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ABSTRACT

Deep neural networks are powerful learning machines that have enabled break-
throughs in several domains. In this work, we introduce retrospection loss to im-
prove performance of neural networks by utilizing prior experiences during train-
ing. Minimizing the retrospection loss pushes the parameter state at the current
training step towards the optimal parameter state while pulling it away from the
parameter state at a previous training step. We conduct extensive experiments to
show that the proposed retrospection loss results in improved performance across
multiple tasks, input types and network architectures.

1 INTRODUCTION

Large deep neural networks have enabled breakthroughs in fields such as computer vision
(Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), natural language understand-
ing (Mikolov et al., 2013) and reinforcement learning (Mnih et al., 2015). Hence, in recent times,
significant effort has been directed towards enhancing network efficiency through data augmenta-
tion, regularization methods and novel training strategies (Zhong et al., 2017) (Zhang et al., 2017),
(Huang et al., 2017) (Noh et al., 2017), (Wang et al., 2018) (Han et al., 2016). In this work, we
introduce a technique to improve performance by utilizing prior experiences of the network during
training.

Humans are efficient learners with the ability to quickly understand and process diverse ideas. A
hallmark of human intelligence is the capability to internalize these complex ideas by actively refer-
encing past interpretations to continually adapt understanding. Our artificial agents should be able
to do the same, learning and adapting quickly. This kind of fast and flexible learning is challenging,
since the agent must effectively integrate its prior experience with a small amount of new informa-
tion, while avoiding overfitting to the new data.

The idea for the retrospection loss is simple - to ensure that the predictions at a training step are
more similar to the ground truth than to the predictions from a previous training step. As training
proceeds, minimizing the loss constrains the network parameters to continually evolve towards the
optimal state by successive constriction of the outputs into tighter spaces around the goal. The
proposed retrospection loss is easy to implement and we empirically show that it works well across
multiple tasks, input types and network architectures.

2 RELATED WORK

Retrospection leverages the parameter state from a previous training step as guidance to compute
the direction of current gradient update. One could find similarities with efforts in optimization,
that utilize information from past training steps for future weight updates as well as methods that
leverage guidance from other parameter states during training.

Techniques such as SVRG (Johnson & Zhang, 2013), SARAH(Nguyen et al., 2017), ProxSARAH
(Pham et al., 2019) use gradients from earlier training steps to predict better weight updates. Other
optimization methods like Momentum (Sutskever et al., 2013), Adam (Kingma & Ba, 2014) Nes-
terov Momentum (Jin et al., 2018) accumulate past gradients to accelerate weight updates in the
right direction in order to achieve faster convergence. In contrast, our work introduces an additional
training objective to guide convergence, and can be used to improve performance when used with
different optimizer configurations, as shown in our results.
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In reinforcement learning (RL) where techniques involve optimizing using moving (evolving) tar-
gets, methods for Q-learning and policy gradients benefit from using a guidance network during
training. The DQN algorithm proposed by (Mnih et al., 2015) uses an additional target network
(same as online network) for Q-value updates, where parameters are updated by copying from the
online network at discrete steps. Double Q-learning (Hasselt, 2010) learns two Q functions, where
each Q-function is updated with a value for the next state from the other Q-function. Policy gradient
methods such as TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017) use a KL-divergence
objective during training that constrains the loss to ensure deviation from a previously learned policy
is small. In these techniques, leveraging a guidance during training results in improved convergence
and sample efficiency. Note that all these efforts are constrained to the RL setting. Further, the
objective in the RL setting is to control divergence from the guidance step to better handle moving
targets. On the other hand, the proposed retrospection loss is formalized differently to address the
supervised learning setting. To the best of our knowledge, this is the first such effort that uses an
idea such as retrospection in supervised learning.

