
Under review as a conference paper at ICLR 2020

TOWARDS EFFECTIVE 2-BIT QUANTIZATION:
PARETO-OPTIMAL BIT ALLOCATION FOR DEEP CNNS
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art quantization methods can compress deep neural networks down to
4 bits without losing accuracy. However, when it comes to 2 bits, the performance
drop is still noticeable. One problem in these methods is that they assign equal
bit rate to quantize weights and activations in all layers, which is not reasonable
in the case of high rate compression (such as 2-bit quantization), as some of lay-
ers in deep neural networks are sensitive to quantization and performing coarse
quantization on these layers can hurt the accuracy. In this paper, we address an
important problem of how to optimize the bit allocation of weights and activations
for deep CNNs compression. We first explore the additivity of output error caused
by quantization and find that additivity property holds for deep neural networks
which are continuously differentiable in the layers. Based on this observation, we
formulate the optimal bit allocation problem of weights and activations in a joint
framework and propose a very efficient method to solve the optimization problem
via Lagrangian Formulation. Our method obtains excellent results on deep neural
networks. It can compress deep CNN ResNet-50 down to 2 bits with only 0.7%
accuracy loss. To the best our knowledge, this is the first paper that reports 2-bit
results on deep CNNs without hurting the accuracy.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) Krizhevsky et al. (2012); Simonyan & Zisserman
(2015); Szegedy et al. (2015); He et al. (2016) have dominated the applications in computer vision
and related fields. However, one challenging issue is that deep CNNs usually involve large number
of parameters and are computationally demanding, making it very difficult to deploy deep CNNs on
resource-limited devices. Quantization for weights and activations of deep CNNs is an effective way
to mitigate this issue. Cooperated with advanced retraining (or fine-tuning) strategies, state-of-the-
art methods Zhuang et al. (2018); Zhou et al. (2016); Zhang et al. (2018) can compress deep CNNs
down to 4 bits without losing accuracy.

State-of-the-art quantization methods Zhuang et al. (2018); Zhou et al. (2016); Zhang et al. (2018)
typically assign same bit rate to all layers for compression. However, when deep neural networks
are compressed to very low precision, e.g., 2 bits, such equal bit allocation scheme is not reasonable.
As some of layers in deep neural networks are sensitive to quantization, performing a coarse quan-
tization on these layers may significantly hurt the accuracy. A better strategy is to adopt unequal bit
allocation scheme to quantize weights and activations across layers.

In this paper, we address an important problem of how to optimize the bit allocation of weights
and activations of deep CNNs. Finding the optimal bit allocation for deep CNNs is difficult, as
traversing the whole searching space requires exponential computation complexity. Assume M is
the number of quantization levels and L is the number of layers. A brute-force search has O(ML)
computation complexity, which is unaffordable if L is large in the case of deep neural networks. In
our work, we first analyze how quantization affects the output of deep CNNs, and find that the mean
squared output error caused by quantization has additivity property. Based on this observation,
we formulate the optimal bit allocation problem of weights and activations in a joint framework
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and adopt Lagrangian formulation Shoham & Gersho (1988) for optimization. We propose a very
efficient method to find the solution with polynomial computation complexity.

Prior adaptive quantization schemes proposed by Khoram & Li (2018) and Zhou et al. (2018) only
consider the compression of weights. Since the volume of activations is considerable, the size of
activations should be also reduced as much as possible, which might otherwise slow down process-
ing. Zhu et al. (2018) proposed layerwise adaptive quantization for weights and activations, but their
method decides each layer’s quantization level individually and does not optimize the bit allocation
across layers when performing quantization on multiple layers. Different with prior literature, our
work formulates the optimal bit allocation problem for both weights and activations and proposes
an efficient method to solve the challenging problem. The new contributions of this paper are sum-
marized as following:

• Exploring Additivity of Mean Squared Output Error: In this paper, we adopt mean
squared output error to measure quantization impact. We observe that mean squared out-
put error has additivity property, i.e., the mean squared output error caused by quantizing
multiple layers equals to the sum of mean squared output error due to the quantization of
each individual layer. We show empirical results on two deep CNNs AlexNet and VGG-16
and also provide a mathematical derivation for the additivity property.

