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ABSTRACT

Interpretability methods often measure the contribution of an input feature to an
image classifier’s decisions by heuristically removing it via e.g. blurring, adding
noise, or graying out, which often produce unrealistic, out-of-samples. Instead,
we propose to integrate a generative inpainter into three representative attribution
methods to remove an input feature. Compared to the original counterparts, our
methods (1) generate more plausible counterfactual samples under the true data
generating process; (2) are more robust to hyperparameter settings; and (3) local-
ize objects more accurately. Our findings were consistent across both ImageNet
and Places365 datasets and two different pairs of classifiers and inpainters.

1 INTRODUCTION

Explaining a classifier’s outputs given a certain input is increasingly important, especially for life-
critical applications (Doshi-Velez & Kim, 2017). A popular means for visually explaining an image
classifier’s decisions is an attribution map i.e. a heatmap that highlights the input pixels that are
the evidence for and against the classification outputs (Montavon et al., 2018). To construct an
attribution map, many methods approximate the attribution value of an input region by the classi-
fication probability change when that region is absent i.e. removed from the image. That is, most
perturbation-based attribution methods implement the absence of an input feature by replacing it
with (a) mean pixels; (b) random noise; or (c) blurred versions of the original content. While re-
moving an input feature to measure its attribution is a principle method in causal reasoning, the
existing removal (i.e. perturbation) techniques often produce out-of-distribution images (Fig. 1b,d)
i.e. a type of adversarial example, which (1) we found to produce heatmaps that are sensitive to
hyperparameter settings; and (2) questions the correctness of the heatmaps (Adebayo et al., 2018).

To combat these two issues, we propose to harness a state-of-the-art generative inpainting model
(hereafter, an inpainter) to remove features from an input image and fill in with content that is
plausible under the true data distribution. We test our approach on three representative attribu-
tion methods of Sliding-Patch (SP) (Zeiler & Fergus, 2014), LIME (Ribeiro et al., 2016), and
Meaningful-Perturbation (MP) (Fong & Vedaldi, 2017) across two large-scale datasets of ImageNet
(Russakovsky et al., 2015) and Places365 (Zhou et al., 2017). For each dataset, we use a separate
pair of pre-trained image classifiers and inpainters. Our main findings are:1

1. Blurred or grayed-out samples are up to 3 times more recognizable to classifiers and remain
more similar to the original image (via MS-SSIM and LPIPS) than the samples with objects
removed via inpainting (Sec. 4.2).

2. Attribution methods with an inpainter produces (1) more plausible perturbation samples;
(2) attribution maps that perform on par or better than their original counterparts on three
existing benchmarks: object localization, insertion, and deletion (see Sec. 4.4); (3) expla-
nations that are more robust to hyperparameter changes (Sec. 4.3).

1All our code and data will be open-sourced on github.
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Figure 1: Three attribution methods, SP, LIME, and MP, often produce unrealistic, out-of-
distribution perturbation samples. Top row: SP slides a 29 × 29 gray patch across the image
(b). LIME grays out a set of random superpixels (d). MP blurs out almost the entire image (f).
In contrast, a learned inpainter integrated into these methods produces realistic samples for the same
perturbation masks, here, completing the freight car (c), completing the background (e), and remov-
ing the car from the scene (g). Note that the freight car class probability is reduced by 57% (i.e.
from 0.929 to 0.391) when only the top of the car is occluded (b). However, it is reduced by∼100%
down to 0.003 when the car is still present but the background is unnaturally masked out (d). Since
the inpainted samples are more realistic, the probability drops are often less (c & e) and substantial
only when the object is removed completely (g). Bottom row: the inpainted samples yield heatmaps
that, in overall, outperform the original methods on the object localization task. Here, our heatmaps
(SP-G, LIME-G, and MP-G) are less noisy and more focused on the object.

2 RELATED WORK

Attribution methods can be categorized into two main classes: (1) white-box and (2) black-box.

White-box Given the access to the network architecture and parameters, attribution maps can be
constructed analytically from (a) the gradients of the output w.r.t. the input image (Simonyan et al.,
2013), (b) the class activation map in fully-convolutional neural networks (Zhou et al., 2016), (c)
both the gradients and activations (Selvaraju et al., 2017), or (d) the gradient times the input image
(Shrikumar et al., 2017). However, these heatmaps can be too noisy to be human-interpretable
because the gradients in the pixel space are often local. Importantly, some gradient-based attribution
maps can be unfaithful explanations e.g. acting like edge detectors (Adebayo et al., 2018).

To make a gradient-based heatmap more robust and smooth, a number of methods essentially aver-
age out the resultant heatmaps across a large set of perturbed inputs that are created via (a) adding
random noise to the input image (Smilkov et al., 2017; Fong & Vedaldi, 2017), (b) blurring or jitter-
ing the image (Fong & Vedaldi, 2017), or (c) linearly interpolating between the input and a reference
“baseline” image (Sundararajan et al., 2017).

Black-box In addition to the white-box setting, perturbation techniques are even more important
in approximating attributions under the black-box setting i.e. when we do not have access to the
network parameters. Black-box methods often iteratively remove (i.e. occlude or perturb) an input
region and take the average resultant classification probability change to be the attribution value for
that region. While the idea is principle in causal reasoning, the physical interventions—taking an
object out of a scene (revealing the content behind it) while keeping the rest of the scene intact—are
impractical for most real-world applications.

