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ABSTRACT

We propose a new Stein self-repulsive dynamics for obtaining diversified sam-
ples from intractable un-normalized distributions. Our idea is to introduce Stein
variational gradient as a repulsive force to push the samples of Langevin dynam-
ics away from the past trajectories. This simple idea allows us to significantly
decrease the auto-correlation in Langevin dynamics and hence increase the ef-
fective sample size. Importantly, as we establish in our theoretical analysis, the
asymptotic stationary distribution remains correct even with the addition of the
repulsive force, thanks to the special properties of the Stein variational gradient.
We perform extensive empirical studies of our new algorithm, showing that our
method yields much higher sample efficiency and better uncertainty estimation
than vanilla Langevin dynamics.

1 INTRODUCTION

Drawing samples from complex un-normalized distributions is one of the most basic problems in
statistics and machine learning, with broad applications to enormous research fields that rely on
probabilistic modeling. Over the past decades, large amounts of methods have been proposed for
approximate sampling, including both Markov Chain Monte Carlo (MCMC) (e.g., Brooks et al.,
2011) and variational inference (e.g., Wainwright et al., 2008).

MCMC works by simulating Markov chains whose stationary distributions match the distributions
of interest. Despite nice asymptotic theoretical properties, MCMC is widely criticized for its slow
convergence rate in practice. In difficult problems, the samples drawn from MCMC are often found
to have high auto-correlation across time, meaning that the Markov chains explore very slowly in
the configuration space. When this happens, the samples returned by MCMC only approximate a
small local region, and under-estimate the probability of the regions un-explored by the chain.

Stein variational gradient descent (SVGD) (Liu & Wang, 2016) is another type of approximation
sampling methods designed to overcome the limitation of MCMC. Instead of drawing random sam-
ples sequentially, SVGD evolves a pre-defined number of particles (or sample points) in parallel
with a special interacting particle system to match the distribution of interest by minimizing the KL
divergence. In SVGD, the particles interact with each other to simultaneously move towards the
high probability regions following the gradient direction, and also move away from each other due
to a special repulsive force. As a result, SVGD allows us to obtain diversified samples that correctly
represent the variation of the distribution of interest. SVGD has been found a promising tool for
solving difficult sampling problems in which diversity promotion is critical (e.g., Feng et al., 2017;
Haarnoja et al., 2017; Pu et al., 2017; Liu et al., 2017; Gong et al., 2019). Various extensions have
been developed (e.g., Han & Liu, 2018; Chen et al., 2018; Liu et al., 2019; Wang et al., 2019a).

However, one problem of SVGD is that it theoretically requires to run an infinite number of chains
in parallel in order to approximate the target distribution asymptotically (Liu, 2017). With a finite
number of particles, the fixed point of SVGD does still provide a prioritized, partial approximation
to the distribution in terms of the expectation of a special case of functions (Liu & Wang, 2018).
Nevertheless, it is still desirable to develop a variant of “single-chain SVGD”, which only requires
to run a single chain sequentially like MCMC to achieve the correct stationary distribution asymp-
totically in time, with no need to take the limit of infinite number of parallel particles.
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In this work, we propose an example of single-chain SVGD by integrating the special repulsive
mechanism of SVGD with gradient-based MCMC such as Langevin dynamics. Our idea is to use
repulsive term of SVGD to enforce the samples in MCMC away from the past samples visited at
previous iterations. Such a new self-repulsive dynamics allows us to decrease the auto-correlation in
MCMC and hence increase the mixing rate, but still obtain the same stationary distribution thanks
to the special property of the SVGD repulsive mechanism.

We provide throughout theoretically analysis of our new method, establishing it asymptotic conver-
gence to the target distribution. As we show in the work, the analysis is highly non-trivial, because
our new self-repulsive dynamics is a non-linear, high-order Markov process. Empirically, we ex-
tensively evaluate our methods on an array of challenging sampling tasks, showing that our method
yields much better uncertainty estimation and larger effective sample size.

2 BACKGROUND: LANGEVIN DYNAMICS AND SVGD

In this section, we give a brief introduction on Langevin dynamics (Rossky et al., 1978) and Stein
Variational Gradient Descent (SVGD) (Liu & Wang, 2016), which we integrate teogehter to develop
our new self-repulsive dynamics for more efficient sampling.

Langevin dynamics Langevin dynamics is a basic gradient based MCMC method. For some
target distribution on Rd with density function ρ∗(θ) ∝ exp(−V (θ)), where V : Rd 7→ R is the
potential function, the (Euler-discrerized) Langevin dynamics simulates a Markov chain with the
following rule:

θk+1 = θk − η∇V (θk) +
√

2ηek, ek ∼ N (0, I),

where k denotes the number of iterations, {ek} are independent standard Gaussian noise, and η is a
step size parameter. It is well known that the limiting distribution of θk when k →∞ approximates
the target distribution when η is sufficiently small.

Because the updates in Langevin dynamics are local and incremental, new points generated by the
dynamics is highly correlated to the past sample. As a result, we need to run Langevin dynamics
sufficiently long in order to obtain diverse samples.

Stein Variatinal Gradient Descent (SVGD) Different from Langevin dynamics, SVGD itera-
tively evolves a pre-defined number of particles in parallel. Starting from an initial set of particles
{θi0 : i = 1, ...,M}, SVGD updates the M particles in parallel by

θik+1 = θik + ηg(θik; δ̂Mk ) ∀i = 1, . . . ,M,

where the velocity field, which we denote by g(θik; δ̂Mk ), depends the empirical distribution of the
current set of particles δ̂Mk := 1

M

∑M
j=1 δθjk

in the following way,

g(θik; δ̂Mk ) = Eθ∼δ̂Mk

−K(θ,θik)∇V (θ)︸ ︷︷ ︸
Confining Term

+ ∇θK(θ,θkk)︸ ︷︷ ︸
Repulsive Term

 .
Here δθ is the Dirac measure centered at θ, and hence Eθ∼δ̂Mk

[·] denotes averaging on the particles.
The K(·, ·) is a positive definite kernel, such as the Gaussian RBF kernel, specified by users.

Note that g(θik; δ̂Mk ) consists of a confining term and repulsive term: the confining term pushes
particles to move towards high density region, and the repulsive term prevents the particles from
colliding with each other. It is the balance of these two terms that allows us to asymptotically
approximate the target distribution ρ∗(θ) ∝ exp(−V (θ)) at the fixed point, when the number of
particles goes to infinite. We refer the readers to Liu & Wang (2016); Liu (2017); Liu & Wang
(2018) for throughout theoretical justifications of SVGD. But a quick, informal way to justify the
SVGD update is through the Stein’s identity, which shows that the velocity field g(θ; ρ) equals zero
when ρ equals the true distribution ρ∗, that is,

g(θ′; p) = Eθ∼p [−K(θ,θ′)∇V (θ) +∇θK(θ,θ′)] = 0, ∀θ ∈ Rd. (1)
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This shows that SVGD would converge if the particle distribution already forms a closed approxi-
mation to the target distribution p, meaning that the target distributions forms an (approximate) fixed
point of the update.

3 STEIN SELF-REPULSIVE DYNAMICS

In this work, we propose to integrate Langevin dynamics and SVGD to simultaneously decrease the
auto-correlation of Langevin dynamics and eliminate the need for running parallel chains in SVGD.
The idea is to use Stein repulsive force between the the current sample and the past samples, hence
forming a new self-avoiding dynamics with fast convergence speed.

Specifically, assume we run a single Markov chain like Langevin dynamics, where θk denotes the
particle at the k-th iteration. Denote by δ̃Mk the empirical distribution of M samples taken from the
past iterations, i.e.,

δ̃Mk :=
1

M

M∑
j=1

δθk−jcη ,

where cη := c/η is a thinning factor, which should scale with the step size η, introduced to slim
the sequence of past samples. Compared with the δ̂Mk in SVGD, which is averaged over M parallel
particles, δ̃Mk is averaged across time over M past samples. Given this, our Stein self-repulsive
dynamics updates the sample via

θk+1 ← θk + (−ηV (θk) +
√

2ηek)︸ ︷︷ ︸
Langevin

+ ηαg(θk; δ̃Mk )︸ ︷︷ ︸
Stein Repulsive

, (2)

in which the particle is updated with the typical Langevin gradient, plus a Stein repulsive force
against the samples from the previous iterations. α ≥ 0 is a parameter that controls the magnitude
of the Stein repulsive term. In this way, the particles are pushed away from the past samples, and
hence admits lower auto-correlation and faster convergence speed. Importantly, the addition of the
repulsive force does not impact the asymptotic stationary distribution, thanks to Stein’s identity in
(1). This is because when if the self-repulsive dynamics have converged to the target distribution
ρ∗, such that θk ∼ ρ∗ for all k, the Stein self-repulsive term would equal to zero in expectation due
to Stein’s identity and hence does not introduce additional bias over Langevin dynamics. Rigorous
theoretical analysis of this idea is developed in Section 4.

Practical Algorithm Because δ̃Mk is averaged across the past samples, it is necessary to introduce
a burn-in phase with the repulsive dynamics. Therefore, our overall procedure works as follows,

θk+1 =

{
θk − η∇V (θk) +

√
2ηek, k < Mcη

θk + η
[
−∇V (θk) + αg(θk; δ̃Mk )

]
+
√

2ηek, k ≥Mcη.
(3)

It includes two phases. The first phase is the same as the Langevin dynamics which serves as
a warm start. The repulsive gradient update is introduced in the second phase to encourage the
dynamics to visit the under-explored density region. We call this particular instance of our algorithm
Self-Repulsive Langevin dynamics (SRLD), self-repulsive variants of more general dynamics is
discussed in Section 5.

Remark The general idea of introducing self-repulsive terms inside MCMC or other iterative
algorithms is not new itself. For example, in molecular dynamics simulations, an algorithm called
metadynamics (Laio & Parrinello, 2002) has been widely used, in which the particles are repelled
away from the past samples in a way similar to our method, but with a typical repulsive function,
such as

∑
j D(θk, θk−jcη ), where D(·, ·) is any notation of dis-similarity. However, introducing

an arbitrary repulsive force would alter the stationary distribution of the dynamics, introducing a
harmful bias into the algorithm. The key highlight of our approach, as reflected by our theoretical
results in Section 4, is the unique property of the Stein repulsive term, that allows us to obtain the
correct stationary distribution even with the addition of the repulsive force.
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Figure 1: An illustrative example showing the advantage of our Self-Repulsive Langevin dynamics.
With a set of initial examples locating on the left part of the target distribution (show in yellow),
Self-Repulsive Langevin dynamics is forced to explore the right part more frequently, yielding an
accurate approximation when combined with the initial samples. Langevin dynamics, however, does
not take the past samples into account and yields a poor overall approximation.

Remark Recently, (Zhang et al., 2018) proposed a different combination of SVGD and Langevin
dynamics, in which the Langevin force is directly added to a set of particles that evolve in parallel
with SVGD. Using our terminology, their system is

θik+1 = θik + (−ηV (θik) +
√

2ηeik) + ηαg(θik; δ̂Mk ), ek ∼ N (0, I) ∀i = 1, . . . ,M.

This is significantly different from our method on both motivation and practical algorithm. Their
algorithm still requires to simulate M chains of particles in parallel like SVGD, and was proposed
to obtain easier theoretical analysis than the deterministic dynamics of SVGD. Our work is instead
motivated by the practical need of decreasing the auto-correlation in Langevin dynamics, and avoid-
ing the need of running multiple chains in SVGD, and hence must be based on self-repulsion against
past samples along a single chain.

