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Abstract— Silo discharging and monitoring the process for 

industrial or research application depend on computerized 

segmentation of different parts of images such as stagnant and 

flowing zones which is the toughest task. X-ray Computed 

Tomography (CT) is one of a powerful non-destructive technique 

for cross-sectional images of a 3D object based on X-ray 

absorption. CT is the most proficient for investigating different 

granular flow phenomena and segmentation of the stagnant zone 

as compared to other imaging techniques. In any case, manual 

segmentation is tiresome and erroneous for further investigations. 

Hence, automatic and precise strategies are required. In the 

present work, a U-net architecture is used for segmenting the 

stagnant zone during silo discharging process. This proposed 

image segmentation method provides fast and effective outcomes 

by exploiting a convolutional neural networks technique with an 

accuracy of 97 percent. 
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I.  INTRODUCTION  

In many industries, like in mining, agriculture, civil 
engineering, and pharmaceutical manufacturing; silo is used for 
protecting, storing and loading granular materials into process 
machinery [1]. During the silo discharging process, there are 
two major types of flow: namely, “funnel” and “mass” flows 
[2]. In the case of mass flow, all granulates discharge with a 
uniform downward velocity across the entire cross-section area. 
Whereas, in the case of funnel flow, in which this paper focuses 
on and characterized by granular is flowing only in the center of 
the silo and creating a stagnant zone at the walls of the 
container [2,3]. 

The hopper geometry, internal friction between particles and 
wall all have a direct impact on the flow type [4]. In order to 
understand and describe the flow behavior and evaluating the 
silo wall pressures, the knowledge of the density distribution 
within the bulk solid is very important aspect [5]. Furthermore, 
during funnel flow, the shape and size of the stagnant zone 
depend on different factors including the granular material, the 
bin wall roughness, the initial packing density and filling level 
[6]. 

X-ray Computed tomography (CT) is one of the most 
powerful 3D imaging techniques among available tomographic 
techniques due to its high-resolution capability. For the last two 
decades CT has been used as a non-destructive method to 
characterize objects, visualize flows, analyze concentration 
changes of the bulk solid during silo discharging process [5 
,7,8]. Particle Image Velocimetry (PIV) [9,10] and Electrical 
Capacitance Tomography (ECT) [11–14] are also some of the 
techniques used to visualize concentration changes during flows 
of granular materials.  

Even though convolutional neural network (CNN) has 
recently become popular and has increasingly been used as an 
alternative to many traditional pattern recognition problems, its 
application for segmenting stagnant zones of X-ray CT images 
is not common. For processing and analyzing process 
tomography data, artificial neural network algorithms were 
applied in electrical impedance tomography images [15–17]. 
This paper proposed a deep neural networks technique for 
segmenting the stagnant zone automatically. The main 
advantage of the proposed approach is an effective 
segmentation for acquiring the desired characteristics of flow 
parameters without prior image processing or expert guidance. 

II. EXPERIMENTAL SET-UP USING X-RAY TOMOGRAPHY 

An especially designed model silo, with rectangular bin, 
allowed carrying out in situ experiments. The bin part is 10 cm 
wide, 5 cm deep and 20 cm high. The left and right hopper 
angles can be independently set to generate different types of 
flows, i.e. mass and funnel flows, with concentric/eccentric 
discharging modes. The silo model design was easily 
customizable to shift the outlet position and the angle between 
the hopper and the silo with respect to the vertical. The silo 
material is polycarbonate with 5 mm thickness. The outlet width 
is manually set, which allows controlling the discharge velocity. 
During concentric flow, both hoppers’ angles are set to the 
same value. In order to observe the eccentric flow, these angles 
are set to a different value. The non-symmetric silo construction 
causes shift silo outlet to the left or right side, in the direction of 
the larger angle.  