Therefore, the absence of an input region is often implemented by replacing it with (a) mean pixels
(Zeiler & Fergus, 2014; Ribeiro et al., 2016); (b) random noise (Dabkowski & Gal, 2017; Lundberg
& Lee, 2017); or (c) blurred versions of the original content (Fong & Vedaldi, 2017). However, these
removal techniques often produce unrealistic, out-of-samples (Fig. 1), which raise huge concerns on
the sensitivity and faithfulness of the explanations.
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Do explanations become more robust and faithful if input features are removed via a learned,
natural image prior? Here, we systematically study that question across three representative attri-
bution methods: two black-box (i.e. SP and LIME) and one white-box (i.e. MP). We chose these
three methods because they represent diverse approaches and perturb different types of input fea-
tures: pixels (i.e. MP), superpixels (i.e. LIME); and square patches (i.e. SP). Similar to us, Chang
et al. (2019) and Uzunova et al. (2019) also harnessed image generative models to remove input fea-
tures. However, their findings were (1) both only within the MP framework; (2) either for grayscale,
medical-image datasets (Uzunova et al., 2019) or based on unrealistic samples (see a comparison
in Sec. 4.1). Furthermore, their results were not relevant to our question of whether integrating an
inpainter helps attribution maps become more robust to hyperparameters.

Counterfactual explanations A task that is related but not the same as ours is to generate a textual
explanation for why an image is predicted as class c instead of a some other class c′ (Anne Hendricks
et al., 2018). For visual explanations, Goyal et al. (2019) proposed to find a minimal input region
such that when exchanged with another region in a reference image would change the classification
for the original image into some target class. However, their counterfactual sample was generated
by compositing two images rather than by a generative model.

3 METHODS

3.1 DATASETS AND NETWORKS

Classifiers Our experiments were conducted separately with each of the two ResNet-50 image
classifiers (He et al., 2016) that were pre-trained on the 1000-class ImageNet 2012 and Places365,
respectively. The two models were officially released by the PyTorch (2019) model zoo and by the
authors (CSAILVision (2019)), respectively.

Datasets We chose these two datasets because they are large-scale, natural-image sets and cover
a wide range of images from object-centric (i.e. ImageNet) to scenery (i.e. Places365). While
state-of-the-art image synthesis has advanced rapidly, unconditionally inpainting a large free-form
mask in an arbitrary photo remains challenging (Yu et al., 2018a). Therefore, we ran our study
on two subsets called ImageNet-S and Places365-S of the original validation sets of ImageNet and
Places365, respectively, after filtering out semantically complex images. That is, we filtered out
where that a YOLO-v3 object detector (Redmon & Farhadi, 2018) found more than one objects. For
ImageNet-S, we also filtered out images with more than one ImageNet bounding boxes. In total,
ImageNet-S and Places365-S contains 15,082 and 13,864 images respectively (see Figs. S5 & S6
for sample images).

Inpainter We used two TensorFlow DeepFill-v1 models pre-trained by Yu et al. (2018b) for Im-
ageNet and Places365, respectively. DeepFill-v1 takes as input a color image and a binary mask,
both of resolution 256× 256, and outputs an inpainted image.

3.2 PROBLEM FORMULATION

Let s : RD×D×3 → R be an image classifier that maps a square, color image x of spatial dimension
D ×D onto a softmax probability of a target class. An attribution map A ∈ [−1, 1]D×D associates
each input pixel xi to a scalar Ai ∈ [−1, 1] whose sign indicates whether xi contributes for or
against the prediction score s(x). We will describe below three different methods for generating
attribution maps together with our three respective proposed variants which harness an inpainter.

3.3 SLIDING-PATCH

SP Zeiler & Fergus (2014) proposed to slide a gray, occlusion patch across the image and record
the probability changes as attribution values in corresponding locations in the heatmap. That is,
given a binary occlusion mask m ∈ {0, 1}D×D (here, 1’s inside the patch region and 0’s otherwise)
and a filler image f ∈ RD×D×3, a perturbed image x̄ ∈ RD×D×3 (see Fig. 1b) is given by:
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x̄ = x� (1−m) + f �m (1)

where � denotes the Hadamard product and f is a zero image i.e. a gray image2 before input
pre-processing. For every pixel xi, one can generate a perturbation sample x̄i (i.e. by setting the
patch center at xi) and compute the attribution value Ai = s(x)−s(x̄i). However, sliding the patch
densely across the 224×224 input image of ResNet-50 is computationally expensive. Therefore, we
chose a 29×29 occlusion patch size with stride 3, which yields a smaller heatmap A′ of size 66×66.
We bi-linearly upsampled A′ to the image size to create the full-resolution A. We implemented SP
from scratch in PyTorch following a MATLAB implementation (MathWorks, 2019).

SP-G Note that the stride, size, and color of the SP sliding patch are three hyperparameters that are
often chosen heuristically, and varying them can change the final heatmaps radically. To ameliorate
the sensitivity to hyperparameter choices, we propose a variant called SP-G by only replacing the
gray filler image of SP with the output image of an inpainter (described in Sec. 3.1) i.e. f = G(m,x)
while keeping the rest of SP the same (Fig. 1b vs. c; top row). That is, at every location of the sliding
window, SP-G queries the inpainter for content to fill in the window.

3.4 LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS

LIME While SP occludes one square patch in the input at a time, LIME (Ribeiro et al., 2016)
occludes a random-shaped region. The algorithm first segments the input image into S non-
overlapping superpixels (Achanta et al., 2012). Then, we generate a perturbed image x̄ by graying
out a random set of superpixels among 2S possible sets. That is, LIME follows Eq. 1 where the
pixel-wise mask m is derived from a random superpixel mask m′ ∈ {0, 1}S . For each sample x̄i,
we measure the output score s(x̄i) and evenly distribute it among all occluded superpixels in x̄i.
Each superpixel’s attribution is then inversely weighted by the L2 distance ‖x − x̄i‖ via an expo-
nential kernel and then averaged out across N samples. The resultant attribution ak of a superpixel
k is finally assigned to all pixels in that group in the full-resolution heatmap A.

In practice, Ribeiro et al. (2016) iteratively optimized for {ak}S via LASSO for 1000 steps to also
maximize the number of zero attributions i.e. encouraging a simpler, sparse attribution map. We
used the implementation provided by the authors (Ribeiro, 2019) and their default hyperparameters
of S = 50 and N = 1000.