• Pareto Condition for Optimization: Based on the additivity of mean squared output
error, we propose an optimal bit allocation framework for both weights and activations.
Moreover, we propose an efficient method to solve the optimization problem by using La-
grangian Formulation. We show that the optimization problem can be solved in polynomial
computational complexity under Pareto condition, i.e., the slopes of mean squared output
error vs bit rate functions of each layer have to be equal.

• Impact on Improving Inference Rate: The pattern of Pareto-optimal bit allocation of
weights on deep CNNs has very positive impacts on inference rate. It tends to allocate fewer
bits per weight for layers that have a lot of weights, which helps to reduce the corresponding
memory-access time which in turn reduces compute idle time and improves the overall
inference rate. Simulation experiments on Google TPU hardware accelerator shows that
Pareto-optimal bit allocation can further improve the inference rate on deep CNNs by 1.5X
compared to its equal bit allocation counterpart.

Results on ImageNet Deng et al. (2009) show that our method can compress deep CNNs (e.g.,
ResNet-50 He et al. (2016)) down to 2 bits and the accuracy loss is less than 0.7%. To the best of
our knowledge, this is the first paper that reports 2-bit results on deep CNNs without hurting the
accuracy. The remainder of this paper is structured as follows. Section 2 discusses related works.
Section 3 analyzes the impact of quantization. Section 4 develops our bit allocation framework.
Section 5 reports experimental results. Section 6 discusses the impact of inference rate.

2 RELATED WORKS

Some latest works Zhuang et al. (2018); Park et al. (2018); Choi et al. (2018b;a) already reported
2-bit results on deep CNNs. Among them, the highest result is reported by Park et al. (2018),
which loses 2.45% accuracy at 2 bits on ResNet-50 He et al. (2016). Although promising results are
obtained, there is still considerable accuracy drop at 2 bits. Note that all these works assign same bit
rate to quantize weights and activations in different layers. Different with them, our method adopts
a better strategy for bit allocation. The optimal bit allocation strategy is critical for maintaining high
accuracy when neural networks are compressed to very low precision like 2 bits.

The most relevant works related to our unequal bit allocation scheme are proposed by Khoram &
Li (2018) and Zhou et al. (2018). Khoram & Li (2018) suggest monitoring the loss function during
training to allocate the bit rates of weights in different layers. Zhou et al. (2018) suggest applying
adversarial noise Fawzi et al. (2016) as an indicator to measure the quantization impact for bit
allocation. Both of these two works only study the quantization problem of weights.

Zhou et al. (2018) empirically finds that the adversarial noise Fawzi et al. (2016) has additivity
property. While, adversarial noise is a measurement of top-1 accuracy in object classification task,
which is not applicable to other tasks like object detection. Our work studies the additivity of mean
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Figure 1: An example of uniform quantizer with dead zone.

squared output error. We do not make assumptions about the application scenarios of our method
We provide both empirical results and a mathematical derivation for the additivity property.

Recently, Banner et al. (2019) proposed per-channel bit allocation for weights and activations. They
formulate the bit allocation problem as a minimization problem of Mean Squared Error (MSE) of
quantized values in intermedia layers, and provide a solution with analytic expression in the case of
Laplacian distribution. Finally, the solution of bit allocation with analytic expression is rounded to
integer values. Mean Squared Error (MSE) in intermedia layers can not reflect network networks’
final output accuracy. Our method adopts mean squared output error to measure the impact on last
layer’s output accuracy. It finds the optimal bit allocation directly from the discrete search space and
does not make any assumptions for the distributions.

3 ANALYSIS OF QUANTIZATION IMPACT

We adopt uniform scalar quantization in our compression framework. Each layer’s weights and
activations are quantized separately, followed by entropy coding of the quantization index. The
quantizer stepsize is individually chosen for each layer’s weights and activations.

