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ABSTRACT

We study the problem of learning permutation invariant representations that can
capture containment relations. We propose training a model on a novel task:
predicting the size of the symmetric difference between pairs of multisets, sets
which may contain multiple copies of the same object. With motivation from fuzzy
set theory, we formulate both multiset representations and how to predict symmetric
difference sizes given these representations. We model multiset elements as vectors
on the standard simplex and multisets as the summations of such vectors, and we
predict symmetric difference as the `1-distance between multiset representations.
We demonstrate that our representations more effectively predict the sizes of
symmetric differences than DeepSets-based approaches with unconstrained object
representations. Furthermore, we demonstrate that the model learns meaningful
representations, mapping objects of different classes to different standard basis
vectors.

1 INTRODUCTION

Tasks for which the input is an unordered collection, i.e. a set, are ubiquitous and include multiple-
instance learning Ilse et al. (2018), point-cloud classification Zaheer et al. (2017); Qi et al. (2017),
estimating cosmological parameters Zaheer et al. (2017); Ravanbakhsh et al. (2016), collaborative
filtering Hartford et al. (2018), and relation extraction Verga et al. (2017); Rossiello et al. (2019).
Recent work has demonstrated the benefits of permutation invariant models that have inductive biases
well aligned with the set-based input of the tasks (Ilse et al., 2018; Qi et al., 2017; Zaheer et al., 2017;
Lee et al., 2019).

The the containment relationship between sets — and intersection more generally — is often consid-
ered as a measure of relatedness. For instance, when comparing the keywords for two documents,
we may wish to model that {currency,equilibrium} describes a more specific set of topics
than (i.e. is “contained” in) {money,balance,economics}. The containment order is a natural
partial order on sets. However, we are often interested not in sets, but multisets, which may contain
multiple copies of the same object; examples include bags-of-words, geo-location data over a time
period, and data in any multiple-instance learning setting (Ilse et al., 2018). The containment order
can be extended to multisets. Learning to represent multisets in a way that respects this partial
order is a core representation learning challenge. Note that this may require modeling not just
exact containment, but relations that consider the relatedness of individual objects. We may want to
learn representations of the multisets’ elements which induce the desired multiset relations. In the
aforementioned example, we may want money ≈ currency and balance ≈ equilibrium.

Previous work has considered modeling hierarchical relationships or orderings between pairs of
individual items (Ganea et al., 2018; Lai and Hockenmaier, 2017; Nickel and Kiela, 2017; Suzuki
et al., 2019; Vendrov et al., 2015; Vilnis et al., 2018; Vilnis and McCallum, 2015; Li et al., 2019;
Athiwaratkun and Wilson, 2018). However, this work does not naturally extend from representing
individual items to modeling relations between multisets via the elements’ learned representations.
Furthermore, we may want to consider richer information about the relationship between two multisets
beyond containment, such as the size of their intersection.

In this paper, we present a method for learning representations of multisets and their elements, given
the relationships between pairs of multisets — in particular, we propose to use the sizes of their
symmetric differences. We learn these representations with the goal of predicting the relationships
between unseen pairs of multisets (whose elements may themselves have been unseen during training).
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We model multiset elements as vectors on the standard simplex and multisets as the summations of
such vectors, and we predict symmetric difference as the `1-distance between multiset representations.
Both our representations and how we predict symmetric difference size are theoretical rooted in fuzzy
set theory. We show empirically that both these aspects of our model are important to predicting
symmetric difference sizes, comparing our approach to DeepSets-based approaches (Zaheer et al.,
2017) with unconstrained item representations. Furthermore, we demonstrate that our model learns
meaningful representations, mapping objects of different classes to different standard basis vectors.

2 RELATED WORK

2.1 SET REPRESENTATION

Qi et al. (2017) and Zaheer et al. (2017) both explore learning functions on sets. Importantly, they
arrive at similar theoretical statements about the approximation of such functions, which rely on
permutation invariant pooling functions. In particular, Zaheer et al. (2017) show that any set function
f(A) can be approximated by a model of the form ρ

(∑
a∈A φ(a)

)
for some learned ρ and φ, which

they call DeepSets. They note that the sum can be replaced by a max-pool (which is essentially
the formulation of Qi et al. (2017)), and observe empirically that this leads to better performance.1
More recently, there has been some very interesting work on leveraging the relationship between sets.
Probst (2018) proposes a set autoencoder, while Skianis et al. (2019) learn set representations with
a network that compares the input set to trainable “hidden sets.” However, both these approaches
require solving computationally expensive matching problems at each iteration.