LIME-G While avoiding the bias given by the SP square patch, LIME perturbation samples re-
main unrealistic. Therefore, we propose LIME-G, a variant of LIME, by only changing the gray
image f to a synthesized image G(m,x) as in SP-G while keeping the rest of LIME unchanged.

3.5 MEANINGFUL PERTURBATION

MP Because SP and LIME gray out patches and superpixels in the input image, they generate
unrealistic counterfactual samples and produce coarse heatmaps. To ameliorate these issues, Fong &
Vedaldi (2017) proposed the MP algorithm i.e. learning a minimal, continuous maskm ∈ [0, 1]D×D

that blurs out the input image in a way that would minimize the target-class probability. That is, they
attempted to solve the following optimization problem:

m∗ = arg min
m

λ‖m‖1 + s(x̄) (2)

where x̄ is given by Eq. 1 but with f = Bσ(x) i.e. the input image blurred by a Gaussian kernel
Bσ(.) of radius σ = 10. Note that, in MP, the attribution map A is also the learned mask m.

However, solving Eq. 2 directly often yields heatmaps that are noisy and sensitive to hyperparameter
changes. Therefore, Fong & Vedaldi (2017) only learned a small 28× 28 mask and upsampled it to
the image size in every optimization step. In addition, they also encouraged the mask to be smooth
and robust to input changes by changing the objective function to the following:

m∗ = arg min
m

λ1‖m‖1 + λ2TV (m) + Eτ∼U(0,4)
[
s(Φ(x̄, τ))

]
(3)

2The ImageNet mean pixel is gray (0.485, 0.456, 0.406).
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where TV (m) =
∑
i ‖∇mi‖33 i.e. a total-variation norm that acts as a smoothness prior over the

mask. The third term is the expectation over a batch of randomly jittered versions of the blurred
image x̄. That is, Φ(.) is the jitter operator that translates an image x̄ vertically or horizontally by τ
pixels where τ is drawn from a discrete uniform distribution U(0, 4).

We randomly initialized the mask m ∼ U(0, 1) and minimize the objective function in Eq. 3 via
gradient descent for 300 steps. Our MP implementation is in PyTorch and followed all the hyperpa-
rameters as described in Fong & Vedaldi (2017).

MP-G We propose to create an MP variant called MP-G by only changing the filler image f =
Bσ(x) that is used in Eq. 1 to an inpainted image i.e. f = G(mb,x) where mb ∈ {0, 1}D×D is
the result of binarizing m at a threshold of 0.5. Note that this binarization step is necessary because
G(.) expects a binary mask; however, we are still learning a continuous mask m ∈ RD×D.

4 EXPERIMENTS AND RESULTS

4.1 INPAINTER FAILED TO SYNTHESIZE BACKGROUNDS GIVEN ONLY OBJECTS

Chang et al. (2019) proposed to find a minimal set of input pixels that would keep the classification
outputs unchanged even when all other pixels are removed via an inpainter i.e. the “preservation”
objective (Fong & Vedaldi, 2017). They used the same DeepFill-v1 inpainter as in our work; how-
ever, their “preservation” objective tends to force the inpainter to predict the missing background
pixels while preserving the foreground object—a task that DeepFill-v1 was not trained to do and
thus produced unrealistic samples as in Chang et al. (2019). In contrast, our MP-G method har-
nesses the dual “deletion” objective (Fong & Vedaldi, 2017) i.e. finding the smallest set of input
pixels such that when inpainted would minimize the target-class probability—which naturally asks
the inpainter to fill in some background content in place of the deleted object.

To test these two objectives, we randomly chose 50 validation-set images from 52 ImageNet bird
classes and compute their segmentation masks via a pre-trained DeepLab model (Chen et al., 2017).
We found that using the DeepFill-v1 to inpaint the foreground region (i.e. our “deletion” task)
yields realistic samples where the object is removed. In contrast, using the inpainter to fill in the
background region (i.e. “preservation” task) yields unrealistic images whose backgrounds contain
features (e.g. bird feathers or beaks) unnaturally pasted from the object (see a side-by-side compar-
ison in Fig. S7). This result strongly motivates us to integrate DeepFill-v1 into attribution methods
and to study MP-G which is related but orthogonal to the work by Chang et al. (2019).

4.2 INPAINTER IS EFFECTIVE IN REMOVING DISCRIMINATIVE FEATURES

While removing objects from an image via DeepFill-v1 qualitatively yields realistic samples, it
remains unclear how effective this strategy is in removing target-class discriminative features com-
pared to three existing alternative filling methods: (1) zero pixels; (2) random noise; or (3) blurred
versions of the original content.

Using the same procedure as described in Sec. 4.1, we randomly sampled 1000 bird images and
segmented out the bird in each image. We filled in the object mask in each image via all four
methods (Fig. 2) and compare the results (Table 1). Surprisingly, the blurred and grayed-out images
are still correctly classified at 26.4% and 13.3%, respectively, by a pre-trained Inception-v3 classifier
(Szegedy et al., 2016). That is, these perturbed images still contain much discriminative features
relevant to the target class. In contrast, only 8.9% of the inpainted images were correctly classified
suggesting that the inpainter was more effective in removing the object features.

To evaluate how each of four in-filled images x̄ is perceptually similar to the original image x, we
measure the MS-SSIM and LPIPS (Zhang et al. (2018)) scores between every pair (x, x̄). Across
both metrics, the inpainted images are consistently the most dissimilar from the real images com-
pared to the blurred and grayed-out images. Note that in all three metrics, the inpainted images
perform the closest to the noise-filled images (Table 1d–e) despite being qualitatively the most real-
istic (Fig. 2).
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(a) Real (b) Blur (c) Mean (d) Inpaint (e) Random-noise

bustard 0.996 0.020 0.050 0.001 0.001

Figure 2: The results of in-filling the object mask in the real image (a) via four different in-fill
methods. The shape of the bird is still visible even after blurring (b), graying out (c) or adding noise
(e) to the bird region. The inpainter removes the bird and fills in with some realistic background
content (d). Here, the bustard class probability for the inpainted image (d) is infinitesimal suggesting
that the Inception-v3 classifier does not detect any remaining features relevant to the bustard.