The time-lapse studies were performed at INSA-Lyon 
(France) using a GE Phoenix v|tome|x device (see Fig. 1). The 
device is equipped with a high energy X-ray microfocus source 
(up to 160 kV) with a 4 μm spot size. The detector is equipped 
with a 1500X1920 pixels (with a pixel size of 127X127 μm

2
).  

Fig. 2 presented a picture of the silo model inside X-ray 
tomography hutch. During measurements, the distance between 
the X-ray source and the detector was equal to 577 mm and 
voxel size 160 um. Sorghum and rice have been used as a 
granular material during the experimental campaign of this 
study. 

 

Fig. 1. X-ray Computed Tomography system with silo model. 

III. THREE-DIMENSIONAL SEGMENTATION 

Cross-sectional views of the X-ray tomography of initially 
loosely packed rice with smooth silo bin walls are presented in 
Fig. 2.  

 

Fig. 2. (a) front side scan at x=200 voxel. (b) top side scan at z=400 voxel. 

The main aim of this study was to find an effective way of 
segmenting the stagnant zone during eccentric discharging 
modes. After the initial packing density scan was performed, 
the outlet of the silo was opened for about 2 second and the next 
scan was carried out till all granulate are discharged out from 
the silo. Thus, to analyze the concentration changes, the 

absolute difference between two successive scans has been 
computed and it shows the formation of the stagnant zone in the 
case of funnel flow. Fig. 3c presents concentration changes 
during eccentric discharging mode (angle between the hopper 
and the silo with respect to the vertical axis was 30

º 
and

 
20

º
) and 

it reveals the evolution of the stagnant zone at the right side of 
the image with a good contrast in which the hopper angle was 
20

º
. 

 

Fig. 3. Silo hopper angle: 30º on the left and 20º on the right side view in the 

middle of the silo where x=200 pixel. (a) Second scan. (b) Third scan. (c) 

The absolute difference between scan three and four of sorghum. 

The last step consists in segmenting the stagnant zones. By 
using a three-dimensional Otsu threshold method it was 
possible to compute the stagnant zone mask as presented in 
Fig.4. 

 

Fig. 4. (a) Ground truth at x=240 (b) segmentation using Otsu at x=240 (c) 

superimposing ground truth and Otsu segmentation at x=240 with red 

color and ground truth with white. 

Although the Otsu method was able to segment the stagnant 
zone, it is hard to get 100% accurate segmentation out of it. 
Since some particles in the flow zone may shift in the position 
of another particle, giving an impression of no movement based 
on the absolute difference. Thus, such kind of effect could 
hinder the segmentation result. As a result, a deep neural 
networks approach has been applied for effective segmentation 
and explained hereafter. 

IV. U-NET BASED DEEP CONVOLUTIONAL NETWORKS 

The main advantage of the proposed approach is an 
effective segmentation for acquiring the desired characteristics 



of flow parameters without prior image processing or expert 
guidance. From several deep neural networks, u-net is one of 
the successful architecture which is used in different image 
segmentation tasks. Originally u-net neural network architecture 
was built for performing semantic segmentation on a small bio-
medical data-set [18]. The architecture is computationally 
efficient and trainable with a small dataset, which is a core 
advantage for datasets like in material science where the little 
amount of labelled data is available. Despite it might be good 
and well-fitted in bio-medical tasks, it needs to be tuned again 
for fitting the granular material X-ray CT image segmentation 
task investigated in this study. Thus, the u-net neural network 
architecture and hyper-parameters values are adjusted in order 
to get good segmentation results. 

The network has been trained on 2D segmentation and then 
it can find the whole 3D volume segmentation of a new scan in 
which the network has never seen before. As each of the CT 
images already contain repetitive structures with the 
corresponding variation, only very few images are required to 
train a network that generalizes reasonably well. One of the 
major modifications is that the original u-net used stochastic 
gradient descent optimizer [18], but this modified u-net 
architecture used Adam optimizer [19] to minimize the 
categorical cross-entropy objective. 