2.2 ORDERS AND HIERARCHIES

Vendrov et al. (2015) and Ganea et al. (2018) seek to model partial orders on objects via geometric
relationships between their embeddings — namely, using cones in Euclidean space and hyperbolic
space, respectively. Nickel and Kiela (2017) use a similar idea to embed hierarchical network
structures in hyperbolic space, simply using the hyperbolic distance between embeddings. These
approaches are unified under the framework of “disk embeddings” by Suzuki et al. (2019). The idea
is to map each object to the product space X × R, where X is a metric space. This mapping can
be expressed as A 7→ (f(A), r(A)), and it is trained with the objective that A � B if and only if
dX(f(A), f(B)) ≤ r(B)− r(A). An equivalent statement can be made for multisets (see Theorem
3.3.1).

Other work has taken a probabilistic approach to the problem of representing hierarchical relationships.
Lai and Hockenmaier (2017) attempt to formulate the Order Embeddings of Vendrov et al. (2015)
probabilistically, modeling joint probabilities as the volumes of cone intersections. Vilnis et al. (2018)
represent entities as “box embeddings,” or rectangular volumes, where containment of one box inside
another models order relationships between the objects. (Marginal and conditional probabilities can
be computed from intersections of boxes.) Vilnis and McCallum (2015) propose modeling words
as Gaussian distributions in order to capture notions of entailment and generality, and this work has
been extended to mixtures of Gaussians by Athiwaratkun and Wilson (2017).

2.3 FUZZY- AND MULTI- SETS

The theory of fuzzy sets can be traced back to Zadeh (1965). A fuzzy set A of objects from a universe
U is defined via its membership function µA : U → [0, 1]. Fuzzy set operations — such as intersection
— are then defined in terms of this function. In modern fuzzy set theory, intersection is usually defined
via a t-norm, which is a function T : [0, 1]2 → [0, 1] satisfying certain properties. The intersection
of two fuzzy sets A and B is defined via the membership function µA∩B(x) = T (µA(x), µB(x)).
(More in-depth background, including the defining properties of t-norms, is provided in 3.1.) There is
also more recent literature on extending fuzzy set theory to multisets (Casasnovas and Mayor, 2008;

1We believe there is an interesting theoretical distinction worth noting here, which may help explain this
observation. Namely, max-pooling is idempotent, meaning that repeatedly pooling a representation with itself
does not change the result. On the other hand, summation does not have this property, and so repeated copies
of an element are reflected in the result. In this way, DeepSets (with the sum rather than max-pool) is in fact
modeling multisets rather than sets, which depending on the application may be undesirable.
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Miyamoto, 2000), using a membership function of the form µA : U × [0, 1]→ N, where µA(x, α) is
the number of appearances in A of an object x with membership α.

3 REPRESENTATION OF MULTISETS

Let U = {x1, . . . , xn} be the universe of possible objects. We will denote by U∗ the set of all
multisets with elements from U . We are interested in formulating a learnable function Ψ : U∗ → Rd
mapping such multisets to vectors. Our contributions are: (1) formulating fuzzy multiset operations in
a way that is amenable to machine learning, and (2) proposing to learn representations by predicting
the sizes of the symmetric differences between pairs of multisets. Furthermore, both the formulation
of how we predict symmetric difference size and the actual representations we use to do so are crucial
components of (1).

3.1 BACKGROUND: FUZZY SETS

We begin with some background in fuzzy set theory. It is useful to begin by noting a canonical
function of the form above for sets: Ψ(A) = [1x1∈A, . . . ,1xn∈A]. Each coordinate of the vector is
1 if xi is in A, 0 otherwise. Fuzzy sets generalize this idea, letting Ψ(A) = [µA(x1), . . . , µA(xn)],
where µ : U → [0, 1] is the membership function. Intuitively, µA maps each x ∈ U to “how much of
a member” x is of A, on a scale from 0 to 1. With this simple generalization, fuzzy set operations can
be defined. This is traditionally done by leveraging element-wise fuzzy logical operations, which we
define below.