In another recent work, (Chen et al., 2018) proposed a π-SGLD method, which simulates the lin-
ear combination of the evalutionary partial differential equations of SVGD and Langevin dynamics
using discrete gradient flow with blob-based method. Their method is again motivated by the theo-
retical interest of discovering new categories of algorithms, and does not involve self-repulsive on a
single chain like our method.

An Illustrative Example Here we give an illustrative example to show the key advantage of our
self-repulsive dynamics. Assume that we want to sample from a bi-variate Normal distribution
shown in Figure 1. Unlike standard settings, we assume that we have already obtained some initial
samples (yellow dots in Figure 1) before running the dynamics. The initial samples are assumed
to concentrate on the left part of the target distribution as shown in Figure 1. In this extreme case,
since the left part of the distribution is over-explored by the initial samples, it is desirable to have
the subsequent new samples to concentrate more on the un-explored part of the distribution. How-
ever, standard Langevin dynamics does not take this into account, and hence yielding a bias overall
representation of the true distribution (see the left panel). With our self-repulsive dynamics, the new
samples are forced to explore the un-explored region more frequently, allowing us to obtain a much
more accurate approximation when combining the new and initial samples.
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Figure 2: Roadmap of the theoretical analysis. Theorem 4.3 shows the mean-field limit when M → ∞.
Theorem 4.2 bounds the time discretization error. And Theorem 4.1 shows that the limiting distribution of the
continuous-time mean field dynamics is the target distribution we want.

4 THEORETICAL ANALYSIS OF STEIN SELF-REPULSIVE DYNAMICS

In this section, we provide theoretical analysis of the self-repulsive dynamics. We establish that
our self-repulsive dynamics converges to the correct target distribution asymptotically, in the limit
when M approaches to infinite and the step size η approaches to 0. This is a highly non-trivial
task, because the self-repulsive dynamics is a highly complex, non-linear and high order Markov
stochastic process. We attack this problem by breaking the proof into the following three steps
illustrated in Figure 2:

1) At the limit of large particle sizes M → ∞ (called the mean field limit), we show that practical
dynamics in (3) is closely approximated by a discrete-time mean-field dynamics characterized by
(4) below.

2) By further taking the limit of small step size η → 0+ (called the continuous-time limit), the
dynamics in (4) converges to a continuous-time mean-field dynamics characterized by (5) below.

3) We show that the dynamics in (5) converges to the target distribution.

Notations We use ‖·‖ and 〈·, ·〉 to represent the `2 vector norm and inner product respectively. The
Lipschitz norm and bounded Lipschitz norm of a function f are defined by ‖f‖Lip and ‖f‖BL. The
KL divergence and Wasserstein-2 distance between distribution ρ1, ρ2 are denoted as DKL[ρ1 ‖ ρ2]
and W2[ρ1, ρ2] respectively.

4.1 MEAN-FIELD AND CONTINUOUS-TIME LIMITS

To fix the notation, we denote by ρk := Law(θk) the distribution of θk at time k of the practical
self-repulsive dynamics (3), which we refer as the practical dynamics in the sequel, when the initial
particle θ0 is drawn from an initial continuous distribution ρ0 supported on Rd. Note that given ρ0,
the subsequent ρk can be recursively defined through dynamics (3). Due to the diffusion noise in
Langevin dynamics, all ρk are continuous distributions supported on Rd. We now introduce the
limit dynamics when we take the mean-field limit (M → +∞) and then the continuous-time limit
(η → 0+).

Discrete-Time Mean-Field Dynamics (M → +∞) In the limit of M → ∞, we show that
our practical dynamics is closely approximated by the following dynamics, in which the empirical
measures are replaced by the continuous distributions of the particles themselves.

θ̃k+1 =

{
θ̃k − η∇V (θ̃k) +

√
2ηek, k ≤Mcη

θ̃k + η
[
−∇V (θ̃k) + αg(θk, ρ̃

M
k )
]

+
√

2ηek, k ≥Mcη
(4)

where ρ̃Mk = 1
M

∑M
j=1 ρ̃k−jcη by ρ̃k := Law(θ̃k) the (smooth) distribution of θ̃k at time-step

k when the dynamics is initialized with θ̃0 ∼ ρ̃0 = ρ0. Compared with the practical dynamics
in (3), the difference is that the empirical distribution δ̃Mk is replaced by the smooth distribution
ρ̃Mk . Similar to the recursive definition of ρk following dynamics (3), ρ̃k is also recursively defined
through dynamics (4), starting from ρ̃0 = ρ0. As we show in Theorem 4.3, if the auto-correlation
of θk decays fast enough and M is sufficiently large, ρ̃Mk is well approximated by the empirical
distribution δ̃Mk in (3), and further the two dynamics ((3) and (4)) converges to each other in the
sense that W2[ρk, ρ̃k]→ 0 as M →∞ for any k.
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Continuous-Time Mean-Field Dynamics (η → 0+) In the limit of zero step size (η → 0+), the
discrete-time mean field dynamics in (4) can be shown to converge to the following continuous-time
mean-field dynamics:

dθ̄t =

{
−∇V (θ̄t)dt+ dBt, t ∈ [0,Mc)[
−∇V (θ̄t) + αg(θk, ρ̄

M
t )
]
dt+ dBt, t ≥Mc

(5)

where ρ̄Mt := 1
M

∑M
j=1 ρ̄t−jc(·) and ρ̄t = Law

(
θ̄t
)

is the distribution of θ̄t at a continuous time
point t with θ0 initialized by θ̄0 ∼ ρ̃0 = ρ0. We prove that (5) is closely approximated by (4) with
small step size in the sense that DKL[ρ̃k ‖ ρ̄kη]→ 0 as η → 0 in Theorem 4.2, and importantly, the
stationary distribution of (5) equals to the target distribution ρ∗(θ) ∝ exp(−V (θ)).

4.2 ASSUMPTIONS

We first introduce the techinical assumptions used in our theoretical analysis.
Assumption 4.1. (RBF Kernel)

We use RBF kernel i.e. K(θ1,θ2) = e−‖θ1−θ2‖2/σ for some fixed 0 < σ <∞.

We only assume the RBF kernel for the simplicity of our analysis. However, it is straightforward to
generalize our theory to other positive definite kernels.
Assumption 4.2. (V is dissipative and smooth)

Assume that 〈θ,−∇V (θ)〉 ≤ b1 − a1 ‖θ‖2 and ‖∇V (θ1)−∇V (θ2)‖ ≤ b1 ‖θ1 − θ2‖. We also
assume that ‖∇V (0)‖ ≤ b1. Here a1 and b1 are some finite positive constant.
Assumption 4.3. (Regularity Condition)

Assume Eθ∼ρ0 ‖θ‖
2
< 0. Define ρMk =

∑M
j=1 ρk−jcη/M , assume there exists B <∞ such that

inf
k≥Mcη

sup
‖θ‖≤B

E
∥∥∥g(θ; δ̃Mk )− g(θ; ρMk )

∥∥∥2

> 0.

Assumption 4.4. (Strong-convexity)

Suppose that −〈∇V (θ1)−∇V (θ2),θ1 − θ2〉 ≤ −L ‖θ1 − θ2‖2.

Remark Assumption 4.2 is standard in the existing Langevin dynamics analysis (see Dalalyan
(2017); Raginsky et al. (2017) for example). Assumption 4.3 is a weak condition as it assumes that
the dynamics can not degenerate into one local mode and stop moving anymore. This assumption
is expected to be true when we have diffusion terms like the Gaussian noises in our self-repulsive
dynamics. Assumption 4.4 is a classical assumption on the existing Langevin dynamics analysis
with convex potential Dalalyan (2017); Durmus et al. (2019). Although being a bit strong, this
assumption broadly applies to posterior inference problem in the limit of big data, as the posterior
distribution converges to Gaussian distributions for large training set as shown by Bernstein-von
Mises theorem. It is technically possible to further generalize our results to the non-convex settings
with a refined analysis, which we leave as future work. This work focuses on the classic convex
setting for simplicity.

4.3 MAIN THEOREMS

All of the proof in this section can be found in Appendix B.5.

We first prove that the limiting distribution of the continuous-time mean field dynamics (5) is the
target distribution. This is achieved by writing dynamics (5) into the following (non-linear) partial
differential equation:

∂tρ̄t =

{
∇ · (−∇V ρ̄t) + ∆ρ̄t t ∈ [0,Mc)

∇ ·
[(
−∇V + αg(·, ρ̄Mt )

)
ρ̄t
]

+ ∆ρ̄t, t ≥Mc.

Theorem 4.1. (Stationary Distribution)

Given some finiteM , c and α, and suppose that the limiting distribution of dynamics (5) exists. Then
the limit distribution is unique, and equals to ρ∗(θ) ∝ exp(−V (θ)).
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We then give the upper bound on the discretization error, which can be characterized by analyzing
the KL divergence between ρ̃k and ρ̄kη .

Theorem 4.2. (Time Discretization Error)

Given some sufficiently small η and choose α such that a2 − α
(
2b1 + 4

σ

)
> 0, under assumption

4.1, 4.2 and 4.3, and cη = c/η, for any T = ηN <∞, we have for some constant C,

max
l∈{0,...,k}

DKL [ρ̄lη ‖ ρ̃l] ≤

{
O (Tη + η) k ≤Mcη − 1

O
(
Mcη + α2MceCα

2(kη−Mc)η2 + η
)

k ≥Mcη,

With this theorem, we can know that if η is small enough, then the discretization error is small and
ρ̃ approximates ρ̄ closely.

Next we give result on the mean field limit of M →∞.

Theorem 4.3. (Mean-Field Limit) Under assumption 4.1, 4.2 and 4.4 and suppose that we choose
α and η such that −(a1 − 2αb1/σ)η + η2b1 < 0; 2αη

σ (b1 + 1) < 1; a2 − α
(
2b1 + 4

σ

)
> 0 and

assumption 4.3 holds. There exists a constant c2, such that when L/a ≥ c2 and we have

W2
2[ρk, ρ̃k] = O

(
α2

M
+ η2

)
.

Thus, if M is sufficiently large, ρk can well approximate the ρ̃k.

5 EXTENSION TO GENERAL DYNAMICS

Although we have focused on self-repulsive Langevin dynamics, our Stein self-repulsive idea can
be broadly combined with general gradient-based MCMC. Following Ma et al. (2015), we consider
the following general class of sampling dynamics for drawing samples from p(θ) ∝ exp(−V (θ)):

dθt = −f(θ)dt+
√

2D(θ)dBt,

with f(θ) = [D(θ) +Q(θ)]∇V (θ)− Γ(θ), Γi(θ) =

d∑
j=1

∂

∂θj
(Dij(θ) +Qij(θ)) .

whereD is a positive definite diffusion matrix that determines the strength of the Brownian motion
and Q is a skew-symmetric curl matrix that can represent the traverse effect (e.g. in Neal et al.,
2011; Ding et al., 2014). By adding the Stein repulsive force, we obtain the following general
self-repulsive dynamics

dθ̄t =

{
−f(θ)dt+

√
2D(θ)dBt, t ∈ [0,Mc)

−
(
f(θ) + αg(θ̄t; ρ̄

M
t )
)
dt+ dBt, t ≥Mc

(6)

where ρ̄t := Law(θ̄t) is again the distribution of θ̄t following (6) when initalized at θ̄0 ∼ ρ̄0. Similar
to the case of Langevin dynamics, this process also converges to the correct target distribution, and
can be simulated by practical dynamics similar to (3).