Metrics
In-fill type

(a) Real (b) Blur (c) Mean (d) Inpaint (e) Random
Inception Accuracy 92.30% 26.40% 13.30% 8.90% 4.40%
MS-SSIM (lower is better) 1.000 0.941 0.731 0.707 0.692
LPIPS (higher is better) 0.000 2.423 3.186 3.208 3.639

Table 1: Evaluation of four different filling methods on 1000 random bird images. The Inception-
v3 accuracy scores (Salimans et al., 2016) suggest that inpainting the object mask (d) removes
substantially more discriminative features relevant to the removed object compared to blurring (b)
or graying out (c). Perceptually, the inpainted images are also more dissimilar to the corresponding
real images according two similarity metrics: MS-SSIM and LPIPS (Zhang et al., 2018). See Fig. 2
for examples of all filling results.

4.3 ARE GENERATIVE ATTRIBUTION METHODS MORE ROBUST TO HYPERPARAMETERS?

Perturbation-based attribution methods have many hyperparameters that are often heuristically
tuned, which when varied can change the explanations radically. That poses a huge challenge to
(1) evaluating the explanations; and (2) building trust with end users (Doshi-Velez & Kim, 2017).
Our hypothesis is that heuristically-perturbed samples are often far from the true data distribution
and thus might contribute to the sensitivity of heatmaps to hyperparameters. Here, we test whether
our attribution methods which incorporate an inpainter, i.e. SP-G, LIME-G, and MP-G (hereafter,
G-methods), are more robust to hyperparameter changes than their original counterparts.

4.3.1 EXPERIMENT SETUP

Similarity metrics and Image sets Following Adebayo et al. (2018), we used three metrics from
scikit-image (van der Walt et al., 2014) to measure the similarity of heatmaps: the structural similar-
ity index (SSIM), the Pearson correlation of the histograms of gradients (HOGs), and the Spearman
rank correlation. We upsampled all heatmaps to the full image size before feeding them into the
similarity metrics. We performed the test on a set of 1000 random images in ImageNet-S and also
replicated the experiments on Places365-S.

SP sensitivity across patch sizes It remains a question how to choose the patch size in the SP al-
gorithm because changing it can change the explanation radically (Zintgraf et al., 2017). Therefore,
we compare the sensitivity of SP and SP-G when sweeping across 5 patch sizes p× p with stride 3
where p ∈ {5, 17, 29, 41, 53}. We chose this set to cover the common sizes that have been used in
the literature. For each input image, we obtained k = 5 heatmaps (i.e. each corresponds to a patch
size) and then measure the similarity among all k(k − 1)/2 = 10 possible pairs.

LIME sensitivity across random batches of samples LIME randomly samples N perturbed im-
ages {x̄i}N and uses them to fit a heatmap. We found that the heatmap for an input can vary across
different batches of random perturbation samples. Therefore, we quantify the sensitivity of LIME
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Figure 3: Error plots for SSIM (a), Pearson correlation of HOG features (b), and Spearman rank
correlation (c) scores obtained from 1000 random ImageNet-S images (higher is better). LIME-G
is consistently more robust than LIME on both low and high resolutions i.e. S ∈ {50, 150} (green
and blue bars). The same trends were also observed on the Places365-S dataset (Fig. S4). The exact
numbers are reported in Table S3.

and LIME-G across 5 random batches of N = 500 perturbation samples. That is, for each input
image among the 1000, we generate k = 5 heatmaps and measure the similarity among all 10 pos-
sible pairs. We ran this experiment for a small and a large heatmap resolution i.e. two numbers of
superpixels S ∈ {50, 150} while keeping other hyperparameters fixed.

MP sensitivity across random initializations Similar to the LIME sensitivity experiment, here,
we compared the variations of MP vs. MP-G heatmaps of size 28 × 28 across 5 random initializa-
tions. We re-ran each algorithm 5 times on each input image and compute the similarity among all
10 possible pairs. All hyperparameters are the same as in Sec. 3.5.

4.3.2 RESULTS

First, we found that all 6 algorithms produce inconsistent explanations across the controlled hyper-
parameters (Fig. 3; all scores are below 1). That is, LIME and MP heatmaps can change as we
simply change the random seed! However, LIME-G is consistently more robust than LIME across
all 3 metrics (Fig. 3) and across both superpixel settings. Across the patch sizes, SP-G is also con-
sistently more robust than SP (Fig. 3a–b; light vs. dark yellow). SP-G and SP performed on par
under the Spearman rank correlation with high standard deviations (Fig. 3c). Across the random ini-
tializations, MP-G is consistently less robust than MP (Fig. 3 light vs. dark red). The above trends
were also observed on the Places365 dataset (Fig. S4).

4.4 ARE EXPLANATIONS BY GENERATIVE ATTRIBUTION METHODS MORE FAITHFUL?

While there are currently no established ground-truth datasets to evaluate an attribution map, prior
research often assessed heatmaps via three proxy metrics: (1) the object localization task (Zhou
et al., 2016); (2) insertion and deletion task (Petsiuk et al., 2018). Here, we ran all 6 algorithms on
the ImageNet-S and Places365-S datasets using the default hyperparameters in Sec. 3. The heatmaps
are then upsampled to the full image resolution for evaluation on the three benchmarks above.