We incorporate a dead zone into the quantizers for weights. Let ∆ denote the stepsize of a quantizer.
The width of the dead zone is ∆ + β. Let t = 2k + 1 denote the total number of representative
levels of the quantizer. Given scalar input x, if x is in dead zone (|w| < ∆+β

2 ), it is quantized to
zero. Otherwise, x is quantized to

q(x) = sign(x) ·
(β

2
+ |i| ·∆

)
, (1)

where integer i is the quantization index, and 1 ≤ |i| ≤ k. Both β and t are hyper parameters.
We note that adding a dead zone can improve compression. This will be discussed in the following
sections.

We do not apply a dead zone to the quantizers of activations. We assume activation function after
Convolution layer is ReLU, which is common practice in modern deep CNNs Krizhevsky et al.
(2012); Simonyan & Zisserman (2015); He et al. (2016). The quantizer for activations is define as

q(x) = i ·∆, (2)

where quantization index 0 ≤ i ≤ t− 1.

3.1 MEAN SQUARED OUTPUT ERROR CAUSED BY QUANTIZATION

Let Wi denote weights in layer i and Ai denote activations in layer i for all 1 ≤ i ≤ L where
L is total number of layers. Given a neural network F and input image I , we have output vector
V = F(I). If we quantize the weightsWi, we obtain a modified output vector V̂ . The mean sqaured
output error caused by quantizingWi is defined as the expectation of the squared Euclidean distance
between original output V and modified output V̂ divided by the dimensionality of V

DWi

F =
E(d(V, V̂ ))

dim(V )
, (3)

whereE(.) denotes the expectation operator and d(X,Y ) is the squared Euclidean distance between
vectors X and Y . The expectation is over the distribution of all random input images I . Similarly,
DAi

F denotes mean squared output error caused by quantization of activations Ai for all 1 ≤ i ≤ L.
In the following, ”mean-squared output error” and ”output error” will both be used interchangeably.
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Figure 2: Demonstration of the additivity of mean squared output error on AlexNet and VGG-16.
For each time, we randomly select some of layers and perform quantization on the selected layers,
which corresponds a point in the figures.

3.2 ADDITIVITY OF MEAN SQUARED OUTPUT ERROR

Consider mean squared output error when simultaneously quantizing all layers. Let DF denote
mean squared output error caused by quantizing all layer’s weights and activations, the following
additivity property holds.

Proposition 1 The output error DF , caused by quantizing all layers’ weights and activations,
equals the sum of all output error due to the quantization of individual layer’s weights and acti-
vations

DF = DW1

F + ...+DWL

F +DA1

F + ...+DAL

F , (4)
if the neural network is continuously differentiable in every layer and quantization errors in different
layers are independently distributed with zero mean.

In practice, additivity holds approximately in deep neural networks. We evaluate additivity on
AlexNet and VGG-16. Figure 2 shows the results. Vertical axis in Figure 2 represents the out-
put error when quantizing all layers simultaneously. Horizontal axis represents the sum of output
error caused by quantizing each layer individually. We can see that data points in Figure 2 are all
very close to the diagonal, meaning that additivity property holds. This property can be shown
mathematically by linearizing the quantization error of weights and activations using Taylor series
expansion as the neural networks is continuously differentiable and the quantization error can be
considered as small deviations. The supplementary material provides a mathematical derivation.

4 UNEQUAL BIT ALLOCATION FRAMEWORK

Let RWi and RAi denote the total bitrates of weights and activations in i-th layer, respectively. RWi

(or RAi ) is determined by the number of representative levels t, the dead zone parameter β, and
the number of weights (or activations) in layer i. According to 4, the output error of quantizing
all layers’ weights and activations is the sum of the output error caused by quantizing each layer’s
weights and activations individually. The bit allocation framework is thus formulated as

arg min
RWi ,RAi

DW1

F +DA1

F + ...+DWL

F +DAL

F

s.t. RW1 +RA1 + ...+RWL +RAL = RTotal,

(5)

whereRTotal is the total number of bits needed to represent the weights and activations of all layers.
Our goal is to find the optimum bit allocation {RWi}Li=1 and {RAi}Li=1 to minimize network output
error within a constrained total bit budget for weights and activations. More precisely, we adjust
representative level t and dead zone parameter β of the quantizer in each layer to minimize the
overall output error of the quantized network given a total bit budget constraint.
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Figure 3: Pareto-optimal bit allocation of weights and activations across layers on ResNet-50 when
compressed into 2 bits on average.