Theorem 5.1. (Stationary Distribution)

Given some finiteM , c and α, and suppose that the limiting distribution of dynamics (6) exists. Then
the limiting distribution is unique and equals the target distribution ρ∗(θ) ∝ exp(−V (θ)).

6 EXPERIMENTS

In this section, we evaluate the proposed method in various challenging problems, including sam-
pling the posteriors of Bayesian Neural Networks, and uncertainty estimation in Reinforcement
Learning. Our results show that our Self-Repulsive Langevin dynamics (SRLD) yields much higher
sample efficiency than vanilla Langevin dynamics. Our code is available along the submission.
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Figure 3: Sample quality of SRLD and Langevin dynamics for sampling the correlated 2D distribu-
tion. The auto-correlation is the averaged auto-correlation of the two dimensions.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Repulsive Dynamics

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Num of samples = 50
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Langevin Dynamics

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Num of samples = 100

2.0

1.5

1.0

0.5

0.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Num of samples = 150

2.0

1.5

1.0

0.5

0.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Num of samples = 200

2.0

1.5

1.0

0.5

0.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Num of samples = 250

2.0

1.5

1.0

0.5

0.0

Figure 4: Sampling trajectory of the correlated 2D distribution.

6.1 SYNTHETIC EXPERIMENT

A Correlated 2D Distribution This experiment aims to show how the repulsive gradient helps
explore the whole distribution. Following Ma et al. (2015), we compare the sampling efficiency on
the following correlated 2D distribution with density

ρ∗([θ1, θ2]) ∝ −θ4
1/10−

(
4 (θ2 + 1.2)− θ2

1

)2
/2.

We compare the SRLD with vanilla Langevin dynamics, and evaluate the sample quality by Maxi-
mum Mean Discrepancy (MMD) (Gretton et al., 2012), Wasserstein-1 Distance and effective sample
size (ESS). Notice that the finite sample quality of gradient based MCMC method is highly related
to the step size. Compared with Langevin dynamics, we have an extra repulsive gradient and thus
we implicitly have larger step size. To rule out this effect, we set different step sizes of the two dy-
namics so that the gradient of the two dynamics has the same magnitude. In addition, to decrease the
influence of random noise, the two dynamics are set to have the same initialization and use the same
sequence of Gaussian noise. We collect the sample of every iteration. We repeat the experiment 20
times with different initialization and sequence of Gaussian noise.

Figure 3 summarizes the result with different metrics. We can see that SRLD have a signifi-
cantly smaller MMD and Wasserstein-1 Distance as well as a larger ESS compared with the vanilla
Langevin dynamics. Moreover, the introduced repulsive gradient creates a negative auto-correlation
between samples. Figure 4 shows a typical trajectory of the two sampling dynamics. We can see that
SRLD have a faster mixing rate than vanilla Langevin dynamics. Note that since we use the same
sequence of Gaussian noise for both algorithms, the difference is mainly due to the use of repulsive
gradient rather than the randomness.

Mixture of Gaussian Distribution We aim to show how the repulsive gradient helps the particle
escape from the local high density region by sampling the 2D mixture of Gaussian distribution using
SRLD and Langevin dynamics. The target density is set to be

ρ∗(θ) ∝ 1

2
exp

(
−‖θ − 1‖2 /2

)
+

1

2
exp

(
−‖θ + 1‖2 /2

)
, θ = [θ1, θ2]>,
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Figure 5: Sample quality and autocorrelation of the mixture distribution. The auto-correlation is the
averaged auto-correlation of the two dimensions.

where 1 = [1, 1]>. This target distribution have two mode at −1 and 1, and vanilla Langevin
dynamics can stuck in one mode while keeps the another mode under-explored (as the gradient
of energy function can dominate the update of samples). We use the same evaluation method, step
sizes, initialization and Gaussian noise as the previous experiment. We collect one sample every 100
iterations and the experiment is repeated for 20 times. Figure 5 shows that SRLD again consistently
outperforms the Langevin dynamics on all of the evaluation metrics.

6.2 BAYESIAN NEURAL NETWORK

Bayesian Neural Network is one of the most important methods in Bayesian Deep Learning with
wide application in practice. Here we test the performance of SRLD on sampling the posterior of
Bayesian Neural Network on the UCI datasets (Dua & Graff, 2017). We assume the output is normal
distributed, with a two-layer neural network with 50 hidden units and tanh activation to predict the
mean of outputs. We set a Γ(1, 0.1) prior for the inverse output variance. All of the datasets are
randomly partitioned into 90% for training and 10% for testing. The results are averaged over 20
random trials. We set the mini-batch size to be 100 and the number of past samples M to be 10.
In all experiments, we use RBF kernel with bandwidth set by the median trick as suggested in Liu
& Wang (2016). For SVGD, we use the original implementation with 20 particles by Liu & Wang
(2016). We run 50000 iterations for each methods, and for LD and SRLD, the first 40000 iteration
is discarded as burn-in. We use a thinning factor of cη = c/η = 100 and in total we collect 100
samples from the posterior distribution. For each dataset, we generate 3 extra data splits for tuning
the step size for each method.

Dataset Ave Test RMSE Ave Test LL
SVGD LD SRLD SVGD LD SRLD

Boston 3.300± 0.142 3.342± 0.187 3.086± 0.181 −4.276± 0.217 −2.678± 0.092 −2.500± 0.054
Concrete 4.994± 0.171 4.908± 0.113 4.886± 0.108 −5.500± 0.398 −3.055± 0.035 −3.034± 0.031
Energy 0.428± 0.016 0.412± 0.016 0.395± 0.016 −0.781± 0.094 −0.543± 0.014 −0.476± 0.036
Naval 0.006± 0.000 0.006± 0.002 0.003± 0.000 3.056± 0.034 4.041± 0.030 4.186± 0.015

WineRed 0.655± 0.008 0.649± 0.009 0.639± 0.009 −1.040± 0.018 −1.004± 0.019 −0.970± 0.016
WineWhite 0.655± 0.008 0.692± 0.003 0.688± 0.003 −1.040± 0.019 −1.047± 0.004 −1.043± 0.004

Yacht 0.593± 0.071 0.597± 0.051 0.578± 0.054 −1.281± 0.279 −1.187± 0.307 −0.458± 0.036

Table 1: Averaged test RMSE and test log-likelihood on UCI datasets. Results are averaged over 20
trails. The boldface indicates the method has the best average performance and the underline marks
the methods that perform the best with a significance level of 0.05.

Table 1 shows the average test RMSE and test log-likelihood and their standard deviation. The
method that has the best average performance is marked as boldface. We observe that a large portion
of the variance is due to the random partition of the dataset. Therefore, to show the statistical
significance, we use the matched pair t-test to test the statistical significance, mark the methods that
perform the best with a significance level of 0.05 with underlines. Note that the results of SRLD/LD
and SVGD is not very comparable, because SRLD/LD are single chain methods which averages
across time, and SVGD is a multi-chain method that only use the results of the last iteration. We
provide additional results in appendix that SRLD averaged on 20 particles (across time) can also
achieve similar or better results as SVGD with 20 (parallel) particles.
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6.3 CONTEXTUAL BANDITS

We evaluate the quality of uncertainty estimation provided by our methods on several contextual
bandits problem. Uncertainty estimation is a key component of contextual bandits. If the agent
makes decisions with a poorly estimated uncertainty, they decisions will finally lead to catastrophic
failure through the feedback loops (Riquelme et al., 2018).

Though in principle all of the MCMC methods return the samples follows the true posterior if we
can run infinite MCMC steps, in practice we can only obtain finite samples as we only have finite
time to run the MCMC sampler. In this case, the auto-correlation issue can lead to the under-estimate
the uncertainty, which will cause the failure on all of the reinforcement learning problems that need
exploration.

We consider the posterior sampling (a.k.a Thompson sampling) algorithm with Bayesian neural
network as the function approximator. We follows the experimental setting from Riquelme et al.
(2018). The only difference is that we change the optimization of the objective (e.g. evidence lower
bound (ELBO) in variational inference methods) into running MCMC samplers. We set the step of
samplers equal to the optimization step, and use a thinning factor of 100. We compare the SRLD
with the Langevin dynamics on the Mushroom and Wheel bandits from (Riquelme et al., 2018), and
include SVGD as a baseline. For more details on setup, see Appendix A.3.

The cumulative regret is shown in Table 2. SVGD is known to have the under-estimated uncertainty
for Bayesian neural network if particle number is limited (Wang et al., 2019b), and as a result, has
the worst performance among the three methods. SRLD is slightly better than vanilla Langevin
dynamics on the simple Mushroom bandits. On the much more harder Wheel bandits, SRLD is
significantly better than the vanilla Langevin dynamics, which shows the improving uncertainty
estimation of our methods within finite number of samples.

Dataset SVGD LD SRLD
Mushroom 20.7± 2.0 4.28± 0.09 3.80± 0.16

Wheel 91.32± 0.17 38.07± 1.11 32.08± 0.75

Table 2: Cumulative Regrets on two bandits problem. Results are averaged over 10 trails. Boldface
indicates the methods with best performance and underline marks the best significant methods with
significant level 0.05.

7 CONCLUSION

We propose a Stein self-repulsive dynamics which applies Stein variational gradient to push samples
from MCMC dynamics away from its past trajectories. This allows us to significantly decrease the
auto-correlation of MCMC, increasing the sample efficiency for better estimation. The advantages
of our method are extensive studied both theoretical and empirical analysis in our work. In future
work, we plan to investigate the combination of our Stein self-repulsive idea with more general
MCMC procedures, and explore broader applications.
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A EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENT RESULT

A.1 SYNTHETIC EXPERIMENT
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Figure 6: Sampling trajectory of the mixture of Gaussian.

To provide more evidence on the effectiveness of SRLD on escaping from local high density region,
we plot the sampling trajectory of SRLD and vanilla Langevin dynamics on the mixture of Gaussian
mentioned in Section 6.1. We can find that, when both of the methods obtain 200 samples, SRLD
have started to explore the second mode, while vanilla Langevin dynamics still stuck in the original
mode. When both of the methods have 250 examples, the vanilla Langevin dynamics just start to
explore the second mode, while our SRLD have already obtained several samples from the second
mode, which shows our methods effectiveness on escaping the local mode.

A.2 UCI DATASETS

We show some additional experiment result on posterior inference on UCI datasets. As mentioned
in Section 6.2, the comparison between SVGD and SRLD is not direct as SVGD is a multiple-chain
method with fewer particles and SRLD is a single chain method with more samples. To show more
detailed comparison, we compare the SVGD with SRLD using the first 20, 40, 60, 80 and 100
samples, denoted as SRLD-n where n is the number of samples used. Table 3 shows the result of
averaged test RMSE and table 4 shows the result of averaged test loglikelihood. For SRLD with
different number of samples, the value is set to be boldface if it has better average performance than
SVGD. If it is statistical significant with significant level 0.05 using a matched pair t-test, we add an
underline on it.

Figure 7 and 8 give some visualized result on the comparison with Langevin dynamics and SRLD.
To rule out the variance of different splitting on the dataset, the errorbar is calculated based on the
difference between RMSE of SRLD and RMSE of Langevin dynamcis in 20 repeats (And similarily
for test log-likelihood). And we only applied the error bar on Langevin dynamics.