During training, 40 images were selected for the training 
and test dataset. The dataset was first divided into two subsets, 
train, and test. The first subset contains 30 images in which 
80% were used for training and 20% for validation. The trained 
model was next tested on the second subset which contains the 
remaining 10 images. During training, 30 manually annotated 
ground truth segmentations were used to train the network to 
recognize the stagnant zone borders. Since the available dataset 
is small, an extensive amount of data augmentations has been 
applied to improve the performance of the network. The testing 
datasets were used for the evaluation of the network 
performance.  

Fig. 5 illustrates the comparison between the ground truth, 
segmentation by using Otsu and predicted segmentation by the 
modified u-net trained model for the same 2D image. As the 
result shows, Otsu segmentation is too sensitive for gradient 
changes and the trained model predicted a smooth segmentation 
like the ground truth.   

 

Fig. 5. (a) Original image (b) Ground truth (c) segmented by using Otsu (d) 

modified u-net model prediction. 

Intersection over Union (IoU) is used as an accuracy 
measure to compare dropped out ground truth slices to the 
predicted results. The IoU score is a standard performance 
measure for the object category segmentation problem. Given a 
set of images, the IoU measure gives the similarity between the 
predicted region and the ground-truth region for an object 
present in the set of images and is defined as true positives/(true 

positives + false negatives + false positives). Table 1 presents 
the result of the experiment for segmenting stagnant zone. 

Network architecture IoU 

Original U-Net 0.95 

Modified U-Net 0.97 

Table 1. Model performances on segmenting stagnant zone. 

Once after having trained model using the CNN method, the 
end-to-end 3D automatic segmentation offers an effective and 
fast segmentation of stagnant zone during silo discharging 
process. The key advantage of this method could be used for 
deep investigation of flow characteristics without utilizing any 
prior image processing methods or expert guidance. For both 
the Otsu and the trained model execution time (on CPU) were 
compared for generating one segmented image. The Otsu 
segmentation took around 4 sec per one 2D image. Where else 
the trained model took less than a second for generating its 
prediction for a given input image.  

In order to prove that the trained model (which used the 
sorghum grains flow as a training dataset) could generate the 
stagnant zone segmentation for completely different scan and 
grain material, it was tested by pre-processing two 3D scans of 
rice grains flow. The result shows that the trained model was 
able to generate predicted segmentation successfully. Fig. 6 
presents two major steps for generating the stagnant zone 
prediction of new scans having similar flow property (in this 
case rice grains flow). The first step was computing the absolute 
difference of two successive scans and then this new scan was 
given as an input to the trained model. Finally, the trained 
model generates the stagnant zone segmentation as shown in 
Fig. 6d. Fig. 7 illustrates 3D dense segmentation of rice grains 
flow by superimposing the predicted mask into the original 
scan. 

 

Fig. 6. (a) Rice scan 3 (b) Rice scan 4 (c) the absolute difference between 

scan 3 and scan 4 (d) stagnant zone prediction. 



 

Fig. 7. Original rice grains flow  scan 4 (a) front side view (b) left side view; 

the network predicted dense segmentation (c) ) front side view (d) left 

side view . 

V. CONCLUSION 

In order to analyse the X-ray CT data that has been acquired 
from different experimental campaigns and complex structure 
of granular material flows, it can be tedious and extremely time-
consuming for manual analysis. This paper presents a new 
approach for automatic segmentation of the stagnant zone in an 
effective way by exploiting the CNN technique. The main 
advantages of the proposed approach are the speed and effective 
segmentation for acquiring the desired characteristic flow 
parameters. Once having the trained model, it was tested that 
the model could generate a predicted segmentation in less than a 
second for a given completely new granular material flow 
image with an accuracy of 97%. The accuracy of the CNN 
approach could also probably be further improved if the 
delineations of the ground truth were acquired from different 
experts and more number of dataset was used. Moreover, the 
architecture of the model could be modified to accommodate 
3D volumes of images as an input for processing them with 
corresponding 3D operations.  
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