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ABSTRACT

Self-attention effectively captures large receptive fields with high information
bandwidth, but its computational resource requirements grow quadratically with
the number of points over which attention is performed. For data arranged as
large multidimensional tensors, such as images and videos, the quadratic growth
makes self-attention prohibitively expensive. These tensors often have thousands
of positions that one wishes to capture and proposed attentional alternatives either
limit the resulting receptive field or require custom subroutines. We propose Axial
Attention, a simple generalization of self-attention that naturally aligns with the
multiple dimensions of the tensors in both the encoding and the decoding settings.
The Axial Transformer uses axial self-attention layers and a shift operation to ef-
ficiently build large and full receptive fields. Notably the proposed structure of
the layers allows for the vast majority of the context to be computed in parallel
during decoding without introducing any independence assumptions. This semi-
parallel structure goes a long way to making decoding from even a very large
Axial Transformer broadly applicable. We demonstrate state-of-the-art results for
the Axial Transformer on the ImageNet-32 and ImageNet-64 image benchmarks
as well as on the BAIR Robotic Pushing video benchmark. We open source the
implementation of Axial Transformers.

1 INTRODUCTION

Self-attention is a neural network operation that is able to transform a sequence y1, . . . , yN into a
sequence y′1, . . . , y

′
N , where each y′i depends on all yi by way of a single vectorizable computa-

tion (Vaswani et al., 2017). Self-attention is remarkably effective at learning long-range dependen-
cies between data dimensions and neural networks that incorporate self-attention in their designs are
state-of-the-art on many tasks from language modelling and machine translation to image and video
modelling (Parmar et al., 2018; Child et al., 2019).

The power of self-attention comes at the price of computational complexity. The memory and
computation it consumes grow quadratically with the sequence length N making it prohibitively
expensive to directly apply self-attention to long sequences. In the case of multidimensional tensors
such as images or videos, the aim to capture large receptive fields in multiple dimensions further
exacerbates the problem as even a modest number of receptive field steps in each dimension can
encompass a large total number of locations. Various approaches have been proposed to alleviate
this difficulty at the cost of either limiting the receptive field or requiring operations that may not be
broadly available on GPUs or TPUs.

We propose Axial Attention and the resulting Axial Transformer, a simple yet effective mechanism
and architecture to scale self-attention models to data organized as multidimensional tensors. Rather
than applying attention to a flattened string of tensor elements, axial attention instead applies atten-
tion along a single axis of the tensor without flattening. Since the length of any single axis (that is,
the height or width of an image) is typically much smaller than the total number of elements, axial
attention enjoys a significant saving in computation and memory over standard attention. For data
organized as a d-dimensional tensor with shape N = N1/d × · · · × N1/d, axial attention saves a
O(N (d−1)/d) factor of resources over standard self-attention.
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The Axial Transformer uses encoding networks and decoding networks based on possibly masked
axial attention blocks (Figure 1). In the case of 2-dimensional tensors such as images or channel-
stacked videos, an encoding network uses unmasked axial attention along the axes to capture all the
past available contexts corresponding to previous RGB channels in the image or the previous frames
from a video. An outer decoding network uses some masked and some unmasked axial attention
blocks to capture all the context in the rows above the current location. An inner decoding network
finally captures the previous context along the axis (row) of the current location. The proposed
structure ensures lower memory use per instance since only a channel is predicted at each step and
better use of computation since no masking across channels is used in the decoder (van den Oord
et al. (2016a)).

Remarkably, the proposed structure also allows for the majority of the context to be embedded with
a high degree of parallelism but without introducing conditional independence assumptions among
any of the locations. The strictly sequential part is reserved for the inner decoding network that
acts along the row axis. The shallower the inner decoder, the faster will be the resulting decoding
operation, mostly independently of the depth and size of all the other parts of the Axial Transformer.
This property appears key to make multidimensional transformers sufficiently fast to be practically
and broadly applicable for prediction or generation.

We evaluate Axial Transformers on image and video modelling benchmarks. We show that Axial
Transformer achieve state-of-the-art results on ImageNet-32 and on ImageNet-64. We also show
that, simply by stacking a video along the channel dimension, the Axial Transformer can be directly
applied to the channel-stacked video without nearly any modification. On the BAIR Robot Pushing
benchmark, the Axial Transformer significantly outperforms previous results without using an archi-
tecture specially designed for videos. The generated samples on these datasets are of the expected
high quality.