Dataset Ave Test RMSE
SRLD-20 SRLD-40 SRLD-60 SRLD-80 SRLD-100 SVGD

Boston 3.236± 0.174 3.173± 0.176 3.130± 0.173 3.101± 0.179 3.086± 0.181 3.300± 0.142
Concrete 4.959± 0.109 4.921± 0.111 4.906± 0.109 4.891± 0.108 4.886± 0.108 4.994± 0.171
Energy 0.422± 0.016 0.409± 0.016 0.405± 0.016 0.399± 0.016 0.395± 0.016 0.428± 0.016
Naval 0.005± 0.001 0.004± 0.000 0.003± 0.000 0.003± 0.000 0.003± 0.000 0.006± 0.000

WineRed 0.654± 0.009 0.647± 0.009 0.644± 0.009 0.641± 0.009 0.639± 0.009 0.655± 0.008
WineWhite 0.695± 0.003 0.692± 0.003 0.690± 0.003 0.689± 0.002 0.688± 0.003 0.655± 0.008

Yacht 0.616± 0.055 0.608± 0.052 0.597± 0.051 0.587± 0.054 0.578± 0.054 0.593± 0.071

Table 3: Comparing SRLD with different number of samples with SVGD on test RMSE. The results
are computed over 20 trials. For SRLD, the value is set to be boldface if it has better average
performance than SVGD. The value if with underline if it is significantly better than SVGD with
significant level 0.05 using a matched pair t-test.
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Dataset Ave Test LL
SRLD-20 SRLD-40 SRLD-60 SRLD-80 SRLD-100 SVGD

Boston −2.642± .088 −2.582± 0.084 −2.527± 0.612 −2.516± 0.062 −2.500± 0.054 −4.276± 0.217
Concrete −3.084± 0.036 −3.061± 0.034 −3.050± 0.033 −3.040± 0.031 −3.034± 0.031 −5.500± 0.398
Energy −0.580± 0.053 −0.536± 0.048 −0.522± 0.046 −0.504± 0.044 −0.476± 0.036 −0.781± 0.094
Naval 4.033± 0.230 4.100± 0.171 4.140± 0.015 4.167± 0.014 4.186± 0.015 3.056± 0.034

WineRed −1.008± 0.019 −0.990± 0.017 −0.982± 0.016 −0.974± 0.016 −0.970± 0.016 −1.040± 0.018
WineWhite −1.053± 0.004 −1.049± 0.004 −1.047± 0.004 −1.044± 0.004 −1.043± 0.004 −1.040± 0.019

Yacht −1.160± 0.256 −0.650± 0.173 −0.556± 0.096 −0.465± 0.037 −0.458± 0.036 −1.281± 0.279

Table 4: Comparing SRLD with different number of samples with SVGD on test log-likelihood.
The results are computed over 20 trials. For SRLD, the value is set to be boldface if it has better
average performance than SVGD. The value if with underline if it is significantly better than SVGD
with significant level 0.05 using a matched pair t-test.
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Figure 7: Comparison between SRLD and Langevin dynamics on test RMSE. The results are com-
puted based on 20 repeats. The error bar is calculated based on RMSE of SRLD - RMSE of Langevin
dynamics in 20 repeats to rule out the variance of different data splitting

A.3 CONTEXTUAL BANDIT

Contextual bandit is a classic online learning problem that can be viewed as a simple reinforcement
learning problem without transition. Let S denotes the context set, and K denotes the number of
action. In contextual bandit problem, for each time t = 1, 2, · · · , N , the environment provides a
context st ∈ S to the agent, then the agent choose one action at ∈ {1, 2, · · · ,K} based on context
st. The environment returns a (stochastic) reward r(st, at) to the agent based on the context st and
the action at. The goal of the agent is to minimize the pseudo-regret, defined as:

R
S
n = max

g:S→{1,2,··· ,K}
E

[
n∑
t=1

r(st, g(st))−
n∑
t=1

r(st, at)

]
. (7)

where g denotes some deterministic mapping from context set S to actions {1, 2, · · · ,K}. Intu-
itively, this pseudo-regret measures the difference of cumulative reward between the action sequence
at and the best action sequence g(st). Thus, minimizing the pseudo-regret (7) is equivalent to find
the best g.

Posterior sampling (a.k.a. Thompson sampling; Thompson, 1933) is one of the classical algorithms
that can achieve the state-of-the-art performance in practice (Chapelle & Li, 2011). It first place
a prior µ0

s,a on the reward r(s, a), and update the posterior distribution µts,a with the observation
r(st−1, at−1) at time t − 1. Each time t = 1, 2, . . . , N , the action is selected with the following
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Figure 8: Comparison between SRLD and Langevin dynamics on test log-likelihood. The results
are computed based on 20 repeats. The error bar is calculated based on log-likelihood of SRLD -
log-likelihood of Langevin dynamics in 20 repeats to rule out the variance of data splitting.

way:
at = arg max

a∈{1,2,··· ,K}
r̂(st, a), r̂(st, a) ∼ µts,a.

Algorithm 1 shows the whole procedure of Posterior Sampling.

Algorithm 1 Posterior sampling for contextual bandits

Input: Prior distribution µ0
s,a, time horizon N

for time t = 1, 2, · · · , N do
observe a new context st ∈ S
sample the reward of each action r̂(st, a) ∼ µts,a, a ∈ {1, 2, · · · ,K}.
select action at = arg maxa∈{1,2,··· ,K} r̂(st, a) and get the reward r(st, at)
update the posterior of µt+1

st,at with r(st, at).
end for

Notice that all of the reinforcement learning problems face the exploration-exploitation dilemma, so
as the contextual bandit problem. Posterior sampling trade off the exploration and exploitation with
the uncertainty provided by the posterior distribution. So if the posterior uncertainty is not estimated
properly, posterior sampling will perform poorly. To see this, if we over-estimate the uncertainty,
we can explore too-much sub-optimal actions, while if we under-estimate the uncertainty, we can
fail to find the optimal actions. Thus, it is a good benchmark for evaluating the uncertainty provided
by different inference methods.

Here, we test the uncertainty provided by vanilla Langevin dynamics and Self-repulsive Langevin
dynamics on two of the benchmark contextual bandit problems suggested by (Riquelme et al., 2018),
called mushroom and wheel. One can read (Riquelme et al., 2018) to find the detail introduction of
this two contextual bandit problems. For completeness, we include it as follows:

Mushroom Mushroom bandit utilizes the data from Mushroom dataset (Schlimmer, 1981), which
includes different kinds of poisonous mushroom and safe mushroom with 22 attributes that can in-
dicate whether the mushroom is poisonous or not. (Riquelme et al., 2018) introduced the mushroom
bandit by designing the following reward function: eating a safe mushroom will give a +5 reward,

15



Under review as a conference paper at ICLR 2020

Figure 9: Visualization of the wheel bandit (δ = 0.95), taken from (Riquelme et al., 2018).

while eating a poisonous mushroom will return a reward +5 and−35 with equal chances. The agent
can also choose not to eat the mushroom, which always yield a 0 reward. Same to the (Riquelme
et al., 2018), we use 50000 instances in this problem.

Wheel To highlight the need for exploration, (Riquelme et al., 2018) designs the wheel bandit,
that can control the need of exploration with some “exploration parameter” δ ∈ (0, 1). The context
set S is the unit circle ‖s‖ ≤ 1, and each turn the context st is uniformly sampled from S. K = 5
possible actions are provided: the first action yields a constant reward r ∼ N (µ1, σ

2); the reward
corresponding to other actions is determined by the value of s:

• For s ∈ S s.t. ‖s‖2 ≤ δ, all of the four other actions return a suboptimal rewardN (µ2, σ
2)

for µ2 < µ1.
• For s ∈ S s.t. ‖s‖2 > δ, one of the four actions becomes optimal depend on the quarter the

context s is in. The optimal action gives a reward of N (µ3, σ
2) for µ3 � µ1, and all the

other actions still give the reward N (µ2, σ
2).

When δ approaches 1, the inner circle ‖s‖ ≤ δ will dominate the unit circle and a1 becomes the
optimal for most of the context. Thus, inference methods with poorly estimated uncertainty will
continuously choose the suboptimal action a1 for all of the contexts without exploration. This
phenomenon have been confirmed in (Riquelme et al., 2018). In our experiments, as we want to
evaluate the quality of uncertainty provided by different methods, we set δ = 0.95, which is pretty
hard for existing inference methods as shown in (Riquelme et al., 2018), and use 50000 contexts for
evaluation.

Experiment Setup Following (Riquelme et al., 2018), we use a feed-forward network with two
hidden layer of 100 units and ReLU activation. We use the same step-size and thinning factor
c/η = 100 for vanilla Langevin dynamics and SRLD, and set α = 1 on both of the mushroom and
wheel bandits. The update schedule is similar to (Riquelme et al., 2018), and we just change the
optimization step in stochastic variational inference methods into MCMC sampler step and use a
higher (2000) initial steps for burn-in like the warm-up of stochastic variational inference methods
in (Riquelme et al., 2018). As this is an online posterior inference problem, we only use the last
20 samples to give the prediction. Notice that, in the original implementation of (Riquelme et al.,
2018), the authors only update a few steps with new observation after observing enough data, as
the posterior will gradually converge to the true reward distribution and little update is needed after
observing sufficient data. Similar to their implementation, after observing enough data, we only
collect one new sample with the new observation each time. For SVGD, we also use 20 particles to
make the comparison fair.
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B THE DETAILED ANALYSIS OF SRLD

B.1 SOME ADDITIONAL NOTATION

We use ‖ · ‖∞ to denote the `∞ vector norm and define the L∞ norm of a function f : Rd →
R1 as ‖f‖L∞ . DTV and DBL denote the Total Variation distance and Bounded Lipschitz distance
between distribution ρ1, ρ2 respectively. Also, as K is Rd × Rd → R1, we denote ‖K‖L∞,L∞ =

supθ1,θ2
K(θ1,θ2). For simplicity, we may use ‖K‖∞,∞ as ‖K‖L∞,L∞ . In the appendix, we also

use φ[ρ](θ) := g(θ; ρ), where g(θ; ρ) is defined in the main text. For the clearance, we define
πM,c/η ∗ ρk := ρMk , πM,c/η ∗ ρ̃k := ρ̃Mk and πM,c ∗ ρ̄t := ρ̄Mt , where ρMk , ρ̃Mk and ρ̄Mt are defined
in main text.

B.2 GEOMETRIC ERGODICITY OF SRLD

Before we start the proof of main theorems, we give the following theorem on the geometric er-
godicity of SRLD. It is noticeable that under this assumption, the practical dynamics follows an
(Mc/η + 1)-order nonlinear autoregressive model when k ≥Mc/η:

θk+1 = ψ
(
θk, ...,θk−Mc/η

)
+
√

2ηek,

where

ψ
(
θk, ...,θk−Mc/η

)
= θk + η

−∇V (θk) + αφ[
1

M

M∑
j=1

δθk−jc/η ](θk)

 .