Definition 3.1.1 A t-norm is a function T : [0, 1]2 → [0, 1], satisfying the following properties:

• Commutativity: T (a, b) = T (b, a)

• Monotonicity: If a ≤ c and b ≤ d, then T (a, b) ≤ T (c, d)

• Associativity: T (a, T (b, c)) = T (T (a, b), c)

• 1 is the identity: T (a, 1) = a

T-norms generalize the notion of conjunction. Note that the above conditions imply that for any a,
T (a, 0) = 0, and that T (1, 1) = 1. These two observations show that t-norms are “compatible” with
classical, non-fuzzy logic — where we identify 0 with “false” and 1 with “true.” The standard t-norm
is T (a, b) = min{a, b}.

Definition 3.1.2 A strong negator is a strictly monotonic, decreasing function n : [0, 1]→ [0, 1] such
that n(0) = 1, n(1) = 0 and n(n(x)) = x.

Unsurprisingly, strong negators generalize logical negation. The standard strong negator is n(x) =
1− x.

Definition 3.1.3 An S-norm (also called a t-conorm) is a function with the same properties as a
t-norm, except that the identity element is 0.

S-norms generalize disjunction. For every t-norm (and a given negator), we can define a comple-
mentary s-norm: S(a, b) = n(T (n(a), n(b))). This is a generalization of De Morgan’s laws. The
standard s-norm, complementary to the min t-norm, is S(a, b) = max{a, b}.
The membership function for the intersection of two fuzzy sets A and B is naturally defined as
µA∩B(x) = T (µA(x), µB(x)) for a t-norm T . Similarly, the complement of a fuzzy set is given
by µA(x) = n(x) for a strong negator n, and the union of two fuzzy sets is given by µA∪B(x) =
S(µA(x), µB(x)) for an s-norm S. Usually, we want T and S to be complementary with respect to
n. Then, we can generalize all the usual set operations to fuzzy sets by combining the three basic
operations above.
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3.2 GENERALIZING TO FUZZY MULTISETS

Our function Ψ above can easily be extended to (non-fuzzy) multisets by letting Ψ(A) =
[mA(x1), . . . ,mA(xn)], where mA(xi) ∈ N is the multiplicity of x in A. This function mA

should immediately remind us of fuzzy sets. Indeed, if we simply let mA map to any non-negative
real number — that is, mA(xi) ∈ R+ — we obtain a representation of a version of fuzzy multisets.
Note that this is not the same formulation of “fuzzy multisets” usually given in literature (Casasnovas
and Mayor, 2008; Miyamoto, 2000). However, this formulation is much more easily amenable to
the machine-learning setting. Intuitively, the benefit of “fuzzifying” our multisets is the ability to
optimize via backpropagation.

With this definition of fuzzy multisets, we now define fuzzy multiset operations. Furthermore, we
require that these operations be compatible both with their equivalents for non-fuzzy multisets and
plain old sets (i.e. whenmA(xi) ∈ N andmA(xi) ∈ {0, 1}, respectively). This will in fact essentially
force us to adopt the following definitions:

• Size: |A| =
∑n
i=1mA(xi)

• Intersection: mA∩B(xi) = min{mA(xi),mB(xi)}

• Union: mA∪B(xi) = max{mA(xi),mB(xi)}

• Multiset addition: mA+B(xi) = mA(xi) +mB(xi)

• Multiset difference: mA\B(xi) = max{mA(xi)−mB(xi), 0}

• Symmetric difference: mA4B(xi) = |mA(xi)−mB(xi)|

It should stand out that our fuzzy multiset intersection and union are in fact the element-wise applica-
tions of the standard t-norm and s-norm, respectively. However, our requirement of compatibility
with non-fuzzy multiset operations means that we cannot use general t-norms and s-norms, and as we
will now argue, makes the operations above the only reasonable choices.

