., rooted subtrees of maximum size T ) and their respective features for each node, once
for the whole dataset. Computing set of all subgraphs and their features for a node takes dT , where
d is the average degree of the nodes in the graph. We set T = 4 for our experiments and average
degree of the nodes in real life graphs are small as the networks are highly sparse in nature. Next,
in each epoch of SubGatt, we sample L subgraphs for each node and compute Eq. 1. Hence, total
runtime for each epoch of subGatt takes O(NLKTD +NdT ), which is linear with the number of
nodes, for a sparse graph. Experimentally, we observe SubGatt to converge fast on all the datasets.

4 HIERARCHICAL GRAPH POOLING WITH SUBGRAPH ATTENTION

As discussed in Section 2, GNN architectures combined with different pooling mechanisms got
promising results for graph classification. The main challenge here is to obtain a single representa-
tion of the entire graph which can be used as the features for graph classification in an end-to-end
fashion. Global pooling mechanisms, where the node representation are averaged or summed to
obtain a graph representation for classification is proposed early in the literature (Duvenaud et al.,
2015). Recently, hierarchical graph pooling becomes popular among the researchers, where a graph
is converted to a graph of sub-communities in the next level, and then further to a graph of communi-
ties and till it becomes only a single node (Ying et al., 2018; Lee et al., 2019). Our approach, though
inspired from the hierarchical pooling proposed by Ying et al. (2018), combines both global and
hierarchical pooling by attention in different levels in the graph. We refer the proposed graph classi-
fication architecture by SubGattPool (Sub-Graph and sublevel attention based Pooling mechanism),
which is described below.

As shown in Figure 2, there are R = 4 different levels of the graph in the architecture. The first
level is the input graph and the last level is a single node whose features represent the whole input
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Figure 2: Architecture of SubGattPool Network for graph classification

graph. Let us denote these level graphs (i.e., graphs at different levels) by G1, · · · , GR. There is a
GNN layer between the level graph Gr (i.e., the graph at level r) and the level graph Gr+1. This
GNN layer comprises of an embedding layer which generates the embedding of the nodes ofGr and
a pooling layer which maps the nodes of Gr to the nodes of Gr+1. We refer the GNN layer between
the level graph Gr and Gr+1 by rth layer of GNN, ∀r = 1, 2, · · · , R − 1. The last level graph
GR contains only one node, whose feature summarizes the entire input graph. Pleas note, number
of nodes N1 in the first level graph depends on the input graph, but we keep the number of nodes
Nr in the consequent level graphs Gr (∀r = 2, · · · , R) fixed for all the input graphs (in a graph
classification dataset), which help us to design a shared attention mechanism, as discussed later.

Let us assume that any level graph Gr is defined by its adjacency matrix Ar ∈ RNr×Nr and the
feature matrix Xr ∈ RNr×K (except for the level 1 graph, which is the input graph and its feature
matrix Xr ∈ RNr×D). Naturally, A1 and X1 are given to the GNN. The rth embedding layer and
the pooling layer are defined by:

Zr =

{
SubGattembed(Ar, Xr) , r = 1

GCNr,embed(Ar, Xr) , r > 1
Pr =

{
softmax(SubGattpool(Ar, Xr)) , r = 1

softmax(GCNr,pool(Ar, Xr)) , 1 < r ≤ R− 1
(2)

Here, Zr ∈ RNr×K is the embedding matrix of the nodes of Gr. The softmax after the pooling is
applied row-wise. (i, j)th element of Pr ∈ RNr×Nr+1 gives the probability of assigning node vri in
Gr to node vr+1

j in Gr+1. Based on these, the graph Gr+1 is constructed as follows,

Ar+1 = PT
r ArPr ∈ RNr+1×Nr+1 and Xr+1 = PT

r Zr ∈ RNr+1×K (3)

The matrix Pr contains information about how nodes in Gr are mapped to the nodes of Gr+1, and
the adjacency matrix Ar contains information about the connection of nodes in Gr. Eq. 3 combines
them to generate the connections between the nodes (i.e., the adjacency matrix Ar+1) of Gr+1.
Node feature matrixXr+1 ofGr+1 is also generated similarly. Please note that we use SubGatt only
after the input graph (i.e., level graph 1) as the presence of some critical structures are high there. In
contrast, other level graphsGr (r > 1) have probabilities as edge weights and nodes are connected to
many other nodes with weights. Hence, finding subgraphs there would be computational expensive.