3 METHODOLOGY

We now present the formulation of our retrospective loss. Consider a neural network, g(·), param-
eterized by its weights θ. Let the optimal parameters of the neural networks at the end of training
be given by θ∗. The current parameters of the network at time step T during training are given by
θT . The objective of the retrospective loss is to leverage the past states during training, and cue the
network to be closer to the ground truth than a past state at time step Tp. Given an input data-label
pair (xi, yi), the retrospective loss is given by:

LTretrospective = κ ∗ ||gθT (xi)− yi|| − ||gθT (xi)− gθTp (xi)|| (1)

The retrospective loss is designed such that minimizing it with respect to θ over the training steps
would constrain the parameter state at each reference step θT to be more similar to θ∗ than the
parameter state from the delayed time step θTp . The κ scaling term is required to obtain sufficient
gradient signal in later stages of training when gθT (xi) is close to yi, and the first term becomes
small.

Figure 1: Geometric intuition of the working of the proposed retrospection loss. The figures show
polytopes in the weight parameter space. (Left) For all θi inside the shown colored polytope, the
retrospective loss is negative and is positive outside. Our objective is to push parameters of the
current θT further inside this polygon close to θ∗; (Right) In a future time step T ′ > T , by design
of the retrospective loss, the polytope region shrinks and our objective at this time step is to push
parameters to a near-optimal region around θ∗.

Adding this loss term to an existing supervised learning task loss provides for efficient training,
as shown in our experiments later. The retrospective loss is introduced to the training objective
following a warm-up period wherein the neural network function can be considered stable for use
of retrospective updates. The training objective at any training step T with the retrospective loss is
hence defined as:

L =

{
Ltask T < IW
Ltask + LTretrospective T ≥ IW

(2)

where Ltask is the task-specific training objective and IW is the number of warm-up iterations. We
simply use Tp = F ∗ bT/F c as the time step for retrospection in this work, and show gains in effi-
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ciency of training. One could however mine for Tp intelligently to further improve the performance.
We use the L1-norm as the norm of choice in our implementation for the retrospective loss (Eqn 1).
We analyze these choices as part of our ablation studies in Section 5.

Geometric Intuition. Figure 1 illustrates the geometric intuition of the working of the retrospec-
tive loss. By design (Eqn 1), Lretrospective is negative when the current parameter state is farther
away from the retrospective step, Tp, than the optimal solution (which is the desirable objective).
One could view the loss
term as dividing the pa-
rameter space into two
regions: a polytope around
the optimal θ∗ where
Lretrospective < 0, and the
region outside the polytope
where Lretrospective > 0.
Minimizing retrospective
loss pushes the network
towards parameters further
inside the polytope, thus
helping speed up the training
process. As shown on the
right subfigure in Figure 1,
the polytope shrinks over
time, since the retrospective
support, Tp, is also updated
to more recent parameter states. This helps further push the parameters into a near-optimal region
around θ∗. The loss term helps in improved solution in most cases, and faster training in certain
cases, as shown in our extensive empirical studies in Section 4. Algorithm 1 summarizes the
methodology.

Connection with Triplet Loss. The triplet loss ((Chechik et al., 2010; Schroff et al., 2015; Hoffer
& Ailon, 2015)) has been proposed and used extensively over the last few years to learn high-
quality data embeddings, by considering a triplet of data points, xa (anchor point), xp (point from the
positive/same class as the sample under consideration), and xn (point from the negative class/class
different from the sample under consideration). The loss is then defined as:

max
(
‖ga − gp‖2 − ‖ga − gn‖2 +m, 0

)
(3)

where g is the neural network model, and m is a minimum desired margin of separation. The triplet
loss, inspired by contrastive loss (Hadsell et al., 2006), attempts to learn parameters θ of a neural
network in such a way that data points belonging to the same class are pulled together closer than a
data point from another class. One could view the proposed retrospection loss as a triplet loss in the
parameter space. While the traditional triplet loss consider a triplet of data samples, we consider a
triplet of parameters, θT , θ∗, and θTp . We however believe that retrospection captures the proposed
loss better, since we consider previous parameter states in time.