4.1 PARETO-OPTIMAL BIT ALLOCATION

We use a classical Lagrangian rate-distortion formulation to find the optimum bit allocation Shoham
& Gersho (1988). Our Lagrangian cost function is

J =
∑
i

(DWi

F +DAi

F )− λ ·
∑
i

(
RWi +RAi). (6)

By setting the partial derivatives of J with respect to RWi and RAj to zero, we obtain

∂DWi

F
∂RWi

=
∂D

Aj

F
∂RAj

= λ, (7)

for all 1 ≤ i, j ≤ L. The above equation expresses the intuitively pleasing insight that the slopes of
output error versus rate functions for weights and activations of each layer have to be equal. This is
exactly the well-known Pareto condition for optimal resource allocation in economics. 7 holds, as
long as the output error contributions DWi

F and DAi

F are additive, rates RWi and RAi are additive,
the functions DWi

F (RWi) and DAi

F (RAi) are convex and the resulting RWi , RAi > 0. It does not
make assumptions about the specific quantization or coding scheme used.

4.2 OPTIMIZATION UNDER PARETO CONDITION

We find optimum bit allocation under Pareto condition according to 7. We first generate rate-
distortion curves of (RWi , DWi

F ) and (RAi , DAi

F ) by choosing different values for representative
level t and dead zone parameter β. Then we enumerate λ and select the point in each curve with
slope equal to λ. The set of selected points is one solution of Pareto-optimal bit allocation. We may
enumerate many values of λ to find the best solution with minimal output error under the bit budget
constraint. Assume that we have N curves and M points in each curve. The whole search space of
the solution is O(MN ). By utilizing the Pareto condition, the time complexity to find optimum bit
allocation is reduced to O(K ·M ·N), where K is the total number of λ evaluated. In practice, we
can find the optimum bit allocation for ResNet-50 He et al. (2016) and MobileNet-v1 Howard et al.
(2017) in several seconds on a standard CPU (AMD Ryzen threadripper 1950x) using the algorithm
described above.

4.3 OBSERVATIONS ON OPTIMUM BIT ALLOCATION

Figure 3 shows the optimum bit allocation of weights and activations according to 7 on ResNet-50
He et al. (2016), when weights and activations are compressed to 2 bits on average. Two observa-
tions stand out. First, weights receive much larger bitrates (average bits per layer) than activations
in general. Second, the layers with larger number of weights receive relatively lower bitrates; con-
versely, the layers with small number of weights receive relatively high bitrates. Similar trends are
observed on MobileNet-v1 Howard et al. (2017), which are illustrated in the supplementary material.
We noticed that such bit allocation pattern of weights can have a positive impact on inference rate.
As we allocate relatively small bitrates to large-weight layers, the corresponding memory-access
time will be reduced which in turn reduces compute idle time and improves the overall inference
rate (see Section 6).
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(a) Results on ResNet-50 (b) Results on MobileNet-v1
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Figure 4: Effectiveness of each component in the proposed compression framework. Results are
shown over the ImageNet validation dataset when weights and activations are compressed to differ-
ent sizes. The size of original ResNet-50 and MobileNet-v1 are 116 MB and 35 MB, respectively.

(a) Results on ResNet-50 (b) Results on MobileNet-v1
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Figure 5: Tradeoff between size and accuracy on ResNet-50 and MobileNet-v1 over ImageNet
validation dataset comparing with state-of-thhe-art methods from the literature.