Intra-level attention layer: As observed in Lee et al. (2019), hierarchical GNNs often suffer be-
cause of the loss of information in various embedding and pooling layers, from the input graph to
the one node summarizing the entire graph. To alleviate this problem, we propose to use attention
mechanisms again, to combine features from different level graphs of our hierarchical architecture.
We consider level graphs G2 to GR for this, as their respective numbers of nodes are same across
all the graphs in a dataset. We introduce intra-level attention layer to obtain a global feature for
each level graphs Gr, ∀r = 2, · · · , R− 1 (since, Gr has only one node, so no feature aggregation is
required). More precisely, we use the convolution based self attention within the level graph Gr as:

er = softmax(D̃−
1
2

r ÃrD̃
− 1

2
r Xrθ) ∈ RNr and xr = XT

r er ∈ RK (4)

Here, the softmax to compute er is taken so that a component of er becomes the normalized (i.e.,
probabilistic) importance of the corresponding node in Gr. Ãr = Ar + INr is the adjacency matrix

with added self loops ofGr. D̃ is the diagonal matrix of dimensionNr×Nr with D̃(i, i) =
Nr∑
j=1

Ãij .

θ ∈ RK is the trainable set of parameters of intra-level attention, which is shared across all the level
graphs Gr, ∀r = 2, · · · , R − 1. Intuitively, θ contains the importance of individual attributes and
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Dataset #Nodes #Labels #Attributes

Cora 2708 7 1433
Citeseer 3312 6 3703
Pubmed 19717 3 500

(a) Datasets for node classification

Dataset #Graphs #Max Nodes #Labels #Attributes

MUTAG 188 28 2 NA
PROTEINS 1113 620 2 1

NCI1 4110 125 2 NA
NCI109 4127 100 2 NA

IMDB-BINARY 1000 270 2 NA
IMDB-MULTI 1000 176 3 NA

(b) Datasets for graph classification

Table 1: Different datasets used in our experiments

the components of Nr dimensional Xrθ gives the same for each node. Finally, multiplying that
with D̃−

1
2

r ÃrD̃
− 1

2
r produces the (normalized) importance of a node based on its own features and

the features of immediate neighbors (for one layer of intra-level attention). Hence, xr, which is a K
dimensional representation of the level graph Gr, is a sum of the features of the nodes weighted by
the respective normalized node importance. Please note, the impact from the first few level graphs
becomes noisy due to too many subsequent operations in a hierarchical pooling method like in Ying
et al. (2018). But representing level graphs separately by the proposed intra-level attention make
their impact more prominent.

Inter-level attention layer: After the application of intra-level attention layer, we have one vector
representation xr ∈ RK fromGr, ∀r = 2, · · · , R−1, and the feature vectorZR ∈ RK (from Eq. 2).
Let’s set xR = ZR. Here, we aim to get the final representation of the input graph from x2, · · · , xR;
in contrast to a hierarchical pooling which just considers ZR to be the final representation. We
introduce inter-level attention layer, which takes x2, · · · , xR as input and generates xG ∈ RK as
the final graph representation to be fed to a neural classifier. We again use a self-attention as follows:

ẽ = softmax(Xinter θ̃) ∈ RR−1 and xG = XT
inter ẽ ∈ RK (5)

Xinter is the R − 1 × K dimensional matrix whose rows correspond to xr (the output of intra-
level attention layer for Gr), r = 2, · · · , R. ẽ ∈ RK is a trainable self attention vector. Similar to
Eq. 4, softmax is taken to convert ẽ to a probability distribution of importance of different graph
levels. Finally, the vector representation xG of the input graph is computed as a weighted sum of
representations of different level graphsG2, · · · , GR. xG is fed to a classification layer of the GNN,
which is a dense layer followed by a softmax to classify the entire input graph in an end-to-end
fashion. This completes the construction of SubGattPool architecture.