Further, if we stack the parameter by Θk =
[
θk, ...,θk−Mc/η

]>
and define Ψ (Θk) =[

ψ> (Θk) ,Θ>k
]>

, we have
Θk+1 = Ψ (Θk) +

√
2ηEk,

where Ek =
[
e>k ,0

>, ...,0>
]>
. In this way, we formulate Θk as a time homogeneous Markov

Chain. In the following analysis, we only analyze the second phase of SRLD given some initial
stacked particles ΘMc/η−1.
Theorem B.1. (Geometric Ergodicity) Under Assumption 4.1 and Assumption 4.2, suppose we
choose η and α such that

max

(
1− 2ηa1 + η2b1 +

2αη

σ
b1,

2αη

σ
(b1 + 1)

)
< 1,

then the Markov Chain of Θk is stationary, geometrically ergodic, i.e., for any Θ′0 = ΘMc/η−1, we
have

DTV

[
P k (·,Θ0) ,Π (·)

]
≤ Q (Θ0) e−rk,

where r is some positive constant, Q(Θ0) is constant related to Θ0, P k is the k-step Markov tran-
sition kernel and Π is the stationary distribution.

We defer the proof to Appendix B.5.1.

B.3 MOMENT BOUND

Theorem B.2. (Moment Bound) Under assumption 4.2, suppose that we have Eθ∼ρ0 ‖θ‖
2
< ∞;

and a2 − α ‖K‖∞
(
2b1 + 4

σ

)
> 0, we have

sup
k

Eθ∼ρk ‖θ‖
2 ∨ sup

k
Eθ∼ρ̃k ‖θ‖

2 ∨ sup
t

Eθ∼ρ̄t ‖θ‖
2

≤Eθ∼ρ0 ‖θ‖
2

+
b1 + 1 + η

a2 − ‖K‖L∞,L∞
2α
σ − α ‖K‖L∞,L∞

(
2b1 + 2

σ

) .
And by Lemma B.1, we thus have

sup
k

Eθ∼ρk ‖∇V (θ)‖2 ∨ sup
k

Eθ∼ρ̃k ‖∇V (θ)‖2 ∨ sup
t

Eθ∼ρ̄t ‖∇V (θ)‖2

≤b1Eθ∼ρ0 ‖θ‖
2

+
b1(b1 + 1 + η)

a2 − ‖K‖L∞,L∞
2α
σ − α ‖K‖L∞,L∞

(
2b1 + 2

σ

) + 1
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The proof can be found at Appendix B.5.2.

B.4 TECHNICAL LEMMA

Definition B.1. (α-mixing)

For any two σ-algebras A and B, the α-mixing coefficient is defined by
α(A,B) = sup

A∈A,B∈B
|P (A ∩B)− P (A)P (B)| .

Let (Xk, k ≥ 1) be a sequence of real random variable defined on (Ω,A,P). This sequence is
α-mixing if

α(n) := sup
k≥1

α (Mk,Gk+n)→ 0, as n→∞,

whereMj := σ (Xi, i ≤ j) and Gj := σ (Xi, i ≥ j) for j ≥ 1. Alternatively, as shown by Theorem
4.4 of Bradley (2007)

α(n) :=
1

4
sup

{
Cov (f, g)

‖f‖L∞ ‖g‖L∞
; f ∈ L∞ (Mk) , g ∈ L∞ (Gk+n)

}
.

Definition B.2. (β-mixing)

For any two σ-algebras A and B, the α-mixing coefficient is defined by

β (A,B) := sup
1

2

I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)| ,

where the supremum is taken over all pairs of finite partitions {A1, ..., AI} and {B1, ..., BJ} of Ω
such that Ai ∈ A and Bj ∈ B for each i, j. Let (Xk, k ≥ 1) be a sequence of real random variable
defined on (Ω,A,P). This sequence is β-mixing if

β(n) := sup
k≥1

β (Mk,Gk+n)→ 0, as n→∞.

Proposition B.1. (β-mixing implies α-mixing)

For any two σ-algebras A and B,

α (A,B) ≤ 1

2
β (A,B) .

This proposition can be found in Equation 1.11 of Bradley (2005).
Proposition B.2. A (strictly) stationary Markov Chain is geometric ergodicity if and only if β(n)→
0 at least exponentially fast as n→∞.

This proposition is Theorem 3.7 of Bradley (2005).
Lemma B.1. By Assumption 4.2, we have ‖∇V (θ)‖ ≤ b1 (‖θ1‖+ 1) and ‖θ − η∇V (θ)‖ ≤(
1− 2ηa1 + η2b1

)
‖θ‖2 + η2b1 + 2ηb1.

Lemma B.2. (Some property of RBF Kernel) For RBF kernel with bandwidth σ, we have
‖K‖∞,∞ ≤ 1 and

‖K(θ′,θ1)−K(θ′,θ2)‖ ≤
∥∥∥e−(·)2/σ

∥∥∥
Lip
‖θ1 − θ2‖2

‖∇θ′K(θ′,θ1)−∇θ′K(θ′,θ2)‖ ≤
∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

‖θ1 − θ2‖2 .

Lemma B.3. (Some property of Stein Operator)

For any distribution ρ such that Eθ∼ρ ‖∇V (θ)‖ <∞, we have

‖φ[ρ](·)‖Lip ≤
∥∥∥e−(·)2/σ

∥∥∥
Lip

Eθ∼ρ ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

,

‖φ[ρ](θ)‖ ≤ ‖K‖∞ Eθ′∼ρ

[
‖∇V (θ′)‖+

2

σ
(‖θ′‖+ ‖θ‖)

]
≤ ‖K‖∞ b1 + Eθ′∼ρ

[(
2

σ
+ b1

)
‖θ′‖

]
+ ‖θ‖ .
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Lemma B.4. (Bounded Lipschitz of Stein Operator) Given θ′, define φ̄θ′(θ) := φ[δθ′ ](θ) =
K(θ′,θ)∇V (θ′) +∇1K(θ′,θ). We also denote φ̄θ′(θ) = [φ̄θ′,1(θ), ..., φ̄θ′,d(θ)]>. We have

d∑
i=1

∥∥φ̄θ′,i(θ)
∥∥2

Lip
≤ 2 ‖∇V (θ′)‖2

∥∥∥e−‖·‖2/σ∥∥∥2

Lip
+ 2d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

Lip

d∑
i=d

∥∥φ̄θ′,i(θ)
∥∥2

L∞
≤ 2d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

L∞
+ 2

∥∥∥e−‖·‖2/σ∥∥∥2

L∞
‖∇V (θ′)‖2 .

B.5 PROOF OF MAIN THEOREMS

B.5.1 PROOF OF THEOREM B.1

The proof of this theorem is by verifying the condition of Theorem 3.2 of An & Huang (1996).
Suppose Θ = [θ1, ...,θMC+1], where C = c/η, we have

‖ψ (Θ)‖ =

∥∥∥∥∥∥θ1 + η

−∇V (θ1) + αφ[
1

M

M∑
j=1

δθ1+jC
](θk)


∥∥∥∥∥∥

=

∥∥∥∥∥∥θ1 − η∇V (θ1) +
ηα

M

M∑
j=1

[
e−‖θ1+jC−θ1‖2/σ 2

σ
(θ1 − θ1+jC)− e−‖θ1+jC−θ1‖2/σ∇V (θ1+jC)

]∥∥∥∥∥∥
≤

∥∥∥∥∥∥θ1 − η∇V (θ1) +
2

σ

ηα

M

M∑
j=1

e−‖θ1+jC−θ1‖2/σθ1

∥∥∥∥∥∥
+

∥∥∥∥∥∥ηαM
M∑
j=1

e−‖θ1+jC−θ1‖2/σ 2

σ
(−∇V (θ1+jC)− θ1+jC)

∥∥∥∥∥∥
≤ ‖θ1 − η∇V (θ1)‖+

2αη

σ
‖K‖∞,∞ b1(1 + ‖θ1‖)

+
2αη

Mσ

M∑
j=1

‖K‖∞,∞ b1

(
1 + (1 +

1

b1
) ‖θ1+jC‖

)
(1)

≤ b1(1 +
4αη

σ
‖K‖∞,∞) + η2b1 + 2ηb1

+

(
1− 2ηa1 + η2b1 +

2αη

σ
‖K‖∞,∞ b1

)
‖θ1‖+

2αη

σ
‖K‖∞,∞ (b1 + 1) max

i∈[MC+1]−{1}
‖θ1+jC‖

≤ b1(1 +
4αη

σ
‖K‖∞,∞) + η2b1 + 2ηb1

+ max

(
1− 2ηa1 + η2b1 +

2αη

σ
‖K‖∞,∞ b1,

2αη

σ
‖K‖∞,∞ (b1 + 1)

)
max

i∈[MC+1]
‖θ1+jC‖ ,

where (1) is by Lemma B.1. Thus, given the step size η, if we choose η, α such that

max

(
1− 2ηa1 + η2b1 +

2αη

σ
‖K‖∞,∞ b1,

2αη

σ
‖K‖∞,∞ (b1 + 1)

)
< 1,

then our dynamics is geometric ergodic.

B.5.2 PROOF OF THEOREM B.2

Continuous-Time Mean Field Dynamics (5) Notice that as our dynamics has two phases and the
first phase can be viewed as an special case of the second phase by setting α = 0, here we only

analysis the second phase. Define Ut = sup
s≤t

√
E
∥∥θ̄s∥∥2

, and thus

∂

∂t
U2
t ≤ E

〈
θ̄t,−V (θ̄) + αφ[πM,c ∗ ρ̄t](θ̄t)

〉
∨ 0.
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Now we bound E
〈
θ̄t,−V (θ̄) + αφ[πM,c ∗ ρ̄t](θ̄t)

〉
:

E
〈
θ̄t,−V (θ̄t) + αφ[πM,c ∗ ρ̄t](θ̄t)

〉
≤b1 − a2E

∥∥θ̄t∥∥2
+ αE

∥∥θ̄t∥∥∥∥φ[πM,c ∗ ρ̄t](θ̄t)
∥∥

(1)

≤b1 − a2E
∥∥θ̄t∥∥2

+ α ‖K‖∞ E
∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

[
‖∇V (θ′)‖+

2

σ
(‖θ′‖+ ‖θt‖)

]
≤b1 − a2E

∥∥θ̄t∥∥2
+ α ‖K‖∞ E

∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

[
b1 (‖θ′‖+ 1) +

2

σ
(‖θ′‖+ ‖θt‖)

]
=b1 −

(
a2 − ‖K‖∞

2α

σ

)
E
∥∥θ̄t∥∥2

+ α ‖K‖∞ E
∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

((
b1 +

2

σ

)
‖θ′‖+ b1

)
≤b1 −

(
a2 − ‖K‖∞

2α

σ

)
U2
t + α ‖K‖∞ E

∥∥θ̄t∥∥Eθ′∼πM,c∗ρ̄t

((
b1 +

2

σ

)
‖θ′‖+ b1

)
≤b1 −

(
a2 − ‖K‖∞

2α

σ

)
U2
t + α ‖K‖∞

(
b1 +

2

σ

)
1

M

M∑
j=1

UtUt−jc + α ‖K‖∞ b1Ut

≤b1 −
(
a2 − ‖K‖∞

2α

σ

)
U2
t + α ‖K‖∞

(
b1 +

2

σ

)
U2
t + α ‖K‖∞ b1(U2

t + 1)

≤ (b1 + 1)−
(
a2 − ‖K‖∞

2α

σ
− α ‖K‖∞

(
2b1 +

2

σ

))
U2
t ,

where (1) is by B.3. By the assumption that λ := a2 − ‖K‖∞
2α
σ − α ‖K‖∞

(
2b1 + 2

σ

)
> 0, we

have
∂

∂t
U2
t ≤

[
(b1 + 1)− λU2

t

]
∨ 0.