5 EXPERIMENTS

We evaluate our method on ResNet-50 He et al. (2016) and MobileNet-v1 Howard et al. (2017) over
the ImageNet Deng et al. (2009) validation dataset with 224x224 input image resolution. The total
number of weights and activations of ResNet-50 is 32.3M with 22.7M weights and 9.6M activations,
and the total number of weights and activations of MobileNet-v1 is 9.3M with 4.2M weights and
5.0M activations. We adopt the Tensorflow implementation of ResNet-50 and MobileNet-v1 pro-
vided by the Tensorpack and SLIM library, respectively. The original ResNet-50 and MobileNet-v1
have 76.4% and 70.9% top-1 image classification accuracy on the ImageNet validation dataset, re-
spectively.

We compare our method with 15 state-of-the-art methods, including Binarized Weight Network
(BWN) Hubara et al. (2016), Ternary Weight Network (TWN) Li et al. (2016), Incremental Network
Quantization (INQ) Zhou et al. (2017), Fine-grained Quantization (FGQ) Mellempudi et al. (2017),
Integer Arithmetic-only Inference (IAOI) Jacob et al. (2018), Adaptive Quantization (AQ) Zhou
et al. (2018), Compression Learning by In-parallel Quantization (CLIP-Q) Tung & Mori (2018),
Symmetric Quantization (SYQ) Faraone et al. (2018), Low-bitwidth CNN (LBCNN) Zhuang et al.
(2018), Extremely Low Bit Neural Network (ELBNN) Leng et al. (2017), Learned Quantization
(LQ-Nets) Zhang et al. (2018), Deep Compression (DC) Han et al. (2016), Hardware-Aware Au-
tomated Quantization (HAQ) Wang et al. (2019), Parameterized Clipping Activation (PACT) Choi
et al. (2018b) and DoReFa-Net Zhou et al. (2016). It is worth noting that the top performing com-
parison methods all include retraining to recover accuracy loss due to quantization error introduced.
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Table 1: Comparing our method with state-of-the-art methods on ResNet-50 and MobileNet-v1 over
ImageNet validation dataset when weights and activations are compressed to low bitrates.

Models Methods Original 2 Bits 4 Bits
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

ResNet-50

DoReFa-Net Zhou et al. (2016) 75.6 92.2 67.3 84.3 74.5 91.5
LBCNN Zhuang et al. (2018) 75.6 92.2 70.0 87.5 75.7 92.0
LQ-Nets Zhang et al. (2018) 76.4 93.2 71.5 90.3 75.1 92.4

Ours (No Retraining) 76.4 93.2 66.7 87.5 76.2 93.1
Ours 76.4 93.2 75.7 92.8 76.4 93.3

MobileNet-v1

PACT Choi et al. (2018b) 70.8 89.9 - - 62.4 84.2
HAQ (energy) Wang et al. (2019) 70.8 89.9 - - 64.8 85.9
HAQ (latency) Wang et al. (2019) 70.8 89.9 - - 67.5 87.9

Ours (no retraining) 70.8 89.9 2.1 6.0 68.9 88.6
Ours 70.9 89.9 27.3 50.7 70.1 89.2

5.1 EFFECTIVENESS OF THE PROPOSED COMPRESSION FRAMEWORK

In this section, we evaluate the effectiveness of each component in our compression framework.

Optimal Bit Allocation. As illustrated in Figure 4, we show the performance of equal bit allocation
as a baseline to evaluate the effectiveness of the proposed optimal bit allocation scheme. Equal bit
allocation assigns same quantization level for all layers’ weights and activations. In Figure 4, there
is a large gap between the results of optimal bit allocation (green curves) and the results of equal bit
allocation (blue curves). Optimal bit allocation is much more effective.