Furthermore, Axial Transformers do not require subroutines for GPUs or TPUs that may exhibit
unfavorable memory bandwidth and computation trade-offs. Axial Transformers are simple to im-
plement using efficient operations that are widely available in deep learning frameworks (primarily
dense-dense MatMuls). An open source implementation of our models is available at anonymized
URL.

2 BACKGROUND

To set the stage for our discussion, we first review self-attention and its computational resource re-
quirements. A self-attention layer takes as input a length N sequence of D-dimensional embeddings
X (a N ×D matrix) and produces an output sequence Y (also a N ×D matrix) via:

Q = XWQ, K = XWK , V = XWV

A = softmax
(
QK>/

√
D
)

Y = AV

WQ, WK , and WV are D × D parameter matrices responsible for projecting the entries of the
sequence X into keys, queries, and values, respectively. Each entry of the output sequence Y is a
linear combination of values in V weighted by the attention matrix A, which itself is computed from
similarities between all pairs of query and key vectors. Both the expressive power and the resource
cost of self-attention come from computing A and Y : it takes O(N2) time and space to compute the
pairwise similarities between Q and K and to compute the linear combination of V vectors.

This quadratic complexity makes it impractical to apply self-attention to images and videos directly
as flattened vectors: a small 32×32×3 image has 3072 dimensions. Sequences such as these are too
long for self-attention, so attempts to scale self-attention to these modalities generally involve re-
stricting these sequence lengths in a modality-aware manner while attempting to preserve modeling
performance.

One strategy is to restrict the conditioning context x<i to a carefully designed small subset of the
data dimensions. While this reduces the cost of attention, which is only performed over these small
subsets instead of the full data, the model can no longer express all joint distributions over the
data. Parmar et al. (2018) propose image models with conditioning context x<i restricted to a
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Figure 1: The Axial Transformer model for 2-dimensional tensors. Before sampling a channel we
encode all previous channels and frames with 8 blocks of unmasked row and unmasked column at-
tention (left). Then, for each row, we apply 4 blocks of unmasked row and masked column attention
to integrate the previously sampled rows for the active channels into our encoded representation
(middle). Finally, we shift the encoded representation up to make sure the conditioning information
satisfies causality, and we run the inner decoder consisting of 4 blocks of masked row attention to
sample a new row in the image (right).

Figure 2: Types of axial attention layers that are the building blocks of the Axial Transformer. The
blue locations correspond to the receptive field of the output red location.

small window of the full image, but the implementation requires redundant data copies to extract
and process these windows. Weissenborn et al. (2019) similarly scale video autoregressive models
by restricting the context, again preventing their model from expressing all joint distributions over
pixels. Our models do not restrict context and hence we obtain better log likelihoods, as we will see
in section 5.

A different strategy is to stack multiple sparse attention layers, each with restricted context for
computational efficiency, but in a manner that overlapping these layers yields a full-context model.
Child et al. (2019) propose two sparse attention patterns with this property. However, the architecture
they propose that works best for images (the Strided Sparse Transformer) requires custom sparse
attention GPU kernels to implement a specific block-sparse variant of matrix-matrix-multiply. The
model cannot be easily implemented on other hardware such as TPUs.

See table 1 for a summary of these architecture design tradeoffs. Our goal in this paper is to design
attention-based models that attain the best of all worlds. Our Axial Transformer, described in sub-
sequent sections, has a full conditioning context, so its ability to express joint distributions is never
limited. The Axial Transformer also does not require any redundant data copies or custom kernels
to implement in an efficient way. Indeed, we designed, and will make open source, an efficient
implementation that uses only standard operations in deep learning libraries.
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Table 1: Trade-offs of recently proposed multidimensional Transformer architectures.
Model Full receptive field Attention faster thanO(N2) Needs no custom kernels

Transformer (Vaswani et al., 2017) yes no yes
Image Transformer (Parmar et al., 2018) no yes yes
Block Transformer (Weissenborn et al., 2019) no yes yes
Strided Sparse Transformer (Child et al., 2019) yes yes no
Axial Transformer (ours) yes yes yes

3 AXIAL ATTENTION

We introduce our key idea for developing self-attention models for high-dimensional data tensors.
The proposed approach does not change the original shape of the multidimensional data tensor and
performs a masked or unmasked attention over a single axis of the tensor at a time. We call this
operation axial attention, denoted by Attentionk(x). It performs attention over axis k of the tensor
x, mixing information along axis k while keeping information along other axes independent. It is
straightforward to implement: axial attention over axis k can be implemented by transposing all axes
except k to the batch axis, calling standard attention as a subroutine, then undoing the transpose. (An
alternative is to use the einsum operation available in most deep learning libraries.)