Object localization Zhou et al. (2016) proposed to evaluate heatmaps by its ability to highlight
objects in the ImageNet images, which often contain a single object of a known class. We applied
the localization procedure in Fong & Vedaldi (2017) for the ImageNet-S dataset. That is, for each
algorithm, we derived multiple bounding boxes per heatmap by thresholding it at different values
of t = αµmax, where µmax is the maximum intensity in the heatmap and α ∈ [0 : 0.05 : 0.95].
For each α, we computed the Intersection over Union (IoU) score between a derived bounding box
and the ImageNet ground-truth. The object localization error was calculated by thresholding each
IoU score at 0.5 and averaged across all images. For each method, we chose the α∗ that yielded the
lowest error on a held-out set of 1000 ImageNet-S images (Table 2).

We found that LIME-G and SP-G outperformed their respective counterparts while MP-G was on
par with MP (Table 2). Among the 6 methods, LIME-G obtained the lowest error of 27.12%. For
qualitative evaluation, Figs.S8–S10 shows a set of heatmaps and derived bounding boxes for the
cases where G-methods outperformed the original methods the most and vice versa.
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baseline SP SP-G LIME LIME-G MP MP-G
α∗ threshold 0.5 0.05 0.05 0.15 0.15 0.20 0.50

Error (%) 38.56% 39.17% 34.87% 29.28% 27.12% 29.98% 30.43%

Table 2: Localization errors for 6 methods on the ImageNet-S dataset (lower is better). Naively
taking the whole image as a bounding box yields an error of 38.56% (baseline). We also found
SP-G to outperform SP on a replicated test with 53× 53 patches (data not shown).

Deletion and Insertion metrics The deletion metric (Petsiuk et al., 2018) measures the target-
class probability changes as we gradually zero out the input pixels of the highest attributions in
the descending order. We evaluated all 6 methods via the code released by the authors on both
the deletion and also the related insertion metric (Petsiuk et al., 2018). However, we did not find
significant differences between the G-methods and their counterparts (see Sec. B for details).

5 THE INNER-WORKINGS OF GENERATIVE ATTRIBUTION METHODS

Here, we used SP-G and LIME-G as the case studies to explain why our G-methods produced
heatmaps that are both more (1) robust to hyperparameter changes (Sec. 4.3) and (2) accurate in
localizing objects (Sec. 4.4).

5.1 MORE ACCURATE OBJECT LOCALIZATION: A CASE STUDY OF SP-G

We found that as the gray patch of SP is slided from left to right across the input image (Fig. 4a; top),
the target-class probability gradually decreases and approaches 0 when the patch occludes most of
the object (Fig. 4b; red line). Note that the probability can drop even when the patch is far outside
the object region (Fig. 4b; red line within locations 9–24) due to SP unrealistic samples. Overall,
the probability distributions by SP often yield a large blob of high attributions around the object in
the heatmap (Fig. 4a; top).

In contrast, the inpainted samples of SP-G often keep the probability variance low except when the
patch overlaps with the object (Fig. 4b; blue vs. red), yielding heatmaps that are more localized
towards the object (Fig. 4a; bottom). Across 1000 random ImageNet-S images, we found that the
average probability change when the SP 53 × 53 patch is outside the object bounding box is ∼2.1
times higher than that of SP-G (i.e. 0.09 vs. 0.04). In sum, our observations here are consistent with
the findings that SP-G and LIME-G obtained lower localization errors than the original counterparts.
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Figure 4: We ran SP and SP-G using a 53×53 patch on a nail class image. Here are the perturbation
samples derived for both methods when the patch is slided horizontally across one row at 5 locations
{9, 24, 36, 44, 53} (a); and their respective target-class probability scores (b). SP-G samples are
more realistic than those by SP and yielded a heatmap that localizes the object more accurately (a).
That is, the probabilities for SP-G samples are more stable and only substantially drop when the
patch covers the object (blue vs. red). See Fig. S11 for more samples.
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5.2 MORE ROBUST HEATMAPS: A CASE STUDY OF LIME-G

Here, we provide an explanation for why LIME-G produced heatmaps that are more consistent than
LIME (Fig. 5b vs. 5d) across 5 random batches of samples (i.e. controlled, in practice, by 5 random
seeds). We observed that LIME masks often cover most of the image and these grayish samples
often cause near-zero probability scores (i.e. low variance) (Fig. 5a). Therefore, when fitted to N
samples, where N is often too small w.r.t. the total 2S possible samples, the heatmap appears noisy
and varies as we re-run LIME with a different batch of N samples (Fig. 5b).

(a) LIME perturbation samples (b) LIME heatmaps using 5 different random seeds

(c) LIME-G perturbation samples (d) LIME-G heatmaps using 5 different random seeds

Figure 5: In Sec. 4.3, we compared the robustness of LIME vs. LIME-G heatmaps when running
using 5 different random seeds. This is an example where LIME-G heatmaps are more consistent
than LIME’s (d vs. b). While LIME grayish samples (a) are given near-zero probabilities, LIME-G
samples (here, inpainted using the same masks as those in the top row) are often given high proba-
bilities except when the kuvasz dog’s eye is removed (c). LIME-G consistently assign attributions
to the dog’s eye (d) while LIME heatmaps appear random (b).

In contrast, for LIME-G samples, the probabilities consistently drop when the same set of input
features are removed from the image (e.g. when the kuvasz dog’s eye was removed in Fig. 5c). This
phenomenon yields heatmaps that are localized around the discriminative features and are robust
across different batches of perturbation samples (Fig. 5d). Our explanation is also consistent with
the finding that when the number of superpixels S increases from 50 to 150 (while the sample size
remains atN = 500), the sensitivity gap between LIME vs. LIME-G increases by∼3 times (Fig. 3a;
green vs. blue).

For both LIME and LIME-G, we found that there is a high correlation (Pearson correlation r =
0.856) between the variances in the sample probabilities vs. the SSIM scores of heatmaps across
5 random seeds (Fig. S20). See Figs. S12–S19 for examples of when LIME-G is more robust than
LIME and vice versa. In addition, we observed that the image distribution where LIME-G showed
superior robustness over LIME across all three similarity metrics contains images of mostly scenes,
close-up or tiny objects. In contrast, LIME is more robust than LIME-G on images of mostly birds
and medium-sized objects (see Sec. C for more details).