Entropy Coding and Dead Zone. Applying entropy coding to quantization index can further reduce
the size by 20% to 30%. We use the entropy of the quantization index to estimate the code size
after entropy coding. In Figure 4, the dashed green and blue curves show the results of quantized
networks with equal and optimal bit allocation before entropy coding, respectively. After entropy
coding, the size of quantized networks can be further reduced (see the solid green and blue curves in
Figure 4). Besides, with a dead zone, we also observe large performance improvement on ResNet-
50 and noticeable improvement on MobileNet-v1. Adding a dead zone to the quantizers forces more
weights to zero. This benefits entropy coding, as it makes the distribution of quantized weights more
peaky. A dead zone is similar to pruning Han et al. (2015; 2016); both set small weights to zero.
The key difference is pruning completely removes the small weights from networks while dead zone
still keeps them.

Retraining. Like other schemes, our compression framework can be enhanced by retraining, espe-
cially at very low bitrates. We adopt the straight-through estimator (ETS) Bengio et al. (2013) to
perform back-propagation through non-differentiable quantization functions. We retrain 10 epochs
for both ResNet-50 He et al. (2016) and MobileNet-v1 Howard et al. (2017). For ResNet-50, we set
the learning rate as 0.1 if bitrate is more than 3 bits, otherwise, learning rate is 0.001. For MobileNet-
v1 Howard et al. (2017), learning rate is 0.45. Without retraining, our method obtains 66.7% on
ResNet-50 at 2 bits on average. The simple retraining stage improves accuracy to 75.7%—close to
that of the original pre-trained model (76.4%).

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

The proposed compression framework achieves excellent performance on ResNet-50 and
MobileNet-v1, compared to recent state-of-the-art methods. Figure 5 shows the tradeoff between
size of weights/activations and classification accuracy over the ImageNet validation dataset. On
MobileNet-v1, our method without retraining outperforms state-of-the-art approaches equipped with
retraining. Similar observation can be made for ResNet-50.

Table 1 further compares our method with state-of-the-art that report results at very low bitrates
(average 2 and 4 bits). At 4-bit on average, without retraining, our method only loses 0.2% Top-1
accuracy on ResNet-50. This is strong evidence of the effectiveness of the proposed compression
framework. With simple retraining, our method shows additional accuracy gains. On ResNet-50,
it outperforms the best performing baseline by 4.2% Top-1 accuracy at 2 bits. On MobileNet-v1,
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Table 2: Architecture parameters of considered deep learning hardware platforms.

Paramter MIT Eyeriss Google TPU
On-chip memory 181.5 KBytes 28 MBytes

Off-chip memory-access bandwidth (BW) 1 GByte/sec 13 GBytes/sec
Computing performance (Perf) 34 GOPs 96 TOPs

Table 3: Inference rates of equal and unequal bit allocation schemes, as well as full precision, on
ResNet-50 and MobileNet-v1. TPU uses 8-bit precision while MIT Eyeriss uses 16-bit precision.

Platform Model
2 Bits 4 Bits Speedup vs.

equal ours speedup equal ours speedup full precision
2 bits 4 bits

TPU ResNet 833 1250 1.5x 625 666 1.07x 4x 2.1x
Mobile 892 1175 1.3x 979 979 1x 1.8x 1.5x

Eyeriss ResNet 8 8 1x 8 8 1x 1.05x 1.05x
Mobile 12 12 1x 12 12 1x 1.05x 1.05x

our method outperform the best performing baseline by 2.6% Top-1 accuracy at 4 bits. Further
improvements are possible if combining our unequal bit allocation scheme with advanced quantized
model retraining approaches like progressive training and knowledge distillation training Zhuang
et al. (2018).

We also report our results at 1.5 bits. We noticed that the quantized networks with equal bit allocation
at 2 bits without entropy coding can be further compressed to around 1.5 bits after entropy coding.
Our method obtains 72.5 Top-1 accuracy at 1.5 bits on ResNet-50, which still outperforms other
state-of-the-art methods at 2 bits by 1.0%.