First layer of SubGattPool consists of an embedding SubGatt network and a pooling SubGatt net-
work, which have a total ofO(KTD) trainable parameters. Consequent layers of SubGattPool have
GCN as embedding and pooling layers, which have a total of O(RKD) parameters. Total number
of parameters for R − 2 intra-level attention layers is O(K), as θ ∈ RK is shared across the level
graphs. Finally the inter-level attention layer hasO(K) parameters. Hence, total number of parame-
ters to train in SubGattPool network isO(KTD+RKD), which is independent of both the average
number of nodes and the number of graphs in the dataset. We use ADAM on the cross-entropy loss
of graph classification to train these parameters.

5 EXPERIMENTAL EVALUATION

We conduct thorough experimentation in this section. Performance on node classification shows the
merit of the subgraph attention (SubGatt) network alone. Whereas, performance on graph classifica-
tion shows the combined effect of different building blocks of SubGattPool. We also conduct a small
experiment with graph visualization to show the merit of individual components of SubGattPool.

5.1 PERFORMANCE ON NODE CLASSIFICATION

Datasets and Baseline Algorithms: We use three popular and publicly available citation networks,
where each node has a class label, for node classification. The details of the datasets are given
in Table 1a (https://linqs.soe.ucsc.edu/data). We use the following state-of-the-art
neural network based algorithms as baselines. node2vec (Grover & Leskovec, 2016) (skip-gram
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Dataset node2vec GCN GAT DGI SubGatt

Cora 80.9±1.0 84.3±1.8 81.2±2.3 71.0±1.8 87.3±0.9
Citeseer 55.2±0.7 71.3±1.1 75.6±0.8 68.0±1.3 74.3±0.5
Pubmed 80.1±0.7 82.8±0.5 79.0±0.3 78.8±0.7 87.0±0.2

Table 2: Classification accuracy (%) of different algorithms for node classification.

based) and DGI (GNN based) are two efficient unsupervised node embedding algorithms. We use
SVM to classify the nodes on the embeddings generated by node2vec and DGI. As discussed in
Section 2, GCN and GAT are semi supervised GNN based node classification algorithms.

Experimental Setup: We use 80% of the total node labels for training the algorithms and remaining
20% for testing. Further, 10% of the training set is used as validation. The splits are made randomly.
We conduct all the experiments 10 times and reported the mean and standard deviation of classifica-
tion accuracy on the test sets for all the algorithms. We set all the hyper parameters of SubGatt based
on the convergence of loss in the training and the accuracy on the validation set. We use 2 layers
of subgraph attention in SubGatt network for all the datasets of node classification. Learning rate is
fixed to 0.001 in ADAM. Maximum size (T ) of a subgraph is kept as 4 and the number of subgraphs
sampled (L) for each node in an epoch of SubGatt is 32. We use dropout and L2 normalization on
the parameters of SubGatt. Embedding dimension (K) is set to 64 for all the datasets. For baselines,
we use the best parameterization on the datasets mentioned in their respective papers.

Performance Analysis: Table 2 shows that the proposed algorithm SubGatt is able to outperform all
the baselines on Cora and Pubmed datasets in terms of average classification accuracy, whereas out-
performed narrowly by GAT on Citeseer. Interestingly, the standard deviation of SubGatt is always
less compared to the baselines on all the datasets which shows the robustness of the algorithm.

5.2 PERFORMANCE ON GRAPH CLASSIFICATION

Datasets and Baseline Algorithms: We used 4 bioinformatics graph datasets and 2 social net-
work datasets to evaluate the performance of graph classification. Table 1b contains the high-level
summary of the datasets (https://ls11-www.cs.tu-dortmund.de/staff/morris/
graphkerneldatasets). We use a diverse set of baseline algorithms for graph classification.
Deep graph kernel (DGK) and graph2vec are unsupervised way to generate a graph kernel and graph
embedding respectively. We use SVM on top of them to predict the graph labels. We also use 3 re-
cently proposed state-of-the-art GNN based graph classification techniques: DIFFPOOL, GIN and
SAGPool. We use publicly available implementation for all the baselines to generate the results.