Consider the two (non-fuzzy) multisets, A = {1, 1, 1, 2, 2} and B = {1, 1, 2, 3}. Their intersection
should contain all their elements in common: A ∩ B = {1, 1, 2}. That is, we take the minimum
number of times each element appears in either A or B, and that is the number of times the element
appears in A ∩ B. This straightforwardly gives us mA∩B(x) = min{mA(x),mB(x)}. Requiring
that our notion of fuzzy multiset intersection be compatible with non-fuzzy multisets means for
whole-number inputs, the membership function must be equivalent to the min t-norm. As there is
no clear gain from letting the membership function deviate for fractional inputs, we define fuzzy
multiset intersection as such.

Following similar reasoning, we can convince ourselves that multiset union should be defined as
mA∪B(x) = max{mA(x),mB(x)}. It is important to differentiate this from “multiset addition,”
which simply combines two multisets directly: A + B = {1, 1, 1, 1, 1, 2, 2, 2, 3} for our example
above, and in general mA+B = mA(x) +mB(x).

Multiset difference is a little harder to define. The main problem is that we cannot rely on a notion
of “complement” for multisets. Instead, let us again try to reason by example. For our example
multisets above, we have A \B = {1, 2}. To arrive at this result, we remove from A each copy of an
element which also appears in B. Note that if B had more of a certain element than A, that element
would not appear in the final result. In other words, we are performing a subtraction of counts which
is “glued” to a minimum value of zero. That is, mA\B(x) = max{mA(x) −mB(x), 0}. We can
further convince ourselves of the correctness of this expression by noting that we recover the identity
A \ (A \B) = A ∩B.

Finally, symmetric multiset difference can be defined using our expression for multiset difference,
combined with either multiset addition or union. In particular, note thatA4B = (A\B)+(B\A) =
(A \B) ∪ (B \ A) — addition and union both work because (A \B) and (B \ A) are necessarily
disjoint. This gives us:

mA4B(x) = max{mA(x)−mB(x), 0}+ max{mB(x)−mA(x), 0} = |mA(x)−mB(x)|.

(The equation still holds if we replace the addition with a maximum.)
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3.3 MODELING THE RELATIONSHIP BETWEEN MULTISETS

We can now justify our choice of the size of the symmetric difference to capture the relationship
between two multisets. First, note that given |A| and |B|, and any one of |A∩B|, |A \B|, or |A4B|,
we can tell what fraction of elements of A are in B and vice-versa. In particular, we can also tell
whether A ⊆ B and whether B ⊆ A. In fact, we can formulate this relationship between containment
and symmetric difference as a disk embedding inequality, where the metric space is that induced on
U∗ by the counting measure:

Theorem 3.3.1 For two fuzzy multisets A and B, A ⊆ B if and only if |A4B| ≤ |B| − |A|.

Proof. We will in fact show that the inequality above can be replaced with an equality! First, note
that A ⊆ B is equivalent to the statement that for any x ∈ U , mA(x) ≤ mB(x).

Suppose that A ⊆ B. Then, for all x ∈ U , mB(x) ≥ mA(x), and the desired result follows:

|A4B| =
∑
x∈U

mA4B(x) =
∑
x∈U
|mB(x)−mA(x)| =

∑
x∈U

mB(x)−mA(x) = |B| − |A|.

Suppose on the other hand that |A4B| ≤ |B| − |A|. We first note that this in fact means that
|A4B| = |B| − |A|, since we are given∑

x∈U
|mB(x)−mA(x)| ≤

∑
x∈U

mB(x)−mA(x),

but it must be that ∑
x∈U
|mB(x)−mA(x)| ≥

∑
x∈U

mB(x)−mA(x).

Now, suppose for the sake of contradiction that for some x∗ ∈ U , it is the case that mA(x∗) >
mB(x∗). Then, mB(x∗)−mA(x∗) < 0 ≤ |mB(x∗)−mA(x∗)|. But this implies that∑

x∈U
|mB(x)−mA(x)| >

∑
x∈U

mB(x)−mA(x),

which is a contradiction. �

This theoretical connection is by itself a compelling reason to use symmetric difference over intersec-
tion or non-symmetric difference. In the context of backpropagation, however, our expression for
fuzzy symmetric difference also has the advantage of having derivatives depending both on mA(xi)
and mB(xi) for each i, unless mA(xi) = mB(xi).