Connection with Momentum. Viewing retrospection from the perspective of previous gradients
in the training trajectory, one can connect it to the use of momentum, although more in a contrasting
sense. The use of momentum and variants such as Nesterov momentum (Jin et al., 2018) in training
neural networks use the past gradient, say at θT−1 or the gradient over the previous few steps, at
{θT−q, · · · , θT−1}, q > 0), while updating the parameters in the current step. This assumes local
consistency of the direction of the gradient update in the training trajectory, and that one can use
these previous directions to get a more robust estimate of the gradient step to be taken currently. In
contrast, retrospection leverages the same idea from the opposite perspective, viz., consistency of
the direction of the gradient update is only local, and hence the parameter state, θTp farther away
from the current state θT , provides a cue of what the next parameter must be far from. This raises
interesting discussions, and the possibility of analyzing retrospection as a thrust obtained from an
undesirable parameter state, as opposed to momentum. We leave these as interesting directions of
future work, and focus this work on proposing the method, and showing its effectiveness in training
neural networks.
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4 EXPERIMENTS AND RESULTS

We conduct experiments using retrospection on the following tasks: image classification (Sec 4.1),
image generation (Sec 4.2), speech recognition (Sec 4.3), text classification (Sec 4.4) and few-
shot image classification (Sec 4.5). During experimentation, the original (without retrospection)
and retrospective (with retrospection) configurations are trained using same weight initialization,
to ensure consistency of comparison. For all experiments, L1-norm is the default choice of norm
for retrospection. When retrospection is used without warm-up, the guidance parameters, θTp , are
initialized at random.

4.1 IMAGE CLASSIFICATION

We perform image classification experiments using Fashion-MNIST (Xiao et al., 2017), SVHN
(Netzer et al., 2011) and CIFAR-10 (Krizhevsky, 2009) datasets. The retrospection loss, for classi-
fication, uses activations of the softmax layer. The default hyperparameter configurations for retro-
spection include a warm-up period of zero epochs and a retrospective update frequency of fifty steps.
The parameter, K, is initialized at 4 and increased by 2% at each retrospective update. Quantitative
results for image classification are compiled in Table 1.

Fashion-MNIST. For experiments on Fashion MNIST, we use LeNet (Lecun et al., 2001) and
ResNet-20 (He et al., 2016) architectures. Models in each experiment are trained to convergence us-
ing the SGD optimizer (lr=0.1, momentum=0.5, mini-batch=32) running over 70,000 steps. Results
in Figure 2 (a)-(b) show that using the retrospective loss results in improved training.
SVHN. For experiments on SVHN, we use VGG-11 (Simonyan & Zisserman, 2014) and ResNet-
18 (He et al., 2016) architectures. Models in each experiment are trained to convergence using the
SGD optimizer (lr=0.001, momentum=0.9, mini-batch=100) running over 200,000 steps. Results in
Figure 2 (c)-(d) show that using the retrospective loss results in more efficient training.

Figure 2: Classification performance using retrospection on F-MNIST and SVHN datasets

Dataset Model Original Retrospective

F-MNIST LeNet 10.8 9.4
ResNet-20 7.6 6.8

SVHN VGG-11 5.54 4.70
ResNet-18 4.42 4.06

CIFAR-10
ResNet-44 6.98 (7.17) 6.55
ResNet-56 6.86 (6.97) 6.52
ResNet-110 6.55 (6.61) 6.29

Table 1: Classification error using retrospection on F-
MNIST, SVHN and CIFAR-10 dataset

CIFAR-10. For experiments on
CIFAR-10 (Krizhevsky, 2009), we use
larger variants of ResNet including
ResNet - 44, 56, 110 (He et al., 2016).
Models in each experiment are trained
for 200 epochs, using the training
configuration (mini-batch, lr policy)
detailed in (He et al., 2016). Here, we
observe that using the retrospection
loss in later stages of training results
in best improvement in performance.
Correspondingly, the retrospective loss
is introduced after a warm-up of 150
epochs and the retrospective update frequency is one epoch. The parameter, K, is initialized at 4
and updated by 2% once every ten retrospective updates. Quantitative performance is reported in
Table 1. For sake of completion, we also mention (in brackets) the error rates for the corresponding
experiments as reported by authors in the original work (He et al., 2016).