6 IMPACT ON INFERENCE RATE

We define inference rate as the maximum number of images that a particular implementation of
a neural network can process per unit time. Inference rate is mainly driven by memory-access
bandwidth and compute throughput (number of compute operations per unit time). In our work,
entropy-encoded weights and activations are fetched from off-chip to on-chip memory, where they
are decoded and fed into the processing units.

We have explored the impact our approach has on the inference rate for different hardware archi-
tectures inspired by current embedded and high-performance DNN-targeted hardware accelerators
(i.e., MIT Eyeriss Chen et al. (2016) and Google TPU Jouppi et al. (2017), summarized in Table
2)—such platforms have shown superior inference rate compared to GPUs Jouppi et al. (2017). We
assume that accessing off-chip memory can be done in parallel while computing is performed (i.e.,
weights can be prefetched from off-chip memory).

Using SCALE-sim Samajdar et al. (2018) software, we simulate the inference rate of ResNet-50 and
MobileNet-v1, when mapped into the two considered hardware platforms in Table 2. We report the
inference speed-up resulting from our unequal bit allocation scheme versus the equal bit allocation
scheme (all weights and activations are represented with a fixed number of bits), when running an
inference on a single 224×224 input image. We also report the speedup compared to a full precision
allowed on each platform (i.e., 8-bit on TPU, 16-bit on Eyeriss).

Our unequal bit allocation achieves 1.5× and 1.07× higher inference rate for ResNet-50 (1.3× and
1× for MobileNet-v1) at 2 bits and 4 bits, as summarized in Table 3, when compared with their equal
bit allocation counterparts, respectively. Higher speed-ups, up to 4×, are achieved when compared
with 8-bit full precision. One may note that the speedup is much larger if we consider inference time
contributed by memory access only.

These improvements are mainly attributed to the unequal bit allocation pattern—it minimizes the
layer-wise bitrates for weights/activations and also balances the size of data moving between off-
chip and on-chip memory, which leads to reduced access times to off-chip memory. It is worth
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mentioning that with higher memory-access bandwidth, lower speed-ups are observed. For instance,
at 128 GBytes/s, no speedup is observed. However, such hardware modules consume high energy
and are rather costly, where are our approach provides an attractive alternative to increased memory
bandwidth. Furthermore, platforms with low computation rate (i.e., few GOPs, as in the case of
Eyeriss in Table 2), are constrained by the computational throughput, hence may not benefit from
any speed-up.

7 CONCLUSIONS

In this paper, we have proposed a novel unequal bit allocation framework for compression of both
weights and activations of deep CNNs. The output error due to the quantization of individual layer’s
weights and activations is additive, as are the bits used to represent each layer. Building on this
observation, we formulate a Lagrangian optimization framework to find the optimum bit allocation.
The optimal bit allocation problem can be efficiently solved by utilizing the Pareto condition, re-
ducing the search space from exponential complexity to linear complexity. Our method achieves
excellent results on ResNet-50 and MobileNet-v1. In particular, our method can compress ResNet-
50 into 4 bits on average without retraining, which is computationally very expensive and might not
even be possible, if the original training data are not available. The proposed unequal bit allocation
scheme has a very positive impact on inference rate. It is able to improve inference rate by up to 4×
compared with full precision, as well as 1.5× compared with its equal bit allocation counterpart, on
Google TPU hardware accelerator.
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ABSTRACT

In this supplementary material, we provide the mathematical analysis for the ad-
ditivity of output error, and the additional results of Pareto-optimal bit allocation.
Section 1 provides the proof of Proposition 1. Section 2 provides the results of
Pareto-optimal bit allocation on ResNet-50 He et al. (2016) and MobileNet-v1
Howard et al. (2017) at different bitrates.

1 ADDITIVITY OF OUTPUT ERROR
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Figure 1: Examples of a neural network F and a modified neural network F̃ .

Proposition 1 The output error DF , caused by quantizing all layers’ weights and activations,
equals the sum of all output error due to the quantization of individual layer’s weights and acti-
vations

DF = DW1

F + ... + DWL

F + DA1

F + ... + DAL

F (1)

if the neural network is continuously differentiable in every layer, the quantization errors in different
layers are independently distributed with zero mean.