We are now ready to formulate our learning model. To do so, we must formulate Ψ and our loss
function. Our loss function will penalize error in predicting |A4B| for input multisets A and B. We
will use ∆(A,B) to denote our predicted symmetric difference size. Given a training distribution D
of pairs of multisets, our loss is L = EA,B∼D

[
(∆(A,B)− |A4B|)2

]
.

We formulate Ψ with the DeepSets expression in mind: Ψ(A) = ρ
(∑

a∈A φ(a)
)
, where φ : U →

Rd is some given object-featurization function. To make a perfect analogy to the fuzzy multiset
representation above, we would require that each φ(a) be a standard basis vector. We want to be a little
more general, however. For example, we may want to allow φ(a) ∈ Rd with d < n. More importantly,
we need to be able to learn φ. We do this by relaxing from standard basis vectors, allowing φ(a) to
be any non-negative vector such that ||φ(a)||1 = 1. That is, φ(a) can be a weighted combination
of each of the standard bases with non-negative weights summing to 1 (which for d = n can be
interpreted as a weighted combination each of the elements of U). The normalization guarantees
that φ(a) has the same scale as any of the basis elements. Importantly, if the norm || · ||1 is invariant
under ρ, then we are guaranteed that ||Ψ(A)||1 = |A|. In practice, we guarantee the restrictions
above by replacing φ(a) with f(φ(a))

||f(φ(a))||1 , where f : R→ R+ is a function applied element-wise. For
differentiability, we choose the softplus function f(x) = log(1 + ex). To guarantee the invariance
of || · ||1 under ρ, we simply let ρ be the identity. We thus obtain: Ψ(A) =

∑
a∈A

f(φ(a))
||f(φ(a))||1 , and

∆(A,B) = ||Ψ(A)−Ψ(B)||1.
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Table 1: Mean absolute errors in symmetric difference size prediction on MNIST

sizes ∈ [2, 5] sizes ∈ [2, 10] sizes ∈ [2, 20]

Multisets (restr. φ), training sizes ∈ [2, 5] 0.0722 0.1264 0.2061
Multisets (restr. φ), training sizes ∈ [2, 10] 0.0595 0.1059 0.1756

Multisets (unrestr. φ), training sizes ∈ [2, 5] 0.5614 0.7693 1.1813
Multisets (unrestr. φ), training sizes ∈ [2, 10] 0.6349 0.7740 0.9859

DeepSets, training sizes ∈ [2, 5] 1.2152 1.9386 5.2831
DeepSets, training sizes ∈ [2, 10] 1.2227 1.5358 3.0340

4 EXPERIMENTS

We compare our model above with two reasonable alternatives. For the first, we simply relax the
restrictions on object representations — which by abuse of notation we will call the restriction of φ
(to the standard simplex) — letting Ψ(A) =

∑
a∈A φ(a), and ∆ as before. The second alternative is

to simply replace both Ψ and ∆ (which should itself permutation invariant) with DeepSets functions,
letting Ψ(A) = ρ1

(∑
a∈A φ(a)

)
and ∆(A,B) = ρ2 (Ψ(A) + Ψ(B)). We compare these models

both on the task of predicting symmetric difference size, and in terms of their learned representations.

4.1 TRAINING AND EVALUATION PROCEDURES

We use MNIST (LeCun, 1998) as our dataset. The training set consists of 60,000 handwritten images
of digits, and the test set of 10,000.