By Gronwall’s inequality, we have U2
t ≤ U2

0 + b1+1
λ . (If ∂

∂tU
2
t = 0, then Ut fix and this bound still

holds.) Notice that in the first phase, as α = 0, we have λ < a2 and thus this inequality also holds.

Discrete-Time Mean Field Dynamics (4) Similarly to the analysis of the continuous-time mean

field dynamics (5), we only give proof of the second phase. Define Uk = sup
s≤k

√
E
∥∥∥θ̃s∥∥∥2

, and thus

U2
k − U2

k−1 ≤
[
2ηE

〈
θ̃k−1,−∇V (θ̃k) + αφ[πM,c/η ∗ ρ̃k](θ̃k)

〉
+ 2η2

]
∨ 0.

By a similarly analysis, we have bound

E
〈
θ̃k−1,−∇V (θ̃k) + αφ[πM,c/η ∗ ρ̃k](θ̃k)

〉
≤ (b1 + 1)− λU2

t ,

where λ = a2 − ‖K‖∞,∞
2α
σ − α ‖K‖∞,∞

(
2b1 + 2

σ

)
> 0. And thus we have

U2
k − U2

k−1 ≤
[
2η
[
(b1 + 1)− λU2

k−1

]
+ 2η2

]
∨ 0.

It gives that

U2
k ≤

b1 + 1 + η

λ
+ U2

0 .

Practical Dynamics (3) The analysis of Practical Dynamics (3) is almost identical to that of the
discrete-time mean field dynamics (4) and thus is omitted here.

B.5.3 PROOF OF THEOREM 4.1 AND 5.1

Notice that the dynamics in Theorem 4.1 is special case of that in Theorem 5.1 and thus we only
prove Theorem 5.1 here. After some algebra, we can show that the continuity equation of dynamics
(6) is

∂tρt = ∇ · ([− (D(θ) +Q(θ))∇V (θ) + αφ[πM,c ∗ ρt](θt)] ρt + (D(θ) +Q(θ))∇ρt) .
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Notice that the limiting distribution satisfies

0
a.e.
= ∇ · ([− (D(θ) +Q(θ))∇V (θ) + αφ[πM,c ∗ ρ∞](θt)] ρ∞ + (D(θ) +Q(θ))∇ρ∞)

= ∇ · ([− (D(θ) +Q(θ))∇V (θ) + αφ[ρ∞](θt)] ρ∞ + (D(θ) +Q(θ))∇ρ∞)

= ∇ · ([− (D(θ) +Q(θ))∇V (θ)] ρ∞ + (D(θ) +Q(θ))∇ρ∞)

+ α∇ · (K ∗ (∇ρ∞ −∇V (θ)ρ∞) ρ∞) .

which implies that ρ∞ ∝ exp(−V (θ)) is the stationary distribution.

B.5.4 PROOF OF THEOREM 4.2

In the later proof we use cd to represent the quantity√
Eθ∼ρ0 ‖θ‖

2
+

b1 + 1 + η

a2 − ‖K‖∞,∞
2α
σ − α ‖K‖∞,∞

(
2b1 + 2

σ

) .
Recall that there are two dynamics: the continuous-time mean field dynamics (5) and the discretized
version discrete-time mean field Dynamics (4). Notice that here we couple the discrete-time mean
field dynamics with the continuous-time mean field system using the same initialization. Given
any T = ηN , for any 0 ≤ t ≤ T , define t = b tη cη. We introduce an another continuous-time
interpolation dynamics:

θ̂t =

{
−∇V (θ̂t) + dBt, t ∈ [0,Mc)

−∇V (θ̂t) + αφ[πM,c ∗ ρ̂t](θ̂t) + dBt, t ≥Mc,

ρ̂t = Law(θ̂t),

θ̂0 = θ̄0 ∼ ρ̄0,

Notice that here we couples this interpolation dynamics with the same Brownian motion as that of
the dynamics of θ̄t. By the definition of θ̂t, at any tk := kη for some integrate k ∈ [N ], θ̂tk and
θ̃k has the same distribution. Define ρ̄θ0

t = Law(θ̄t) conditioning on θ̄0 = θ0 and ρ̂θ0
t = Law(θ̂t)

conditioning on θ̂0 = θ0. Followed by the argument of proving Lemma 2 in Dalalyan (2017), if
k ≥ Mc

η , we have

DKL

[
ρ̄θ0
tk
‖ ρ̂θ0

tk

]
=

1

4

∫ tk

0

E
∥∥∥−∇V (θ̂s) + αφ[πM,c ∗ ρ̂s](θ̂s) +∇V (θ̂s)− αφ[πM,c ∗ ρ̄s](θ̂s)

∥∥∥2

ds

=
1

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥−∇V (θ̂tj ) + αφ[πM,c ∗ ρ̂tj ](θ̂tj ) +∇V (θ̂s)− αφ[πM,c ∗ ρ̄s](θ̂s)

∥∥∥2

ds

≤3

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥∇V (θ̂tj )−∇V (θ̂s)

∥∥∥2

ds

+
3α2

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥φ[πM,c ∗ ρ̂tj ](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂tj )

∥∥∥2

ds

≤3α2

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥φ[πM,c ∗ ρ̄s](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂s)

∥∥∥2

ds

=I1 + I2 + I3.

We bound I1, I2 and I3 separately.

Bounding I1 and I3 By the smoothness of∇V , we have∥∥∥∇V (θ̂tj )−∇V (θ̂s)
∥∥∥2

≤ b21
∥∥∥θ̂tj − θ̂s∥∥∥2

.
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And by Lemma B.3 (Lipschitz of Stein Operator), we know that
‖φ[πM,c ∗ ρ̄s](θ1)− φ[πM,c ∗ ρ̄s](θ2)‖

≤

[∥∥∥e−(·)2/σ
∥∥∥

Lip
Eθ∼πM,c∗ρ̄s ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]
‖θ1 − θ2‖2 .

And by the Assumption 4.2 and that ρ̄s as finite second moment, we have
‖φ[πM,c ∗ ρ̄s](θ1)− φ[πM,c ∗ ρ̄s](θ2)‖
≤Ccd ‖θ1 − θ2‖2 .

Combine the two bounds, we have

I1 + I3 ≤
3Cc2d

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥θ̂tj − θ̂s∥∥∥2

ds.

Notice that θ̂t = θ̂t+
[
−∇V (θ̂t) + αφ[πM,c ∗ ρ̂t](θ̂t)

]
(t− t)+

∫ t
t
dBs. By Itô’s lemma, it implies

that

I1 + I3 ≤
3Cc2d

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥θ̂tj − θ̂s∥∥∥2

ds

≤ 3Cc2d
4

∫ tj+1

tj

[
E
∥∥∥−∇V (θ̂s) + αφ[πM,c ∗ ρ̂s](θ̂s)

∥∥∥2

(s− tj)2 + 2d(s− tj)
]
ds

= Cc2dη
3
k−1∑
j=0

E
∥∥∥−∇V (θ̂tj ) + αφ[πM,c ∗ ρ̂tj ](θ̂tj )

∥∥∥2

+ Cc2ddkh
2.

By the assumption that E
∥∥∥θ̃tj∥∥∥ is finite and θ̃tj

d
= θ̂tj , E

∥∥∥θ̂tj∥∥∥2

is also finite, we have

E
∥∥∥−∇V (θ̂t) + αφ[πM,c ∗ ρ̂t](θ̂t)

∥∥∥2

≤2E
∥∥∥∇V (θ̂t)

∥∥∥2

+ 2α2E
∥∥∥φ[πM,c ∗ ρ̂t](θ̂t)

∥∥∥2

≤4b21 + 4b21E
∥∥∥θ̂t∥∥∥2

+ 2α2E
((

2

σ
+ b1

)
Eθ′∼πM,c∗ρ̂t ‖θ′‖+ ‖θ‖

)2

≤c2dC.
Thus we conclude that

I1 + I3 ≤ Cc2d
(
c2dkη

3 + dkη2
)
.

Bounding I2

E
∥∥∥φ[πM,c ∗ ρ̂tj ](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂tj )

∥∥∥2

=E

∥∥∥∥∥ 1

M

M∑
l=1

[
φ[ρ̂tj−cl](θ̂tj )− φ[ρ̄s−cl](θ̂tj )

]∥∥∥∥∥
2

≤ 1

M

M∑
l=1

E
∥∥∥φ[ρ̂tj−cl](θ̂tj )− φ[ρ̄s−cl](θ̂tj )

∥∥∥2

=
1

M

M∑
l=1

E
∥∥∥Eθ∼ρ̂tj−cl φ̄θ̂tj

(θ)− Eθ∼ρ̄s−cl φ̄θ̂tj
(θ)
∥∥∥2

=
1

M

M∑
l=1

Eθ̂tj

d∑
i=1

∣∣∣Eθ∼ρ̂tj−cl φ̄θ̂tj ,i
(θ)− Eθ∼ρ̄s−cl φ̄θ̂tj ,i

(θ)
∣∣∣2

≤ 1

M

M∑
l=1

Eθ̂tj

d∑
i=1

(∥∥∥φ̄θ̂tj ,i(·)∥∥∥L∞ ∨
∥∥∥φ̄θ̂tj ,i(·)∥∥∥Lip

)2

D2
BL

[
ρ̂tj−cl, ρ̄s−cl

]
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By Lemma B.4 and the Assumption 4.4 that V is at most quadratic growth and that ρ̂t has finite
second moment, we have

Eθ̂tj

d∑
i=1

(∥∥∥φ̄θ̂tj ,i(·)∥∥∥L∞ ∨
∥∥∥φ̄θ̂tj ,i(·)∥∥∥Lip

)2

=Eθ̂tj

d∑
i=1

(∥∥∥φ̄θ̂tj ,i(·)∥∥∥2

L∞
∨
∥∥∥φ̄θ̂tj ,i(·)∥∥∥2

Lip

)

≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
Eθ̂tj

∥∥∥∇V (θ̂tj )
∥∥∥2
]

≤C(d+ c2d).

Plug in the above estimation, we have

I2 =
3α2

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥φ[πM,c ∗ ρ̂tj ](θ̂tj )− φ[πM,c ∗ ρ̄s](θ̂tj )

∥∥∥2

ds

≤ α2C(d+ c2d)

k−1∑
j=0

∫ tj+1

tj

1

M

M∑
l=1

D2
BL

[
ρ̂tj−cl, ρ̄s−cl

]
ds

≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ tj+1

tj

DKL

[
ρ̂tj−cl, ρ̄s−cl

]
ds,

where the last inequality is due to the relation that D2
BL

definition
≤ D2

TV

Pinsker′s
≤ DKL.

Overall Bound Combine all the estimation, we have

DKL

[
ρ̄θ0
tk
‖ ρ̂θ0

tk

]
≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ tj+1

tj

DKL

[
ρ̂tj−cl, ρ̄s−cl

]
ds+ Cc2d

(
c2dkη

3 + dkη2
)

= α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ η

0

DKL

[
ρ̂t

( jη−clη )
, ρ̄t

( jη−clη )
+s

]
ds+ Cc2d

(
c2dkη

3 + dkη2
)

Similar, if k ≤ Mc
η − 1, we have

DKL

[
ρ̄θ0
tk
‖ ρ̂θ0

tk

]
=

1

4

∫ tk

0

E
∥∥∥∇V (θ̂s)−∇V (θ̂s)

∥∥∥2

ds

≤b
2
1

4

k−1∑
j=0

∫ tj+1

tj

E
∥∥∥θ̂tj − θ̂s∥∥∥2

ds

≤b
2
1η

3

12

k−1∑
j=0

E
∥∥∥∇V (θ̂tj )

∥∥∥2

+
dkb21η

2

4

≤b
2
1η

3kc2d
12

+
dkb21η

2

4
.