Experimental Setup: We vary the training size from 15% to 60% for graph classification, and
use the remaining for test. All of such splits are done randomly. We use 20% of training as the
validation data. Experiments are repeated 10 times and the average classification accuracy and the
standard deviation are reported. For SubGattPool, we kept the number (R) of level graphs (including
the input graph) to be 3 for all the datasets except PROTEINS. For PROTEINS, we set R to be 4 as
the maximum number of nodes in PROTEINS is much higher than the other datasets. The SubGatt
layer in SubGattPool samples 12 subgraphs per node for each epoch, with maximum subgraph size
as 4. We set the pooling ratio (defined as Nr

Nr+1
, ∀r 6= 1, R − 1) to be 0.25 for PROTEINS and 0.1

for the other smaller datasets. We vary the learning rate of ADAM from 0.0001 to 0.001 based on
the convergence of cost in the training. Embedding dimension (K) is fixed to 64 for all the datasets.

Performance Analysis: Table 3 shows that SubGattPool performs the best on MUTAG dataset for
graph classification for all the training sizes. For the other datasets, the best performing algorithm
vary over different training sizes. We can see that SubGattPool is always close to the best performing
one. For most of the cases, the improvement of performance with increasing training is not very
significant. This shows most of these algorithms saturate early with varying training sizes.

5.3 INCREMENTAL EFFECTS OF THE COMPONENTS OF SUBGATTPOOL

SubGattPool network has two novel components. First, SubGatt layer, which has already performed
good for node classification, and second, intra and inter-level attention layers which make Sub-
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Algorithm Training Size(%)
15 30 45 60

DGK 73.4±1.3 75.8±1.2 76.2±0.9 76.5±1.5
graph2vec 64.6±3.6 67.7±3.1 67.1±3.1 68.0±5.7

DIFFPOOL 61.±15.2 77.8±5.5 78.5±1.2 76.9±5.6
GIN 70.2±5.4 76.5±3.8 77.5±3.2 76.8±4.8

SAGPool 65.9±0.9 68.0±2.6 64.0±1.6 65.2±2.7
SubGattPool 79.3±5.5 79.2±5.8 81.4±2.9 81.3±3.7

(a) MUTAG

Algorithm Training Size(%)
15 30 45 60

DGK 65.8±0.9 66.3±1.3 67.9±1.8 68.2±1.6
graph2vec 62.9±1.5 65.6±1.1 66.4±1.7 67.7±2.1

DIFFPOOL 67.5±2.1 67.0±2.2 68.6±1.4 68.1±3.1
GIN 62.2±2.8 63.0±2.1 62.9±1.6 63.5±3.3

SAGPool 68.6±4.3 70.7±3.2 70.8±1.2 68.0±1.0
SubGattPool 68.9±5.2 67.2±2.7 67.3± 0.6 68.5±3.1

(b) PROTEINS

Algorithm Training Size(%)
15 30 45 60

DGK 60.5±0.7 61.3±1.2 62.3±1.0 62.1±0.6
graph2vec 62.6±1.0 63.7±1.0 64.9±0.3 64.7±2.9

DIFFPOOL 61.0±0.9 62.4±1.3 63.2±1.6 64.5±1.1
GIN 59.8±0.9 64.7± 1.2 65.0±0.3 66.5±1.1

SAGPool 60.5±5.6 66.5±1.2 65.1±3.8 65.2±2.0
SubGattPool 62.7±0.5 64.4±0.5 65.4±1.0 67.5± 1.1

(c) NCI1

Algorithm Training Size(%)
15 30 45 60

DGK 55.0±1.1 56.1±0.9 58.0±0.8 57.7±0.3
graph2vec 62.1±1.1 64.3±0.7 65.7±0.8 65.9±2.2