We train all the models on 3× 105 training pairs of multisets. Both of the multisets in each pair are
generated randomly at each iteration, as follows. First a size is uniformly sampled in the chosen
range — in our experiments, either [2, 5] or [2, 10].2 That many images are then chosen uniformly
at random (with replacement) from the training set. The symmetric difference to be predicted is
calculated directly from the image labels. All models are optimized using Adam (Kingma and Ba,
2015) with the default parameters β1 = 0.9 and β2 = 0.999, and a learning rate of 5× 10−5. The
learning rate was chosen by logarithmic grid search from 1 down to 5× 10−6, training on up to 104

pairs during the search. (All models performed best with the chosen learning rate — or at least no
worse than any of the other learning rates.) Given this learning rate, we chose to train the models for
3× 105 iterations, finding that almost all of the models converged by this point.3

Evaluation is performed similarly to training, with the addition of multiset sizes uniform on [2, 20],
and with images sampled from the test set. Importantly, this means that the none of the images seen
during training appear during evaluation. For symmetric difference size prediction, each model is
evaluated on 3× 104 such multiset pairs, and we let φ : U → Rn (that is, d = n = 10).

For the object featurizing function φ, we use a variant of the LeNet-5 neural network (LeCun, 1998).
Specifically, we adopt the same architecture as used by Ilse et al. (Ilse et al., 2018). (See Appendix A
for network architectures.)

4.2 SYMMETRIC DIFFERENCE SIZE PREDICTION

Our results on the MNIST test-set are presented in Table 1. We report the mean absolute errors in
symmetric difference size prediction, i.e. by how many elements on average is a model off from
the true size. We observe that including the restriction on φ greatly improves performance when
the symmetric difference is predicted as ∆(A,B) = ||Ψ(A) − Ψ(B)||1. Furthermore, when φ is
restricted to the standard simplex, training on larger multisets leads to slightly better performance.
It is unclear, however, whether training on larger multisets helps the multiset models “generalize”
to multisets with sizes larger than those seen in training. Finally, we see that the using the fuzzy
symmetric multiset difference was also important to learning, as the pure DeepSets model struggles

2We exclude singleton sets to ensure that the models aren’t just learning from comparing pairs of singletons.
3The multiset model with restricted φ appeared as though further training could still slightly improve

performance, but this model already outperformed the others.
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to predict the correct value. (We note that rounding the models’ predictions to whole numbers only
slightly improved performance, if at all.)

4.3 EXAMINING LEARNED REPRESENTATIONS

With φ(a) ∈ Rn restricted to the standard (n− 1)-simplex, we find empirically that learned repre-
sentations of objects are approximately the standard basis vectors (as shown in Figure 1 for n = 3).
This makes sense intuitively, since this is exactly the fuzzy multiset representation on which we base
our symmetric difference and size operations. This is an interesting property; we note that, given
the mapping from coordinate to class, 98.9% classification accuracy is achieved just by picking the
maximum-valued coordinate of the representation of each object. We also examine the case d < n,
when the dimension of our representations is smaller than the number of possible objects. Here,
the “pinched” nature of the restricted representations may be undesirable (Figure 2a). This problem,
of course, gets worse with the discrepancy between number of objects and dimension (Figure 2b).
On the other hand, the unrestricted multiset model is able to learn more balanced-looking clusters.
However, the clusters for d = n appear slightly less well-separated (Figures 3 and 4). The DeepSets
model didn’t learn interpretable representations (Figure 4c).

Figure 1: Three-dimensional representations of test-set MNIST images generated by the restricted
multiset model trained on multisets of sizes ∈ [2, 5]; the model is trained on images of zeros, ones,
twos.

(a) Model trained on zeros, ones, twos, and threes.
(b) Model trained on zeros, ones, twos, threes, and
fours.

Figure 2: Three-dimensional representations of test-set MNIST images generated by the restricted
multiset model trained on multisets of sizes ∈ [2, 5]. Note that in (b) the representations of twos and
threes are essentially inseparable.
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(a) Model trained on zeros, ones,
and twos.

(b) Model trained on zeros, ones,
twos, and threes.

(c) Model trained on zeros, ones,
twos, threes, and fours.

Figure 3: Three-dimensional representations of test-set MNIST images generated by the unrestricted
multiset model trained on multisets of sizes ∈ [2, 5]. Note that in (c), the clusters essentially form a
tetrahedron, with one of the vertices being the combination of twos and threes.

(a) Multiset model, restricted φ. (b) Multiset model, unrestricted φ. (c) Pure DeepSets model.