Define

uk = sup
s∈[tk,tk+1]

DKL

[
ρ̄θ0
s ‖ ρ̂θ0

s

]
,
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and Uk = max
l∈{0,...,k}

ul. We conclude that for k ≥ Mc
η , for any k′ ≤ k,

uk′ ≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

∫ h

0

DKL

[
ρ̂t

( jη−clη )
, ρ̄t

( jη−clη )
+s

]
ds+ Cc2d

(
c2dkη

3 + dkη2
)

≤ α2C(d+ c2d)

k−1∑
j=0

1

M

M∑
l=1

ηu( jη−clη ) + Cc2d
(
c2dkη

3 + dkη2
)

≤ α2C(d+ c2d)η

k−1∑
j=0

Uj + Cc2d
(
c2dkη

3 + dkη2
)
.

For k < Mc
η , which is a simpler case, we have

Uk ≤ C
(
η3kc2d + dkη2

)
< CMc

(
ηc2d + d

)
η.

We bound the case when k ≥ Mc
η ,

Uk ≤ α2C(d+ c2d)η
k−1∑
j=0

Uj + Cc2d
(
c2dkη

3 + dkη2
)
.

If we take η sufficiently small, such that c2dkη
3 ≤ dkη2, we have

Uk ≤ α2C(d+ c2d)η

k−1∑
j=0

Uj + 2Cc2ddkη
2

≤ α2C(d+ c2d)η

k−1∑
j=0

(Uj + η) .

Define η′ = α2C(d + c2d)η and we can choose η small enough such that η′ < 1/2 and η < 1/2.
Without loss of generality, we also assume η′ ≥ η and thus we have

Uk ≤ η′
k−1∑
j=0

(Uj + η′) .

Also we assume Uk ≥ η′, otherwise we conclude that Uk < η′. We thus have Uk ≤ q
∑k−1
j=0 Uj ,

where q = 2η′. Suppose that UMc
η −1 = x ≤ CMc

(
ηc2d + d

)
η and some algebra (which reduces to

Pascal’s triangle) shows that
Uk ≤ xq(1 + q)k−

Mc
η .

We conclude that Uk ≤ xq(1 + q)k−1. Notice that q = 2α2C(d+ c2d)η. Thus for any k ≥Mc/η,

Uk ≤ xq(1 + q)k−
Mc
η

= xq(1 + q)(kη−Mc)/η

= xq(1 + q)2α2C(d+c2d)(kη−Mc)/q

≤ x2α2C(d+ c2d)e
2α2C(d+c2d)(kη−Mc)η

≤ CMcα2
(
ηc2d + d

)
(d+ c2d)e

2α2C(d+c2d)(kη−Mc)η2,

for sufficiently small η. Combine the above two estimations, we have

Uk ≤

{
C
(
η3kc2d + dkη2 + η

)
k ≤Mc/η − 1

CMcα2
(
ηc2d + d

)
(d+ c2d)e

2α2C(d+c2d)(kη−Mc)η2 + Cη k ≥Mc/η
.

Notice that now we have Uk = max
l∈{0,...,k}

sup
s∈[0,η]

DKL

[
ρ̄θ0

lη+s ‖ ρ̃
θ0

lη

]
, which is a function of θ0.

We then bound Ūk = max
l∈{0,...,k}

sup
s∈[0,η]

DKL [ρ̄lη+s ‖ ρ̃lη]. Notice that the KL divergence has the

following variational representation:

DKL[ρ1 ‖ ρ2] = sup
f

[
Eρ1f − Eρ2ef

]
,
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where the f is chosen in the set that Eρ1f and Eρ2ef exist. And thus we have

DKL[ρ̄lη+s ‖ ρ̃lη] = sup
f

[
Eθ0∼ρ0

(
E
ρ̄
θ0
lη+s

f − E
ρ̃
θ0
lη

ef
)]

≤ Eθ0∼ρ0 sup
f

[(
E
ρ̄
θ0
lη+s

f − E
ρ̃
θ0
lη

ef
)]
.

And thus Ūk ≤ Uk. Also the inequality that

Ūk = max
l∈{0,...,k}

sup
s∈[0,η]

DKL [ρ̄lη+s ‖ ρ̃lη] ≥ max
l∈{0,...,k}

DKL [ρ̄lη ‖ ρ̃lη]

holds naturally by definition. We complete the proof.

B.5.5 PROOF OF THEOREM 4.3

The constant h1 is defined as

h1 =

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

∨
∥∥∥e−‖·‖2/σ∥∥∥2

BL
∨
∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

Now we start the proof. We couple the process of θk and θ̃k by the same gaussian noise ek in every

iteration and same initialization θ̃0 = θ0. For k ≤Mc/η−1, E
∥∥∥θk − θ̃k∥∥∥2

= 0 and for k ≥Mc/η

we have the following inequality,

E
∥∥∥θk+1 − θ̃k+1

∥∥∥2

− E
∥∥∥θk − θ̃k∥∥∥2

=2ηE
〈
θk − θ̃k,−∇V (θk) +∇V (θ̃k)

〉
+2ηαE

〈
θk − θ̃k, φ[

1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

〉

+η2E

∥∥∥∥∥∥−∇V (θk) + αφ[
1

M

M∑
j=1

δθk−jc/η ](θk) +∇V (θ̃k)− αφ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥∥∥∥
2

.

By the log-concavity, we have

E
〈
θk − θ̃k,−∇V (θk) +∇V (θ̃k)

〉
≤− LE

∥∥∥θk − θ̃k∥∥∥2

,

for some positive constant L. And also, as η is small, the last term on the right side of the equation
is small term. Thus our main target is to bound the second term. We decompose the second term on
the left side of the equation by

E

〈
θk − θ̃k, φ[

1

M

M∑
j=1

δθk−jc ](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

〉

=E

〈
θk − θ̃k, φ[

1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

〉

+E
〈
θk − θ̃k, φ[πM,c/η ∗ ρk](θk)− φ[πM,c/η ∗ ρ̃k](θk)

〉
+E

〈
θk − θ̃k, φ[πM,c/η ∗ ρ̃k](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

〉
=I1 + I2 + I3.

We bound I1, I2 and I3 independently.
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Bounding I1 By Holder’s inequality,

I1 ≤ E

∥∥∥θk − θ̃k∥∥∥
∥∥∥∥∥∥φ[

1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥∥∥∥


≤
√
E
∥∥∥θk − θ̃k∥∥∥2

√√√√√E

∥∥∥∥∥∥φ[
1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥∥∥∥
2

.

We bound the second term on the right side of the inequality. Define

a2 = sup
k

E
∥∥∥φ[ 1

M

∑M
j=1 δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥2

sup
‖θ‖≤B

E
∥∥∥φ[ 1

M

∑M
j=1 δθk−jc/η ](θ)− φ[πM,c/η ∗ ρk](θ)

∥∥∥2

and by the regularity assumption we know that

a2 ≤
sup
k

E
∥∥∥φ[ 1

M

∑M
j=1 δθk−jc ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥2

inf
k

sup
‖θ‖≤B

E
∥∥∥φ[ 1

M

∑M
j=1 δθk−jc/η ](θ)− φ[πM,c/η ∗ ρk](θ)

∥∥∥2 <∞.

Define φ[ 1
M

∑M
j=1 δθk−jc/η ](θ) − φ[πM,c/η ∗ ρk](θ) = φ∗[ 1

M

∑M
j=1 δθk−jc/η ] and since the stein

operator is linear functional of the distribution, we have

Eφ∗[
1

M

M∑
j=1

δθk−jc/η ](θ) = 0,

given any θ. By Theorem B.1 that Θk is geometric ergodicity and thus is β-mixing with exponen-
tially fast decay rate by Proposition B.2. And by Proposition B.1, we know that Θk is also α-mixing
with exponentially fast decay rate. We have the following estimation

E

∥∥∥∥∥∥φ[
1

M

M∑
j=1

δθk−jc/η ](θk)− φ[πM,c/η ∗ ρk](θk)

∥∥∥∥∥∥
2

≤a2 sup
‖θ‖≤B

E

∥∥∥∥∥∥φ∗[ 1

M

M∑
j=1

δθk−jc/η ](θ)

∥∥∥∥∥∥
2

≤ a2

M2
sup
‖θ‖≤B

E
M∑
k=1

∥∥φ∗[δθt−kc/η ](θ)
∥∥2

+
a2

M2
sup
‖θ‖≤B

E
∑
k 6=j

〈
φ∗[δθt−kc/η ](θ), φ∗[δθt−jc/η ](θ)

〉
≤Ca2

M

[
e−rc

(
1− e−rMc

)
1− erc

+ 1

]
,

for some positive constant r that characterize the decay rate of α mixing. Combine this two estima-
tions, we have

I1 ≤
√
E
∥∥∥θk − θ̃k∥∥∥2

√
a2C

M

[
e−rc (1− e−rMc)

1− erc
+ 1

]
.

Bounding I2 By Holder’s inequality, we have

I2 ≤
√
E
∥∥∥θk − θ̃k∥∥∥2

√
E
∥∥φ[πM,c/η ∗ ρk](θk)− φ[πM,c/η ∗ ρ̃k](θk)

∥∥2
.
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We bound the second term in the right side of the inequality.

E
∥∥φ[πM,c/η ∗ ρk](θk)− φ[πM,c/η ∗ ρ̃k](θk)

∥∥2

=E

∥∥∥∥∥∥ 1

M

M∑
j=1

[
φ[ρk−jc/η](θk)− φ[ρ̃k−jc/η](θk)

]∥∥∥∥∥∥
2

≤ 1

M

M∑
j=1

E
∥∥φ[ρk−jc/η](θk)− φ[ρ̃k−jc/η](θk)

∥∥2

=
1

M

M∑
j=1

Eθk

∥∥Eθ∼ρk−jc/η φ̄θk(θ)− Eθ∼ρ̃k−jc/η φ̄θk(θ)
∥∥2

=
1

M

M∑
j=1

Eθk

d∑
i=1

∣∣Eθ∼ρk−jc/η φ̄θk,i(θ)− Eθ∼ρ̃k−jc/η φ̄θk,i(θ)
∣∣2

≤ 1

M

M∑
j=1

Eθk

d∑
i=1

(∥∥φ̄θk,i(·)∥∥L∞ ∨ ∥∥φ̄θk,i(·)∥∥Lip

)2

D2
BL

[
ρk−jc/η, ρ̃k−jc/η

]
.

By Lemma B.4, we have
d∑
i=1

(∥∥φ̄θk,i(·)∥∥L∞ ∨ ∥∥φ̄θk,i(·)∥∥Lip

)2

=

d∑
i=1

(∥∥φ̄θk,i(·)∥∥2

L∞
∨
∥∥φ̄θk,i(·)∥∥2

Lip

)
≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
‖∇V (θk)‖2

]
.