When the data is an image, we call Attention1 column attention, as it mixes information within
columns while keeping separate columns independent. We call Attention2 row attention for anal-
ogous reasons. Axial attention on a square image of size N = S × S performs attention on S
sequences of length S—this is a total of O(S · S2) = O(N

√
N) computation—an O(

√
N) savings

in computation over standard self-attention. In general, for a d-dimensional tensor with N = Sd,
axial attention saves O(N (d−1)/d) computation over standard attention. Of course, a single layer
of axial attention along some axis k does not have the full receptive field since it covers a single
axis, but we will see in section 4 that stacking two axial attention layers allows the model to obtain
a global receptive field.

It will be convenient for us to also define MaskedAttentionk to be the causally masked variant of
Attentionk: component i of the result of MaskedAttentionk(x) along axis k depends on only com-
ponents 1, . . . , i of x along axis k. The receptive fields of these attention patterns, both unmasked
and masked, are illustrated in fig. 2.

Axial attention can be used within standard Transformer layers in a straightforward manner to pro-
duce Axial Transformer layers. The basic building blocks are the same as those found in the standard
Transformer architecture:

• LayerNorm(x): layer normalization (Ba et al., 2016), and
• DenseD(x): a dense layer operating over the last axis of the input x. The letter D denotes

the dimension of the output activations. If the input has shape H × W × C, then this
operation is identical to a 1× 1 convolution, and the output has shape H ×W ×D.

We use these to define ResNet axial attention blocks operating on tensors of D-dimensional embed-
dings (Vaswani et al., 2017; Child et al., 2019):

• FeedforwardBlock(x) = x+ DenseD(Nonlinearity(DenseD′(LayerNorm(x))))

• AttentionBlockk(x) = x+ DenseD(Attentionk(LayerNorm(x)))

• TransformerBlockk(x) = FeedforwardBlock(AttentionBlockk(x))

D′ is chosen to be some constant factor larger than D, from 1 to 4 (Vaswani et al., 2017). We also
define a MaskedTransformerBlockk using MaskedAttentionk in place of Attentionk.

4 AXIAL TRANSFORMERS

We now describe Axial Transformers, our axial attention-based autoregressive models for images
and videos. We will use the axial attention operations described in section 3 as building blocks in a
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Figure 3: Arrangement of inputs to the encoding network of the Axial Transformer. Previously
available or generated channels of an image or video are sequentially stacked in the input. A variable
number of padding planes are used as placeholders for future generated channels. A final integer
plane signals to the Axial Transformer the channel that is being generated at that step.

multi-layer autoregressive model of the form pθ(x) =
∏N
i=1 pθ(xi |x<i) following the raster scan

ordering of pixels. We will accomplish this by building an autoregressive model over rows (sec-
tion 4.1.1), then conditioning each row on previous rows (section 4.1.2), then further conditioning
on previous channels and frames (section 4.2). Decomposing the model in this manner also leads to
a simple fast and partly parallel sampling procedure (section 4.1.3).

4.1 A MODEL FOR SINGLE-CHANNEL IMAGES

We begin with an autoregressive model for a single-channel image x with shape H × W , with
each pixel taking an integer value in [0, 255] representing its intensity. As is standard practice
with Transformers, pixel intensities are first embedded into a H ×W ×D tensor of D-dimensional
embeddings, which we call h. The architecture’s responsibility is to transform h into a H×W×256
tensor of logits suitable for classification or sampling. These logits must depend only on previous
pixels in the input x along the raster scan ordering to ensure that the architecture defines a valid
autoregressive model.

4.1.1 INNER DECODER: A ROW-WISE MODEL

Our idea is to begin with masked row attention layers to create a “row-wise” model:

h← Embed(x)
h← ShiftRight(h) + PositionEmbeddings
h← MaskedTransformerBlock2(h) ×Lrow

Here, Lrow is the number of masked row attention blocks applied to h. PositionEmbeddings is a H×
W ×D tensor of position embeddings that inform the attention layers of the position. For parameter
efficiency we use “additively factorized” position embeddings, meaning that we parameterize them
as a broadcasted sum of H × 1×D embeddings for rows and 1×W ×D embeddings for columns.