Figure 4: Two dimensional TSNE (van der Maaten and Hinton, 2008) “projections” of the ten-
dimensional representations of test-set MNIST images generated by the models; the models were
trained on multisets of sizes ∈ [2, 5].

5 CONCLUSION

We propose a novel task: predicting the size of the symmetric difference between pairs of multisets.
We demonstrate the utility of this idea, developing a model that given only the sizes of symmetric
differences between pairs of multisets, learns representations of such multisets and their elements.
Our model learns to map each type of object to a standard basis vector, thus essentially performing
semi-supervised clustering. One interesting area for future theoretical work is understanding a related
problem: clustering n objects given multiset difference sizes. As a first step, we show in Appendix
B that n− 1 specific multiset comparisons are sufficient to recover the clusters. We would also be
curious to see if our model can learn meaningful representations even if the given labels are not
exactly the sizes of symmetric differences — for example, human judgements of how different two
bags-of-words are. Finally, we believe it may be interesting in future work to explore using multiset
symmetric difference size prediction as an auxiliary or pre-training task, when representations of
objects need to be learned.
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A NETWORK ARCHITECTURES

Given input images with c channels, and an output dimension d, the function φ is parametrized by
the network:

1. A two-dimensional convolution layer with c input channels, 20 output channels, kernel size
5, and stride 1 (no padding)

2. A ReLU activation

3. A two-dimensional max-pooling layer with kernel size 2 and stride 2

4. A two-dimensional convolution layer with 20 input channels, 50 output channels, kernel
size 5, and stride 1 (no padding)

5. A ReLU activation

6. A two-dimensional max-pooling layer with kernel size 2 and stride 2

7. A fully-connected linear layer with output size d (the input size is determined by c)

For the DeepSets model, we used for ρ1 the architecture:

1. A fully-connected linear layer with input size d and output size 100

2. A hyperbolic tangent activation

3. A fully-connected linear layer with input and output size 100

For ρ2 we used:

1. A fully-connected linear layer with input and output size 100

2. A hyperbolic tangent activation

3. A fully-connected linear layer with input size 100 and output size 1

B CLUSTERING n OBJECTS GIVEN n− 1 SYMMETRIC SET DIFFERENCE SIZES

We are interested in the following problem. Suppose we have a set of n objects U , each of which
belongs to one of k clusters, C1, . . . , Ck. Let M : 2U → {1, . . . , k}∗ be the function which takes
any subset of U , and gives the multiset of cluster labels represented in that subset. We are given
oracle access to the function ∆ : 2U × 2U → N which gives the size of the symmetric set difference
between the cluster-label multisets: ∆(A,B) = |M(A)4M(B)|. How many queries are required to
determine the clusters C1, . . . , Ck (up to permutation)?
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We show that the clusters can be determined with n− 1 specific queries. (Another way to think of
this is as a training data problem, rather than an oracle querying problem; we show n− 1 training
examples can be sufficient.) We do this in two steps. The step lets us identify k disjoint subsets of U ,
such that no two of these subsets contain objects from the same cluster. The second step confirms
that these subsets are in fact the clusters C1, . . . , Ck.

The first step consists of logarithmically “splitting” U . The very first query in this step is
∆
(⋃dk/2e

i=1 Ci,
⋃k
i=dk/2e Ci

)
, which tells us that

⋃dk/2e
i=1 Ci and

⋃k
i=dk/2e Ci are disjoint in terms of

represented clusters. We proceed recursively, each query “splitting” the sets in half (in terms of which
clusters they contain). The number of such steps required is k − 1 (which is the number of internal
nodes in a balanced binary search tree for k objects). We’ll call the resulting disjoint sets C̃1, . . . , C̃k
(since we technically don’t yet know they correspond to the true clusters).

For the second step, we must verify that the objects in each of our sets resulting from step one all
belong to the same cluster. This can be done by ordering the objects within each set, and comparing
each consecutive pair as singletons. For each of our sets C̃i, we thus make |C̃i| − 1 such queries.
Across all such sets, we thus make

∑k
i=1 |C̃i| − 1 = n− k queries.

So, the total number of queries made is (k − 1) + (n− k) = n− 1.
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