6 DISCUSSION AND CONCLUSION

An explanation for why we did not find MP-G to be more robust than MP is that the original formu-
lation (1) optimizes a tiny 28× 28 mask; and (2) strongly regularizes it to be sparse and smooth. A
non-mutually exclusive hypothesis is that since MP operates in the pixel space, the learned masks
can be of any shape. However, DeepFill-v1 was not designed for inpainting free-form masks (Yu
et al., 2018a). We also found that a blur mask learned by MP often covers∼99% of the input image.
That is, the MP attribution map is explaining the target-class probability drops when the entire image
is modified—an unrealistic causal intervention. In contrast, MP-G perturbations are more localized
and only changes ∼40% of the input image (see Sec.A).

In conclusion, we have shown that integrating a state-of-the-art, unconditional inpainter into three
existing attribution methods can yield visual explanations that (1) localize objects better; (2) are
more robust to hyperparameter changes; and (3) are based on more plausible counterfactuals. Our
results suggest that harnessing generative models to synthesize synthetic interventions (here, re-
moval of input features) might be a promising direction for future causal explanation methods.
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APPENDIX

A MASKS LEARNED BY MP PERTURB ALMOST THE ENTIRE IMAGE

For ImageNet images where human-annotated bounding boxes only cover less than 50% of the
image, MP perturbs the entire image to generate its final attribution maps. Hence, the heatmap does
not completely reflects the target object class as the drop in probability is due to the perturbation
across the whole image (Fig. S1). On the other hand for MP-G, as discussed in Sec. 3.5, we binarize
the mask during the optimization process and perturb only part of the image. In sum using MP-G, we
perturb only ∼40% and ∼39% (Table S1) of the ImageNet-S and Places365-S images respectively.

ImageNet BB MP (ImageNet) MP-G (ImageNet) MP (Places365) MP-G (Places365)
20.28±12.01% 99.30±1.24% 40.22±23.11% 99.22±1.23% 39.22±26.66%

Table S1: Average mean and deviation of the percentage of pixels perturbed by MP and MP-G for
generating ImageNet-S and Places365-S heatmaps. For ImageNet-S, the ground truth bounding box
(BB) covers a mean area of 20.28% whereas, MP perturbs ∼ 99% of the image and MP-G perturbs
area closer to the actual ground truth distribution. See Fig.S1 for the qualitative represenation of
these numbers.

(a) Original (b) MP heatmap (c) MP-perturbed (d) MP-G heatmap (e) MP-G perturbed

Figure S1: MP almost perturbs the entire image to generate its respective heatmap. Top row: An
ImageNet-S image (a) and its respective MP (b) and MP-G (d) heatmaps. The pixels perturbed by
MP (c) covers almost 99% of the pixels. In contrast, MP-G often perturbs ∼40% of the image (e).
Bottom row: An example from the Places365-S dataset. MP-G just perturbs the area around the
house (e) whereas, MP perturbs almost the entire image including the trees (c). These figures are
qualitative evidence for the numbers in Table S1

.
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B EVALUATION ON THE DELETION AND INSERTION METRICS

The deletion metric (Petsiuk et al., 2018) measures the target-class probability changes as we grad-
ually zero out the input pixels of the highest attributions in the descending order. The idea is if the
attribution values in a heatmap correctly reflect the discriminative power of the input pixels, knock-
ing out the highest-attribution pixels should quickly cause the probability approach 0. However, this
metric has two issues: (1) it makes an unrealistic assumption that input features are independent; (2)
the probability changes may be due to the unrealistic, out-of-distribution inputs when some pixels
are masked out. For completeness, we evaluated all 6 methods via the code released by Petsiuk
et al. (2018) on the deletion metric and also its inverse version i.e. the insertion metric (Petsiuk
et al., 2018). However, we did not find significant differences between the G-methods and their
counterparts (Fig.S2).

ImageNet-S Places365-S
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Figure S2: Error plots for the Deletion and Insertion metrics (Petsiuk et al., 2018) for all 6 attri-
bution methods across two different datasets: ImageNet-S (a–c) and Places365-S (b–d). We used
random noise heatmaps (i.e. having no information about the input image or the classifier) as the
baseline method (cyan bars). We did not find any significant differences between G-methods and
their respective counterparts across both two metrics and both datasets. Note that our Deletion and
Insertion scores for the SP and LIME algorithms match closely to those in Petsiuk et al. (2018). See
Table S2 for the exact numbers.
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Dataset and Metric
ImageNet-S Places365-S

Deletion Insertion Deletion Insertion
Baseline 0.197±0.165 0.433±0.254 0.126±0.141 0.311±0.222
SP 0.193±0.206 0.734±0.239 0.168±0.159 0.419±0.271
SP-G 0.166±0.178 0.685±0.254 0.138±0.134 0.414±0.272
LIME 0.109±0.091 0.800±0.216 0.112±0.116 0.462±0.278
LIME-G 0.127±0.122 0.813±0.120 0.137±0.138 0.459±0.286
MP 0.153±0.155 0.765±0.215 0.135±0.127 0.457±0.267
MP-G 0.141±0.138 0.701±0.231 0.141±0.130 0.421±0.254

Table S2: On the Deletion (lower is better) and Insertion (higher is better) metrics, we did not find
any significant differences between the G-methods and their counterparts. See Fig. S2 for an error
plot of this table.

C LIME-G IS MORE ROBUST THAN LIME ON IMAGES OF SCENES,
CLOSE-UP AND TINY OBJECTS

We have shown that LIME-G is more robust than LIME consistently on all 3 different similarity
metrics (see Sec. 4.3 in the main text). Here, we aim to understand the image distributions where
LIME-G was more robust than LIME and vice versa.