The operation ShiftRight shifts the input right by one pixel, which has the effect of shifting the
receptive field left by one pixel. This ensures that the masked row attention layers exclude the current
pixel from their receptive field, which is crucial for architecture to define a correct autoregressive
model.

As this model employs row attention only, it enjoys the computational efficiency benefits described
in section 3. However, it clearly does not define a full-context model because each location in
the output does not depend on input pixels in previous rows. If we were to use the resulting h as
logits for pixel intensity prediction, we would obtain a set of H independent autoregressive models
p(xi,j |xi,1, . . . , xi,j−1) for each row i ∈ [1, H], not a single autoregressive model with full context.
We address this issue next.

4.1.2 OUTER DECODER: CAPTURING THE ROWS ABOVE

Each pixel xi,j in the aforementioned model already depends on previous pixels in its own row
xi,<j . We just need to make it depend on all previous rows x<i,: too. So, we insert unmasked row
and masked column layers in the beginning of the model as follows (newly inserted operations are
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underlined):

h← Embed(x)
u← h+ PositionEmbeddings

u← MaskedTransformerBlock1(TransformerBlock2(u)) ×Lupper/2

h← ShiftDown(u) + ShiftRight(h) + PositionEmbeddings

h← MaskedTransformerBlock2(h) ×Lrow

The tensor u represents context captured above the current pixel. It is computed by unmasked row
and masked column attention layers, repeated Lupper times to increase model capacity, which make u
cover the receptive field at all rows above and including the current pixel. The ShiftDown operation
shifts u down one pixel, which shifts its receptive field up one pixel. Thus we have a context which
captures all pixels above while excluding the current row, which we add to h as input to the masked
row layers. We have thus converted the row-wise model into a fully expressive autoregressive model
that captures not only pixels in the current row but also those above.

Following standard practice, we pass the final h through layer normalization and a final dense layer
to produce logits with shape H ×W × 256. The logits at each location depend on all previous pixel
locations in the raster scan ordering.

4.1.3 SEMI-PARALLEL SAMPLING

Naive implementations of sampling from sequential models are notoriously slow because they re-
quire re-evaluating the entire network to sample each location. In the case of our model for a√
N ×

√
N square image, each network evaluation takes O(N

√
N(Lupper + Lrow)) time, so sam-

pling the whole image would take O(N2
√
N(Lupper + Lrow)), which is far too large.

Fortunately, our architecture is amenable to a particularly simple implementation of a faster sampling
that is able to compute large sections of the model in parallel (see Figure 1). Pseudocode is as
follows:

1. For each row i ∈ [1, H]:

(a) Compute the upper context u including information about all x<i,∗ using the upper
layers

(b) For each column j ∈ [1,W ]:
i. Sample xi,j conditioned on u and prior elements of row i (xi,<j).

Because the Lrow row-wise layers are independent over rows (they depend on other rows only
through the upper context, as explained in section 4.1.1), sampling one row can be accomplished
by evaluating the row-wise layers for that one row only, completely ignoring other rows. Thus,
in one row of

√
N pixels, each pixel can be sampled in O(NLrow), so all pixels can be sampled

in O(N2Lrow). Before each of the
√
N rows can be sampled, the upper context must be com-

puted in O(N
√
NLupper), for a total of O(N2Lupper) over the course of all rows. Thus we arrive at

O(N2(Lupper+Lrow)) in total, which is
√
N faster than the naive implementation. To our knowledge,

sampling speedups of this type are not possible with contemporary work on scaling Transformers to
images and videos (Child et al., 2019; Weissenborn et al., 2019).