Proof 1 Let F(W1, ...,WL) denote a neural networks and F̃(W1, ...,WL, n1, ..., nL) denote a
modified neural networks of F where an element-wise add layer with parameter ni is followed
for each activation ai. Based on this definition, we have

F(W1, ...,WL) = F̃(W1, ...,WL, 0, ..., 0). (2)

Let X0 =
(
W1, ...,WL, 0, ..., 0

)
and ∆X =

(
∆W1, ...,∆WL,∆n1, ...,∆n1

)
. Assume that the

quantization error can be considered as small deviation. We apply the Taylor series expansion up to
first order term on F̃ at X0,

F̃(X0 + ∆X)− F̃(X0) =

L∑
i=1

∂F̃
∂Wi

·∆Wi +

L∑
i=1

∂F̃
∂ni
·∆ni. (3)

1
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Then, ‖F̃(X0 + ∆X)− F̃(X0)‖2 can be written as( L∑
i=1

∆Wi
> · ∂F̃

∂Wi

>

+

L∑
i=1

∆ni
> · ∂F̃

∂ni

>)
·
( L∑

i=1

∂F̃
∂Wi

·∆Wi +

L∑
i=1

∂F̃
∂ni
·∆ni

)
. (4)

Because we assume that quantization errors in different layers are independently distributed with
zero mean, the cross terms of (4) disappear when taking the expectation. That is:

E(∆Wj
> · ∂F̃

∂Wj

>

· ∂F̃
∂Wi

·∆Wi) = E(∆Wj
>) · ∂F̃

∂Wj

>

· ∂F̃
∂Wi

· E(∆Wi) = 0 (i 6= j)

as is the case also for the cross products between Wi and nj (all i, j), and ni and nj (i 6= j). Then,
we can obtain

E(‖F̃(X0 + ∆X)− F̃(X0)‖2) =

L∑
i=1

E
(
‖ ∂F̃
∂Wi

·∆Wi‖2
)

+

L∑
i=1

E
(
‖ ∂F̃
∂ni
·∆ni‖2

)
. (5)

(5) is the result we want because, again, according to the Taylor series expansion (ignoring the
higher order terms),

∂F̃
∂Wi

·∆Wi = F̃(W1, ...,Wi + ∆Wi, ..., 0)− F̃(W1, ...,WL, 0, ..., 0),

∂F̃
∂ni
·∆ni = F̃(W1, ...,WL, ...,∆ni, ..., 0)− F̃(W1, ...,WL, 0, ..., 0).

Therefore, after dividing both sides of (5) by the dimensionality of the output vector of the neural
network, the left side of (5) becomes DF and the right side of (5) becomes the sum of all output
error due to the quantization of individual layer’s weights and activations.

2 PARETO-OPTIMAL BIT ALLOCATION ON RESNET-50 AND MOBILENET-V1

Figure 2 shows the Pareto-optimal bit allocation of weights and activations on ResNet-50 He et al.
(2016) and MobileNet-v1 Howard et al. (2017) when weights and activations are compressed to 2
bits and 4 bits on average. Results are generated on ImageNet dataset Deng et al. (2009). Two obser-
vations stand out on both ResNet-50 He et al. (2016) and MobileNet-v1 Howard et al. (2017). First,
weights receive much larger bitrates (average bits per layer) than activations in general. Second, the
layers with larger number of weights receive relatively lower bitrates; conversely, the layers with
small number of weights receive relatively high bitrates.
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(a) Bit Allocation of Weights and Activations on ResNet-50 at 2 Bits on Average

(b) Bit Allocation of Weights and Activations on ResNet-50 at 4 Bits on Average
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(d) Bit Allocation of Weights and Activations on MobileNet-v1 at 4 Bits on Average
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Figure 2: Pareto-optimal bit allocation of weights and activations across layers on ResNet-50 and
MobileNet-v1 when weights and activations are compressed to 2 bit and 4 bits on average.
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