4.2 IMAGE GENERATION

Next, we perform experiment with Generative Adversarial Networks (GAN) using Fashion-MNIST
(F-MNIST) (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009) datasets. Our study considers
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both unconditional (DCGAN, LSGAN) and conditional (ACGAN) variants of GANs. We adapt
implementations from (dcg) for LSGAN (Mao et al., 2016), DCGAN (Radford et al., 2015) and
from (acg) for ACGAN (Odena et al., 2016). For our experiments, we train the generator and
discriminator for 100 epochs, with initial learning rate of 0.0002 on minibatches of size 64 using
Adam optimizer. We report performance using Inception Score (Salimans et al., 2016), a standard
metric for evaluating GANs. The inception score is calculated using implementation in (inc, 2018)
with predictions for CIFAR-10 generated using network in (Szegedy et al., 2015) and features for
F-MNIST using network in (Krizhevsky et al., 2012).

Figure 3: Inception Scores using retrospection on CIFAR-10 (Krizhevsky, 2009)(row 1) and F-
MNIST (Xiao et al., 2017) (row 2) datasets using DCGAN (Radford et al., 2015) (col 1), ACGAN
(Odena et al., 2016)(col 2), LSGAN (Mao et al., 2016)(col 3).

Figure 4: Images generated over training epochs when ACGAN (Odena et al., 2016) trained on
FMNIST dataset: (a) without retrospection (row 1) (b) with retrospection (row 2)

For all experiments, the retrospection loss is initialized without any warm-up period (zero epochs).
The loss is computed on outputs of the discriminator and is used to train the generator model. For
DCGAN (Radford et al., 2015) and LSGAN (Mao et al., 2016) L2-norm as choice of norm. The
retrospective update happens six times in one epoch. The scaling parameter, K is initialized at 4 and
is not changed during training. For ACGAN (Odena et al., 2016), which is conditional, the retro-
spective loss consists of both adversarial loss and class loss components. L1-norm is used for class
component and L2-norm is used for adversarial component. Figure 3 presents comparative incep-
tion score plots when the various dataset-network pairs are trained with (without) the retrospection
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loss. Additionally, Figure 4 presents images generated over epochs when training ACGAN (Odena
et al., 2016), with and without retrospection, on F-MNIST (Xiao et al., 2017).

4.3 SPEECH RECOGNITION

We perform speech recognition experiments using the Google Commands (Warden, 2017) dataset.
The dataset consists of 65,000 utterances, where each utterance is about one-second long and be-
longs to one out of 30 classes. The classes correspond to voice commands such as yes, no, down,
left, as pronounced by a few thousand different speakers. We follow (Zhang et al., 2017) to prepro-
cess the utterances where we first extract normalized spectrograms from the original waveforms at
a sampling rate of 16 kHz and subsequently we zero-pad the spectrograms to equalize their sizes at
160 x 101.

For this experiment, we compare LeNet(Lecun et al., 2001) and VGG-11(Simonyan & Zisserman,
2014) architecture, each of which is composed of two convolutional and two fully-connected layers.

Model Validation Set Testing Set

LeNet original 9.8 original 10.3
retrospective 9.6 retrospective 9.9

VGG-11 original 5.2 original 5.0
retrospective 4.4 retrospective 4.2

Table 2: Classification error using retrospection on the
Google Commands dataset

We train each model for 30 epochs
with minibatches of 100 examples, us-
ing Adam as the optimizer. Training
starts with a learning rate of 3x10−3 and
is divided by 10 every 10 epochs. The
retrospective loss is introduced after a
warm-up period of eight epochs, since
we find it speeds up initial convergence.
The retrospection update frequency is
half epoch. The loss scaling margin, K,
is initialized at 4, and is increased by 1% at each retrospective update. Results in Table 2 highlight
that training using the retrospection loss decreases error rate for both LeNet (Lecun et al., 2001) and
VGG-11 (Simonyan & Zisserman, 2014) on both validation and testing sets.