4.2 CHANNEL ENCODER FOR MULTI-CHANNEL IMAGES AND VIDEOS

We have just described an architecture for a single-channel image of shape H ×W . Here, we show
how to extend the architecture to multi-channel images or videos of shape H ×W × C (here C is
either the number of channels in a multi-channel image, or the product of the number of channels
and timesteps in a video). One way to model such data of shape H ×W × C is to simply stack the
channels on top of each other into a single-channel image of shape (H ·C)×W or H×(W ·C). This
is simple to implement, but does increase the sequence length for column attention or row attention,
which can be undesirable for large C. We instead opt to model one channel at a time as a single-
channel image, but now conditioned on previous channels using an extra set of unmasked row and
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Table 2: Unconditional and class-conditional image modeling results (bits/dim)

Model ImageNet 32x32 ImageNet 64x64

Multiscale PixelCNN (Reed et al., 2017) 3.95 3.70
PixelCNN/RNN (van den Oord et al., 2016a) 3.86 3.63
Gated PixelCNN (van den Oord et al., 2016b) 3.83 3.57
PixelSNAIL (Chen et al., 2018) 3.80 3.52
SPN (Menick & Kalchbrenner, 2018) 3.79 3.52
Image Transformer (Parmar et al., 2018) 3.77 –
Strided Sparse Transformer (Child et al., 2019) – 3.44
Axial Transformer (ours) 3.76 (3.758) 3.44 (3.439)

Table 3: Video modeling results (bits/dim) on the BAIR Robotic Pushing dataset (Ebert et al.,
2017). We condition on a single video frame and model the next 15 frames, similar to Weissenborn
et al. (2019). Kumar et al. (2019) instead condition on the 3 prior frames of the video.

Model bits/dim next 15 frames

VideoFlow (Kumar et al., 2019) 1.87
Video Transformer (Weissenborn et al., 2019) 1.35
Axial Transformer (ours) 1.31

unmasked column attention layers. This means that we have a model of the form p(x:,:,c |x:,:,<c),
where previous channels x:,:,<c are processed into a H ×W × D tensor of context information,
which is then added into the first encoding blocks of the model in section 4.1.2 (Figure 3).

We do not share any parameters among any of these layers. At training time, we train on a random
channel slice of each image: we process the previous slices using these unmasked attention layers to
produce a context tensor, and maximize the likelihood of the randomly chosen slice conditioned on
this context. This amounts to training on an unbiased estimate of log likelihood for the whole data
tensor. See fig. 1 for an illustration of this complete model.

5 EXPERIMENTS

We benchmarked our models on standard datasets for generative image and video models: down-
sampled ImageNet (van den Oord et al., 2016a) and BAIR Robot Pushing (Ebert et al., 2017). All
Axial Transformers have 8 total layers in the encoder, 8 layers in the outer decoder and 4 layers
in the inner decoder. We use a hidden size of 2048 neurons throughout and for all setups and 16
heads with 128 neurons each for the attention component. We train for approximately 200k steps on
ImageNet32 and ImageNet64 and for 120k steps on BAIR Robot Pushing. Our models can overfit
on ImageNet32, but on the other datasets the models keep on gradually improving with more steps.
See table 2 and table 3 for our results.

5.1 SAMPLES

In fig. 4 and fig. 5, we show samples from our 64× 64 and 32× 32 ImageNet models. The samples
are globally coherent and show visibly recognizable scenes, meaning that our Axial Transformer
architecture successfully captures long-range dependencies across thousands of data dimensions in
these image datasets. The samples also don’t show any architecture-correlated artefacts. In addition,
in fig. 6 we show samples from the BAIR Robotic Pushing dataset. The first frame is each row is
given by the dataset and the rest are continuation. We note the high quality exactness of details and
the very large diversity (at temperature 1.0).
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6 CONCLUSION

We proposed Axial Attention, a simple generalization of self-attention that scales better with the
dimension of input data, achieving a O(N (d−1)/d) savings in computation and memory for a d-
dimensional input tensor with N elements. Axial attention is easy to implement and does not re-
quire custom kernels to run efficiently on modern accelerators. We then applied our axial attention
primitive in a new multidimensional architecture for images and videos that we call the Axial Trans-
former. Axial Transformers use axial self-attention layers and a shift operation to naturally and ef-
ficiently build full receptive fields of multidimensional tensors. Our model matches or outperforms
the state-of-the-art on ImageNet-32 and ImageNet-64 image benchmarks and sets a significant new
state-of-the-art on the BAIR Robot Pushing video benchmark.

Figure 4: 64× 64 ImageNet samples at temperature 1.0
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Figure 5: 32× 32 ImageNet samples at temperature 0.99

Figure 6: 15× 64× 64 BAIR Robot Pushing samples at temperature 1.0
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