DIFFPOOL 60.1±1.3 62.2±1.2 62.7±1.3 63.1±1.5
GIN 55.3±0.4 60.7±2.3 63.4±0.9 64.4±1.5

SAGPool 57.7±4.6 66.1±2.1 66.9±1.4 66.5±1.0
SubGattPool 64.3±0.2 65.1±0.4 66.0±0.6 67.2±0.8

(d) NCI109

Algorithm Training Size(%)
15 30 45 60

DGK 60.1±2.5 61.0±1.8 62.3±2.1 63.5±1.9
DIFFPOOL 61.0±1.4 64.3±1.8 64.3±2.3 65.4±2.1

GIN 66.4±2.2 64.0±2.9 68.2±1.5 68.1±2.0
SAGPool 58.7±5.1 59.8±7.7 62.6±5.6 65.0±3.9

SubGattPool 62.5±7.2 62.4±7.7 68.1±1.6 69.4±2.3

(e) IMDB-BINARY

Algorithm Training Size(%)
15 30 45 60

DGK 40.1±2.4 42.0±1.3 42.9±0.9 42.6±1.1
DIFFPOOL 42.3±2.2 44.2±2.3 45.1±2.2 45.6±3.6

GIN 43.7±1.8 46.8±2.1 47.8±1.2 47.5±2.6
SAGPool 42.4±1.3 43.7±2.1 44.8±1.5 45.8±1.1

SubGattPool 42.1±0.6 44.2±1.4 45.7±1.0 47.9±2.2

(f) IMDB-MULTI

Table 3: Classification accuracy (%) of graph classification on multiple datasets.

(a) DIFFPOOL (b) SubGattPool \SubGatt (c) SubGattPool \I-I-L-A (d) SubGattPool

Figure 3: t-SNE visualization of the graphs from MUTAG (different colors show different labels of
the graphs) by the representations generated by: (a) DIFFPOOL; (b) SubGattPool, but the SubGatt
embedding and pooling layers being replaced by GCN; (c) SubGattPool without intra and inter
layer attention; (d) the complete SubGattPool network. Compared to (a), there are improvement of
performances for both the SubGatt layer and intra/inter-level attention individually. Finally different
classes are separated most by SubGattPool which again shows the merit of the proposed algorithm.

GattPool a mixture of both global and hierarchical pooling strategy. Figure 3 shows the graph
visualization using t-SNE (van der Maaten & Hinton, 2008) on MUTAG dataset. Fig. 3b and 3c
explain the incremental improvement of performance by only intra and inter level attentions, and
SubGatt layer respectively. Finally, Fig. 3d shows the best performance by SubGattPool, which
combines all these components into a single network.

6 DISCUSSION AND FUTURE WORK

In this paper, we introduce subgraph attention mechanism over graph structured data. We also
propose a novel graph pooling algorithm which uses subgraph attention, and combines different
hierarchical levels of graphs by separate attention layers. Current formulation of subgraph attention
is based on heuristic and backed by experimental results. So in future, we would like to theoretically
examine its expressiveness power for node and graph representation. Also we would like to conduct
experiments in the inductive setting for node classification with SubGatt network.
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A APPENDIX

A.1 SENSITIVITY ANALYSIS OF SUBGATT NETWORK

SubGatt network has three important hyper parameters. They are: (i) Maximum size of a subgraph
(T ), (ii) Number of subgraphs sampled per node in each epoch (L) and (iii) Dimension of the final
node representation or embedding (K) (See Eq. 1) and (iv) Number of SubGatt layers used in the
network. We conduct node classification experiments on Cora. Figure 4 shows the variation of the
performance of SubGatt network for node classification with respect to all these hyper-parameters.
We have shown both average node classification accuracy and standard deviation over 10 repetition
for each experiment. Interestingly, the variation is less with respect to all the hyper-parameters and
hence it shows the robustness of SubGatt. Please note, when we are varying one hyper-parameter of
SubGatt, the values of all other hyper-parameters are fixed to the values mentioned in Section 5.1.

(a) (b)

(c) (d)

Figure 4: Sensitivity analysis of SubGatt network for node classification on Cora with respect to
different hyper-parameters
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