4.4 TEXT CLASSIFICATION

We perform text classification experiments on the task of emotion detection in dyadic conversations.
We baseline our experiments against DialogueRNN (Majumder et al., 2019), a recent state-of-the-art
work, which is composed of an attentive network consisting of three Gated Recurrent Units(GRU).
We perform experiments using AVEC (Schuller et al., 2012) and IEMOCAP (Busso et al., 2008)
datasets. While the datasets are multi-modal (image and text), following (Majumder et al., 2019),
we restrict scope of our experiments to using text. To feed into the network, the text data is pre-
processed to obtain n-gram features as detailed in (Majumder et al., 2019). We follow the same train-
test split and training configurations as in the original work. Performance comparison is reported
against BiDialogueRNN+Att, the best performing variant from the original work.

For experiments on IEMOCAP, models in each experiment are trained for 60 epochs
on cross-entropy objective with F1-Score and accuracy as performance metrics.

Dataset IEMOCAP AVEC
Accuracy F1-Score MSE Pear-Score (r)

original 62.66 62.75 0.179 0.318
retrospective 64.60 64.75 0.177 0.332

Table 3: Performance on using retrospection on task of dyadic emo-
tion recognition on DialogueRNN

For retrospection, a warm-up
of zero epochs is used. On
AVEC, models in each ex-
periment are trained for 100
epochs using MSE loss with
MSE and pear-score(r) as the
performance metrics. Here,
introducing the retrospection
loss after a warm-up of sev-
enty five epochs produces best performance. For experiments on both IEMOCAP and AVEC, the
retrospective update frequency is one epoch. The loss scaling margin, K, is set to 4 at initialization
and is updated by 2% at each retrospective update. Experiments are conducted using the official
code repository (Co, 2019). Results in Table 3 show that using the retrospection loss when training
DialogueRNN improves performance on both IECOMAP and AVEC datasets.

4.5 FEW-SHOT CLASSIFICATION

We conduct experiments on the task of few shot classification using the CUB-200 (Wah et al., 2011)
dataset. The CUB-200 dataset consists of 11,788 images from 200 bird species. In few-shot learning,
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the ability of a model is measured by its performance on n-shot, k-way tasks where the model is
given a query sample belonging to a new, previously unseen class and a support set, S, consisting
of n examples each from k different unseen classes. The model then has to determine which of the
support set classes the query sample belongs to. We restrict the scope of our experiments to the 5-
way 5-shot setting and baseline against closerlook (Chen et al., 2019), a recent state-of-the-art work,
and protonet (Snell et al., 2017) another popular work from the domain. Our experiments follow
from (Chen et al., 2019) and implementations use code in (Chen, 2019). We conduct experiments
with backbones of varying depths - Conv4, Conv6 and ResNet34, as presented in (Chen et al., 2019).

For our experiments, each model is trained on protonet (Snell et al., 2017)
for 400 epochs and on closerlook (Chen et al., 2019) for 200 epochs.

Model protonet closerlook
original retrospective original retrospective

Conv4 75.26 ±1.05 77.42 ± 1.25 79.03 ±0.63 79.95 ± 0.75
Conv6 80.71 ±1.55 81.78 ± 1.40 81.05 ±0.55 81.35 ± 0.30

ResNet34 88.75 ±1.01 89.99 ± 1.13 82.23 ±0.59 83.11 ± 0.55

Table 4: Classification performance using retrospection for few-shot classification
on CUB dataset