For each of the three metrics, we computed a set of top-100 score differences between LIME-G vs.
LIME. Interestingly, we found the intersection of the three sets contains images of mostly scenes,
close-up or tiny objects (see Fig. S3). In contrast, the common set of images where LIME is more
robust than LIME-G contains mostly birds and medium-sized objects. These image distributions
intuitively align with the domains where DeepFill-v1 is capable of inpainting and suggest that the
performance of G-methods can be improved further with class-conditional inpainters.
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Method
Similarity Metrics

SSIM Pearson correlation of HOGs Spearman
SP 0.698±0.114 0.604±0.106 0.404±0.261
SP-G 0.781±0.095 0.691±0.093 0.317±0.206
LIME (50) 0.553±0.060 0.848±0.028 0.573±0.077
LIME-G (50) 0.647±0.057 0.896±0.022 0.667±0.065
LIME (150) 0.163±0.045 0.708±0.025 0.155±0.072
LIME-G (150) 0.371±0.051 0.776±0.022 0.379±0.059
MP 0.673±0.111 0.676±0.099 0.800±0.106
MP-G 0.356±0.097 0.572±0.071 0.644±0.123

Table S3: The results in this table are the number forms of Fig.3. G-methods of SP and LIME are
more robust to random parameters across different sensitivity metrics.

Method
Similarity Metrics

SSIM Pearson correlation of HOGs Spearman
SP 0.577±0.177 0.674±0.073 0.452±0.288
SP-G 0.720±0.122 0.755±0.056 0.332±0.208
LIME (50) 0.392±0.074 0.802±0.036 0.594±0.078
LIME-G (50) 0.498±0.076 0.865±0.027 0.722±0.058
LIME (150) 0.118±0.046 0.701±0.026 0.201±0.071
LIME-G (150) 0.312±0.061 0.780±0.022 0.511±0.051
MP 0.703±0.112 0.736±0.097 0.846±0.124
MP-G 0.463±0.089 0.594±0.082 0.654±0.151

Table S4: The results in this table are the number forms of Fig.S4. The results follow the same trend
as the ImageNet-S dataset.
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Images where LIME-G outperformed LIME across all three sensitivity metrics

Images where LIME-G underperformed LIME across all three sensitivity metrics

Figure S3: Common images across all three metrics where LIME-G is consistently more robust
than LIME (top) and vice versa (bottom). Interestingly, we found the intersection of the three sets
contains images of mostly scenes, close-up or tiny objects (top). In contrast, the common set of
images where LIME is more robust than LIME-G contains mostly birds and medium-sized objects
(bottom).
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Figure S4: Error plots for SSIM (a), Pearson correlation of HOG features (b), and Spearman rank
correlation (c) similarity scores obtained from 1000 random Places365-S images (higher is better).
LIME-G is consistently more robust than LIME on both low and high resolutions i.e. S ∈ {50, 150}
(green and blue bars). The exact numbers are reported in Table S4.
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(a) ImageNet images where YOLO-v3 detects more than one objects and were not in ImageNet-S.

(b) Random images in ImageNet-S.

Figure S5: We filtered out images where YOLO-v3 detected more than one objects (a). The re-
maining images are used in ImageNet-S (b). We believe our observations on the ImageNet-S dataset
carry over to the full ImageNet.
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(a) Images in Places365 images that YOLO-v3 detected more than one objects and were not used in
Places365-S.

(b) Random Places365-S images.

Figure S6: Example images from Places365-S dataset (b). The images where YOLO-v3 detected
more than one objects (a) are more cluttered compared to the images used in Places365-S (b).
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(a) Real (b) Mask (c) Preserve (d) Delete (e) Real (f) Mask (g) Preserve (h) Delete

Figure S7: Inpainting using the preservation objective generates unrealistic samples (Sec.4.1). We
randomly chose 50 validation-set images (a) from 52 ImageNet bird classes and compute their seg-
mentation masks via a pre-trained DeepLab model (Chen et al., 2017) (b). We found that using
the DeepFill-v1 inpainter to inpaint the foreground region (i.e. our “deletion” task) yields realistic
samples where the object is removed (d). In contrast, using the inpainter to fill in the background
region (i.e. “preservation” task) yields unrealistic images whose backgrounds contain features (e.g.
bird feathers or beaks) unnaturally pasted from the object (c).
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Top-10 cases where LIME-G outperformed LIME Top-10 cases where LIME-G underperformed LIME

Real LIME LIME-G Real LIME LIME-G

Figure S8: Top-10 cases where the LIME-G outperformed (left) and underperformed (right) LIME
on the object localization task (IoU scores). From left to right, on each row: we show a real image
with its ground-truth bounding box, LIME heatmap & its derived bounding box, LIME-G heatmap
& its derived bounding box. See https://drive.google.com/drive/u/2/folders/
10JeP9dpuoa0M16xe2FloBEWajQ7PNKSX for more examples of the LIME and LIME-G IoU
results.
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Top-10 cases where MP-G outperformed MP Top-10 cases where MP-G underperformed MP

Real MP MP-G Real MP MP-G

Figure S9: Top-10 cases where the MP-G outperformed (left) and underperformed (right) MP on
the object localization task (IoU scores). From left to right, on each row: we show a real im-
age with its ground-truth bounding box, MP heatmap & its derived bounding box, MP-G heatmap
& its derived bounding box. See https://drive.google.com/drive/u/2/folders/
1nlr5v2RbSiKigp8PRb_aQbauXBmZpHyU for more examples of the MP and MP-G IoU re-
sults.