Plug in the above estimation and by the relation that DBL ≤W1 ≤W2, we have

E ‖φ[πM,c ∗ ρk](θk)− φ[πM,c ∗ ρ̃k](θk)‖2

≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
Eθk ‖∇V (θk)‖2

]
1

M

M∑
j=1

D2
BL [ρk−cj , ˜ρk−cj ]

≤

[
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥∥e−‖·‖2/σ∥∥∥2

BL
Eθk ‖∇V (θk)‖2

]
1

M

M∑
j=1

W2
2 [ρk−cj , ˜ρk−cj ] .

And combined all the estimation and by the definition of Wasserstein-distance, we conclude that

I2 ≤

√
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥e−‖·‖2/σ∥∥2

BL
Eθk ‖∇V (θk)‖2

√√√√ 1

M

M∑
j=1

W2
2 [ρk−cj , ρ̃k−cj ]

≤

√
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥e−‖·‖2/σ∥∥2

BL
Eθk ‖∇V (θk)‖2

√√√√ 1

M

M∑
j=1

E
∥∥∥θk−cj − θ̃k−cj∥∥∥2

.

Bounding I3 By Holder’s inequality,

I3 ≤
√
E
∥∥∥θk − θ̃k∥∥∥2

√
E
∥∥∥φ[πM,c/η ∗ ρ̃k](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥2

.

We bound the last term on the right side of the inequality. By assumption and Lemma B.3, we have

E
∥∥∥φ[πM,c/η ∗ ρ̃k](θk)− φ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥2

≤

[∥∥∥e−(·)2/σ
∥∥∥

Lip
Eθ∼ρ̃k ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]2

E
∥∥∥θk − θ̃k∥∥∥2

.
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And combine the estimation, we have

I3 ≤

[∥∥∥e−(·)2/σ
∥∥∥

Lip
Eθ∼ρ̃k ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]
E
∥∥∥θk − θ̃k∥∥∥2

.

Overall Bound Combine all the results, we have the following bound: for k ≥Mc,

E
∥∥∥θk+1 − θ̃k+1

∥∥∥2

− E
∥∥∥θk − θ̃k∥∥∥2

≤− 2ηLE
∥∥∥θk − θ̃k∥∥∥2

+2ηα

√
E
∥∥∥θk − θ̃k∥∥∥2 c1√

M

+2ηαc2

√√√√ 1

M

M∑
j=1

E
∥∥∥θk−jc/η − θ̃k−jc/η∥∥∥2

E
∥∥∥θk − θ̃k∥∥∥2

+2ηαc3E
∥∥∥θk − θ̃k∥∥∥2

+η2c4,

where

c1 =

√
a2C

[
e−rc (1− e−rMc)

1− erc
+ 1

]
,

c2 =

√
4d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

BL

+ 4
∥∥e−‖·‖2/σ∥∥2

BL
sup
k

Eθk ‖∇V (θk)‖2,

c3 =

[∥∥∥e−(·)2/σ
∥∥∥

Lip
sup
k

Eθ∼ρ̃k ‖∇V (θ)‖+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

]
,

and

c4 = sup
k≥Mc/η

E

∥∥∥∥∥∥∇V (θk) + αφ[
1

M

M∑
j=1

δθk−jc/η ](θk)−∇V (θ̃k)− αφ[πM,c/η ∗ ρ̃k](θ̃k)

∥∥∥∥∥∥
2

.

Define uk =

√
E
∥∥∥θk − θ̃k∥∥∥2

and Uk = sup
l∈[k]

ul, we have

U2
k+1 ≤ qU2

k +
2ηαc1√
M

Uk + η2c4,

where q = (1 − 2η(L − αc2 − αc3)). By the assumption that α ≤ L/(c2 + c3), q < 1. Now we

prove the bound of Uk by induction. We take the hypothesis that U2
k ≤

(
2ηαc1√
M

+(1−q)η(c4+ 1
1−q )

)2

(1−q)2
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and notice that the hypothesis holds for U0 = 0. By the hypothesis, we have

U2
k+1 ≤ q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 +
2ηαc1√
M

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))
(1− q)

+ η2

(
c4 +

1

1− q

)

= q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 +
1

1− q

(
2ηαc1√
M

)2

+
2ηαc1√
M

η

(
c4 +

1

1− q

)
+ η2

(
c4 +

1

1− q

)

= q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

+
1− q

(1− q)2

[(
2ηαc1√
M

)2

+ (1− q)2ηαc1√
M

η

(
c4 +

1

1− q

)
+ (1− q)η2

(
c4 +

1

1− q

)]

≤ q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

+
1− q

(1− q)2

[(
2ηαc1√
M

)2

+ (1− q)2ηαc1√
M

η

(
c4 +

1

1− q

)
+ (1− q)2η2

(
c4 +

1

1− q

)2
]

= q

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 + (1− q)

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

=

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2 ,

where the last second inequality holds by (1− q)
(
c4 + 1

1−q

)
≥ 1. Thus we complete the argument

of induction and we have, for any k,

U2
k ≤

(
2ηαc1√
M

+ (1− q)η
(
c4 + 1

1−q

))2

(1− q)2

≤ 2

4η2α2c21
M + 2(1− q)2η2

(
c4 + 1

1−q

)2

(1− q)2

=
2α2c21

(L− αc2 − αc3)2

1

M
+ 4η2 (c4 + 2η(L− αc2 − αc3))

2
.

And it implies that W2
2[ρk, ρ̃k] ≤ uk ≤ Uk ≤ 2α2c21

(L−αc2−αc3)2
1
M + 4η2 (c4 + 2η(L− αc2 − αc3))

2
.

B.6 PROOF OF TECHNICAL LEMMAS

B.6.1 PROOF OF LEMMA B.1

For the first part:

‖∇V (θ)‖
≤‖∇V (θ)−∇V (0)‖+ ‖∇V (0)‖
≤b1 (‖θ1‖+ 1) .
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For the second part:

‖θ − η∇V (θ)‖
= 〈θ − η∇V (θ),θ − η∇V (θ)〉
= ‖θ‖2 + 2η 〈θ,−∇V (θ)〉+ η2 ‖∇V (θ)‖2

≤‖θ‖2 + 2η
(
−a1 ‖θ‖2 + b1

)
+ η2b1(1 + ‖θ‖2)

=
(
1− 2ηa1 + η2b1

)
‖θ‖2 + η2b1 + 2ηb1.

B.6.2 PROOF OF LEMMA B.2

It is obvious that ‖K‖∞,∞ ≤ 1.

‖K(θ′,θ1)−K(θ′,θ2)‖∥∥∥e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

∥∥∥
≤
∥∥∥e−(·)2/σ

∥∥∥
Lip
‖θ1 − θ2‖2 .

And

‖∇θ′K(θ′,θ1)−∇θ′K(θ′,θ2)‖

=

∥∥∥∥ 2

σ
e−‖θ

′−θ1‖2/σ (θ′ − θ1)− 2

σ
e−‖θ

′−θ2‖2/σ (θ′ − θ2)

∥∥∥∥
≤
∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

‖θ1 − θ2‖2 .

B.6.3 PROOF OF LEMMA B.3

For any distribution ρ such that
∫
‖∇θV (θ)‖ ρ(θ)dθ <∞,

‖φ[ρ](θ1)− φ[ρ](θ2)‖
= ‖Eθ∼ρ {− [K(θ,θ1)−K(θ,θ2)]∇V (θ) +∇1K(θ,θ1)−∇1K(θ,θ2)}‖

≤
∥∥∥e−(·)2/σ

∥∥∥
Lip

Eθ∼ρ ‖∇V (θ)‖ ‖θ1 − θ2‖2

+

∥∥∥∥ 2

σ
e−(·)2/σ(·)

∥∥∥∥
Lip

‖θ1 − θ2‖2 .

For proving the second result, we notice that

‖φ[ρ](θ)‖ = Eθ′∼ρ [K(θ′,θ)∇V (θ′) +∇1K(θ′,θ)]

≤ ‖K‖∞ Eθ′∼ρ

[
‖∇V (θ′)‖+

2

σ
(‖θ′‖+ ‖θ‖)

]
≤ ‖K‖∞ b1 + Eθ′∼ρ

[(
2

σ
+ b1

)
‖θ′‖+ ‖θ‖

]
.

B.6.4 PROOF OF LEMMA B.4

Given any θ′,
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d∑
i=1

∥∥φ̄θ′,i(θ)
∥∥2

Lip

=

d∑
i=1

[
sup

θ1 6=θ2

∣∣φ̄θ′,i(θ1)− φ̄θ′,i(θ2)
∣∣

‖θ1 − θ2‖2

]2

=

d∑
i=1

sup
θ1 6=θ2

∣∣φ̄θ′,i(θ1)− φ̄θ′,i(θ2)
∣∣2

‖θ1 − θ2‖22

≤2

d∑
i=1

sup
θ1 6=θ2

∣∣∣(e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

)
∂
∂θ′i

V (θ′)
∣∣∣2

‖θ1 − θ2‖22

+2

d∑
i=1

sup
θ1 6=θ2

∣∣∣ 2
σ e
−‖θ′−θ1‖2/σ(θ1,i − θ′i)− 2

σ e
−‖θ′−θ2‖2/σ(θ2,i − θ′i)

∣∣∣2
‖θ1 − θ2‖22

.

For the first term on the right side of the inequality,

d∑
i=1

sup
θ1 6=θ2

∣∣∣(e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

)
∂
∂θ′i
V (θ′)

∣∣∣2
‖θ1 − θ2‖22

=

d∑
i=1

∣∣∣∣ ∂∂θiV (θ′)

∣∣∣∣2 sup
θ1 6=θ2

∣∣∣(e−‖θ′−θ1‖2/σ − e−‖θ
′−θ2‖2/σ

)∣∣∣2
‖θ1 − θ2‖22

= ‖∇V (θ′)‖2
∥∥∥e−‖·‖2/σ∥∥∥2

Lip
.

To bound the second term, by the symmetry of each coordinates, we have

d∑
i=1

sup
θ1 6=θ2

∣∣∣ 2
σ e
−‖θ′−θ1‖2/σ(θ1,i − θ′i)− 2

σ e
−‖θ′−θ2‖2/σ(θ1,i − θ′i)

∣∣∣2
‖θ1 − θ2‖22

=d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

Lip

.

This finishes the first part of the lemma.

d∑
i=d

∥∥φ̄θ′,i(θ)
∥∥2

L∞

=

d∑
i=d

∥∥∥∥e−‖θ′−θ‖2/σ ( 2

σ
θi −

2

σ
θ′i −

∂

∂θ′i
V (θ′)

)∥∥∥∥2

L∞

≤
d∑
i=d

2

∥∥∥∥ 2

σ
e−‖θ

′−θ‖2/σ (θi − θ′i)
∥∥∥∥2

L∞
+

d∑
i=d

2

∥∥∥∥e−‖θ′−θ‖2/σ ∂

∂θ′i
V (θ′)

∥∥∥∥2

L∞

≤
d∑
i=d

2

∥∥∥∥ 2

σ
e−‖θ

′−θ‖2/σ (θi − θ′i)
∥∥∥∥2

L∞
+ 2

∥∥∥e−‖·‖2/σ∥∥∥2

L∞
‖∇V (θ′)‖2

≤2d

∥∥∥∥ 2

σ
e−‖θ‖

2/σθ1

∥∥∥∥2

L∞
+ 2

∥∥∥e−‖·‖2/σ∥∥∥2

L∞
‖∇V (θ′)‖2 .
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