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ABSTRACT

We tackle the problem of modeling sequential visual phenomena. Given exam-
ples of a phenomena that can be divided into discrete time steps, we aim to take
an input from any such time and realize this input at all other time steps in the
sequence. Furthermore, we aim to do this without ground-truth aligned sequences
— avoiding the difficulties needed for gathering aligned data. This generalizes the
unpaired image-to-image problem from generating pairs to generating sequences.
We extend cycle consistency to loop consistency and alleviate difficulties associ-
ated with learning in the resulting long chains of computation. We show com-
petitive results compared to existing image-to-image techniques when modeling
several different data sets including the Earth’s seasons and aging of human faces.

1 INTRODUCTION

Image-to-image translation has gained tremendous attention in recent years. A pioneering work by
(Isola et al., 2017) shows that it is possible to realize a real image from one domain as a highly real-
istic and semantically meaningful image in another when paired data between the domains are avail-
able. Furthermore, CycleGAN (Zhu et al., 2017) extended the image-to-image translation frame-
work in an unpaired manner by relying on the ability to build a strong prior in each domain based
off generative adversarial networks (GANs, (Goodfellow et al., 2014)) and enforcing consistency
on the cyclic transformation from and to a domain. Methods (Kim et al., 2017; Liu et al., 2017)
similar to CycleGAN have also been developed roughly around the same time. Since its birth, Cy-
cleGAN (Zhu et al., 2017) has become a widely adopted technique with applications even beyond
computer vision (Fu et al., 2018). However, CycleGAN family models are still somewhat limited
since they only handle the translation problem (directly) between two domains. Modeling more than
two domains would require separate instantiations of CycleGAN between any two pairs of domains
— resulting in a quadratic model complexity. A major recent work, StarGAN (Choi et al., 2018),
addresses this by facilitating a fully connected domain-translation graph, allowing transformation
between two arbitrary domains with a single model. This flexibility, however, appears restricted to
domains corresponding to specific attribute changes such as emotions and appearance.

Within nature, a multitude of settings exist where neither a set of pairs nor a fully-connected graph
are the most natural representations of how one might proceed from one domain to another. In
particular, many natural processes are sequentialand therefore the translation process should reflect
this. A common phenomena modeled as an image-to-image task is the visual change of natural
scenes between two seasons (Zhu et al., 2017), e.g., Winter and Summer. This neglects the fact that
nature first proceeds to Spring after Winter and Fall after Summer and therefore the pairing induces a
very discontinuous reflection of the underlying process. Instead, we hope that by modeling a higher
resolution discretization of this process, the model can more realistically approach the true model
while reducing the necessary complexity of the model.

It is difficult to obtain paired data for many image-to-image problems. Aligned sequential are even
more difficult to come by. Thus, it is more plausible to gather a large number of examples from
each step (domain) in a sequence without correspondences between the content of the examples.
Therefore, we consider a setting similar to unpaired image-to-image transformation where we only
have access to unaligned examples from each time step of the sequence being modeled. Given an
example from an arbitrary point in the sequence, we then generate an aligned sequence over all
other time steps — expecting a faithful realization of the image at each step. The key condition that
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required is that after generating an entire loop (returning from the last domain to the input domain),
one should expect to return to the original input. This is quite a weak condition and promotes model
flexibility. We denote this extension to the cycle consistency of (Zhu et al., 2017) as loop consistency
and therefore name our approach as Loop-Consistent Generative Adversarial Networks (LoopGAN).
This is a departure from many image-to-image approaches that have very short (usually length 2)
paths of computation defining what it means to have gone “there and back”, e.g. the ability to enforce
reconstruction or consistency. Since we do not have aligned sequences, the lengths of these paths for
LoopGAN are as large as the number of domains being modeled and require different approaches
to make learning feasible. These are not entirely different from the problems that often arise in
recurrent neural networks and we can draw similarities to our model as a memory-less recurrent
structure with applied to images.

We apply our method to the sequential phenomena of human aging (Zhang & Qi, 2017) and the
seasons of the Alps (Anoosheh et al., 2018) with extensive comparisons with baseline methods for
image-to-image translation. We also present additional results on gradually changing azimuth angle
of chairs and gradual change of face attributes to showcased the flexibility of our model. We show
favorable results against baseline methods for image-to-image translation in spite of allowing for
them to have substantially larger model complexity.
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Figure 1: LoopGAN framework: for simplicity, only a single loop starting at one real domain in a four-domain
problem is illustrated here. All four steps share a single generator G, parameterized by the step variable. When
training G, our objective function actually consists of four loops including A → B → C → D → A,
B → C → D → A → B, C → D → A → B → C, and D → A → B → C → D. This is consistent with
how CycleGAN is trained where two cycles are included.

2 RELATED WORK

Generative Adversarial Networks Generative adversarial networks (GANs, (Goodfellow et al.,
2014)) implicitly model a distribution through two components, a generator G that transforms a
sample from a simple prior noise distribution into a sample from the learned distribution over ob-
servable data. An additional component known as the discrimintor D, usually a classifier, attempts
to distinguish the generations of G with samples from the data distribution. This forms a minimax
game from which both G and D adapt to one another until some equilibrium is reached.