For Conv4
and Conv6
configura-
tions on both
closerlook
and protonet,
retrospection
is introduced
without any
warm-up pe-
riod (zero epochs). For ResNet34, a warm-up period of 280 epochs for protonet and 150 epochs
for closerlook is used. For all experiments, the retrospective update frequency is one epoch each.
The scaling parameter, K, is initialized at 4 and increased by 2% at each retrospective update.
For closerlook, we report comparative performance with baseline++, the best performing variant.
Results in Table 4 highlight that training with the retrospective loss results in improved classification
accuracy for all backbones configurations on both closerlook and protonet. 1

5 ANALYSIS

In this section, we presents ablation studies to analyse the impact of different hyperparameters -
batch size, optimizer, retrospective update frequency (F ) and the scaling parameter κ. The studies
are conducted on the task of image classification on F-MNIST (Xiao et al., 2017) dataset using
LeNet (Lecun et al., 2001) architecture. The default training configurations are used from Section
4.1. In all the studies, networks trained for each configuration are initialized with the same weights
to ensure consistent comparison.

Impact of Batch Size We perform experiments to analyse the invariance of the proposed retro-
spection loss to batch size. For this study, we consider batch sizes - 32, 64, 128. Results presented
in Figure 5 highlight that the retrospection loss results in improved training performance, which is
achieved much faster, across all the different batch sizes.

Figure 5: Classification performance using retrospection on LeNet(Lecun et al., 2001) across differ-
ent batch sizes on FMNIST (Xiao et al., 2017)

1Results in some experiments on the original configuration do not match values (are higher or lower) re-
ported in (Chen et al., 2019) even after using official code and same training config. However, we ensure
consistency of comparison by using the same initializations for original and retrospective configurations
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Figure 6: Ablation studies of classification performance on the F-
MNIST dataset: (Row 1) Varying loss scaling parameter, κ (left), and
retrospective update frequency (right); (Row 2) Using retrospection
on LeNet (Lecun et al., 2001) and SGD vs Adam optimizers; (Row
3) Using SGD, SGD +momentum, SGD + retrospection for LeNet,
ResNet-20 architectures

Impact of Optimizer
We perform experiments
to analyse the invariance of
the proposed retrospection
loss to choice of optimizer.
For this study, we use
Adam (Kingma & Ba,
2014) and SGD optimizers.
The classification perfor-
mance when using Adam
and SGD (momentum=0.5)
are reported in Figure 6
(Row 2). The observed
results highlight that the
retrospective loss results
in improved training per-
formance across different
optimizers.

Choice of Retrospective
Update Frequency, F .
We study the impact of dif-
ferent update frequencies
(F ) for the retrospective
loss. We experiment
with 150, 200, 250 steps.
Results are presented in
Figure 6 (Row 1) with the
best performance achieved
using F = 150 steps. All
configurations of the retro-
spection loss outperforms
the configuration (in blue)
trained without it. While
experiments in the current
work used randomized
search to estimate update
frequencies, retrospec-
tive mining can be an
interesting future direction.

Choice of scaling margin,
κ We conduct experiments using different initial values of the loss scaling margin, κ. For this
analysis, the value of κ remains unchanged during the training. Results are presented in Figure 6
(Row 1) with best performance achieved with κ = 4. All configurations produce better performance
than with κ = 1.

6 CONCLUSION AND FUTURE WORK
In this work, we introduced a retrospective loss that utilizes parameter states from previous training
steps to condition weight updates and guide the network towards convergence. We conduct experi-
ments across multiple tasks, input types and architectures to empirically validate the effectiveness of
the proposed loss. We perform ablation studies to analyze its behaviour. As an interesting future di-
rection to explore the connection between retrospection and momentum, we conducted preliminary
experiments on image classification to evaluate the impact of the retrospective loss on optimization.
We contrast performance from three different configurations on image classification: (a) trained
without retrospective loss (SGD); (b) trained without retrospective loss (SGD + momentum); and (c)
with retrospective loss (SGD). Results in Figure 6 (Row 3) highlight that introducing retrospection
improves performance (blue vs green); moreover, using the retrospective loss improves convergence
even when SGD is optimized without momentum.
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