23

https://drive.google.com/drive/u/2/folders/1nlr5v2RbSiKigp8PRb_aQbauXBmZpHyU
https://drive.google.com/drive/u/2/folders/1nlr5v2RbSiKigp8PRb_aQbauXBmZpHyU


Under review as a conference paper at ICLR 2020

Top-10 cases where SP-G outperformed SP Top-10 cases where SP-G underperformed SP

Real SP SP-G Real SP SP-G

Figure S10: Top-10 cases where the SP-G outperformed (left) and underperformed (right) SP on the
object localization task (IoU scores). From left to right, on each row: we show a real image with its
ground-truth bounding box, SP heatmap & its derived bounding box, SP-G heatmap & its derived
bounding box. In the cases where SP-G has a lower IoU score than SP (right panel), we observed
the heatmap localizes some unique features of the object as compared to the images in the top cases
where the heatmap covers the entire image. See https://drive.google.com/drive/u/
2/folders/1XJ6M0AMHxZrXxLLw6m3Bx7sjvsyqN6JC for more examples of the SP and
SP-G IoU results.
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Figure S11: Larger drop in target class probability in SP where patches do not cover the entire
object. SP-G drops the target class probability only when the patches cover major portion of the
target object. These intermediate perturbed samples are an extension to Fig. 4.
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Figure S12: This figure is an extension to the explanation in Sec. 5.2. On calculating the av-
erage SSIM sensitivity across all the 10 heatmap pairs for both LIME and LIME-G for each
image, we sort them where LIME-G has higher SSIM than LIME. A random ImageNet-S im-
age from the top-100 cases is shown in this figure. The corresponding rows of LIME and
LIME-G use the same super-pixel mask. LIME-G samples cause large probability drops only
when some salient discriminative feature is removed from the image and thus results in lo-
calized heatmaps. See Fig. S13 and Figs. S14-S15 for similar observations in ImageNet-S
and Places365-S dataset respectively. See https://drive.google.com/drive/u/2/
folders/1sKWig4Xk5Pm50kdONdAS9SkiTBhJRAkw for more examples.
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Figure S13: A random ImageNet-S image from the top-100 cases where LIME-G outperformed
LIME over SSIM sensitivity. Follows the explanation from Fig. S12. See https://drive.
google.com/drive/u/2/folders/1sKWig4Xk5Pm50kdONdAS9SkiTBhJRAkw for
more examples.
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Figure S14: A random Places365-S image from the top-100 cases where LIME-G outperformed
LIME over SSIM sensitivity. Follows the explanation from Fig. S12. See https://drive.
google.com/drive/u/2/folders/1aXyDFBq0HlcI0kQJpJyspNf2rtwLj35Z for
more examples.
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Figure S15: A random Places365-S image from the top-100 cases where LIME-G outperformed
LIME over SSIM sensitivity. Follows the explanation from Fig. S12. See https://drive.
google.com/drive/u/2/folders/1aXyDFBq0HlcI0kQJpJyspNf2rtwLj35Z for
more examples.
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Figure S16: This figure is an extension to the explanation in Sec. 5.2. On calculating the average
SSIM sensitivity across all the 10 heatmap pairs for both LIME and LIME-G for each image, we sort
them where LIME-G has lower SSIM than LIME. A random ImageNet-S image from the top-100
cases is shown in this figure. The corresponding rows of LIME and LIME-G use the same super-
pixel mask. LIME-G samples does not drop the target class probability across different samples
and thus results in non-localized heatmaps. See Fig. S17 and Figs. S18-S19 for similar obser-
vations in ImageNet-S and Places365-S dataset respectively. See https://drive.google.
com/drive/u/2/folders/1sKWig4Xk5Pm50kdONdAS9SkiTBhJRAkw for more exam-
ples.

30

https://drive.google.com/drive/u/2/folders/1sKWig4Xk5Pm50kdONdAS9SkiTBhJRAkw
https://drive.google.com/drive/u/2/folders/1sKWig4Xk5Pm50kdONdAS9SkiTBhJRAkw


Under review as a conference paper at ICLR 2020

Figure S17: A random ImageNet-S image from the top-100 cases where LIME-G underperformed
LIME over SSIM sensitivity. Follows the explanation from Fig. S16. See https://drive.
google.com/drive/u/2/folders/1sKWig4Xk5Pm50kdONdAS9SkiTBhJRAkw for
more examples.
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Figure S18: A random Places365-S image from the top-100 cases where LIME-G underperformed
LIME over SSIM sensitivity. Follows the explanation from Fig. S16. See https://drive.
google.com/drive/u/2/folders/1aXyDFBq0HlcI0kQJpJyspNf2rtwLj35Z for
more examples.
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Figure S19: A random Places365-S image from the top-100 cases where LIME-G underperformed
LIME over SSIM sensitivity. Follows the explanation from Fig. S16. See https://drive.
google.com/drive/u/2/folders/1aXyDFBq0HlcI0kQJpJyspNf2rtwLj35Z for
more examples.
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Figure S20: Scatter plots for the top-100 cases where LIME-G outperformed (a) and underper-
formed (b) LIME on SSIM sensitivity. Each point in the scatter plot represents an image. Following
the sensitivity experiment, we obtained 5 different heatmaps for each image and the SSIM was cal-
culated as the average SSIM across the 10 different pairs. For every image, we then calculated the
standard deviation of the target class probabilites across the 500 perturbed samples. We observe a
high correlation between the standard deviation of the target class probabilities and the respective
SSIM sensitivity scores.

34


	Introduction
	Related work
	Methods
	Datasets and Networks
	Problem formulation
	Sliding-Patch
	Local Interpretable Model-Agnostic Explanations
	Meaningful Perturbation

	Experiments and Results
	Inpainter failed to synthesize backgrounds given only objects
	Inpainter is effective in removing discriminative features
	Are generative attribution methods more robust to hyperparameters?
	Experiment setup
	Results

	Are explanations by generative attribution methods more faithful?

	The inner-workings of generative attribution methods
	More accurate object localization: a case study of SP-G
	More robust heatmaps: A case study of LIME-G

	Discussion and Conclusion
	Masks learned by MP perturb almost the entire image
	Evaluation on the Deletion and Insertion metrics
	LIME-G is more robust than LIME on images of scenes, close-up and tiny objects