Unpaired Image-to-Image Transformation As an extension to the image-to-image translation
framework (pix2pix, (Isola et al., 2017)), (Zhu et al., 2017) proposed CycleGAN which has a sim-
ilar architecture as in (Isola et al., 2017) but is able to learn transformation between two domains
without paired training data. To achieve this, CycleGAN simultaneously train two generators, one
for each direction between the two domains. Besides the GAN loss enforced upon by domain-wise
discriminators, the authors proposed to add a cycle-consistency loss which forces the two gener-
ators to be reversible. Similar to pix2pix, this model aims at learning a transformation between
two domains and cannot be directly applied in multi-domain setting that involves more than two
domains. Concurrent to CycleGAN, (Liu et al., 2017) proposed a method named UNIT that implic-
itly achieves alignment between two domains using a VAE-like structure where both domains share
a common latent space. Furthermore, StarGAN ((Choi et al., 2018)) proposed an image-to-image
translation model for multiple domains. A single network takes inputs defining the source image and
desired domain transformation, however, it has been mainly shown to be successful for the domains
consisting of facial attributes and expressions.
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Multi-Modal Transformation The problem of learning non-deterministic multi-modal transfor-
mation between two image domains has made progress in recent years ((Huang et al., 2018; Liu
et al., 2018)). The common approach that achieves good performance is to embed the images for
both domains into a shared latent space. At test time, an input image in the source domain is �rst
embedded into the shared latent space and decoded into the target domain conditioned on a random
noise vector. These models avoid one-to-one deterministic mapping problem and are able to learn
different transformations given the same input image. However, these models are developed exclu-
sively for two-domain transformation and cannot be directly applied to problems with more than
two domains.

Style Transfer A speci�c task in image-to-image transformation called style transfer is broadly
de�ned as the task of transforming a photo into an artistic style while preserving its content (Gatys
et al., 2015; Johnson et al., 2016). Common approaches use a pre-trained CNN as feature extrac-
tor and optimize the output image to match low-level features with that of style image and match
high-level features with that of content image (Gatys et al., 2015; Johnson et al., 2016). A net-
work architecture innovation made popular by this �eld known as AdaIn (Huang & Belongie, 2017;
Dumoulin et al., 2017) combines instance normalization with learned af�ne parameters. It needs
just a small set of parameters compared to the main network weights achieve different style trans-
fers within the same network. It also shows great potential in improving image quality for image
generation (Karras et al., 2019) and image-to-image transformation (Huang et al., 2018).

Face Aging Generating a series of faces in different ages given a single face image has been
widely studied in computer vision. State-of-the-art methods (Zhang & Qi, 2017; Palsson et al.,
2018) use a combination of pre-trained age estimator and GAN to learn to transform the given
image to different ages that are both age-accurate and preserve original facial structure. They rely
heavily on a domain-speci�c age estimator and thus have limited application to the more general
sequential image generation tasks that we try to tackle here.

Video Prediction Video prediction attempts to predict some number of future frames of a video
based on a set of input frames (Shi et al., 2015; Vondrick et al., 2016). Full videos with annotated
input frames and target frames are often required for training these models. A combination of RNN
and CNN models has seen success in this task (Srivastava et al., 2015; Shi et al., 2015). Predictive
vision techniques (Vondrick et al., 2016; Vondrick & Torralba, 2017; Wang et al., 2019) that use
CNN or RNN to generate future videos also require aligned video clips in training. A recent work
(Gupta et al., 2018) added a GAN as an extra layer of supervision for learning human trajectories. At
a high level, video prediction can be seen as a supervised setting of our unsupervised task. Moreover,
video prediction mostly aims at predicting movement of objections rather than transformation of a
still object or scene which is the focus of our task.

3 METHOD

We formulate our method and objectives. Consider a setting ofn domains,X 1; : : : ; X n where
i < j implies thatX i occurs temporally beforeX j . This de�nes a sequence of domains. To make
this independent of the starting domain, we additionally expect that can translate fromX n to X 1 —
something a priori when the sequence represents a periodic phenomena. We de�ne asinglegenerator
G(x; i ) wherei 2 f 1; : : : ; ng andx 2 X i . Then, a translation between two domainsX i andX j

of an inputx i 2 X i is given by repeated applications ofG in the form ofGkj � i k (x i ; i ) (allowing
for incrementing the second argument modulon + 1 after each application ofG). By applyingG to
an inputn times, we have formed a direct loop of translations where the source and target domains
are equal. While we use a single generator, we make use ofn discriminatorsf D i gn

i =1 whereD i is
tasked with discriminating between a translation from any source domain toX i . Since we are given
only samples from each domainX i , we refer to each domainX i = f x j gN i

j =1 as consisting ofN i

examples from the domainX i with data distributionpdata (x i ).
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3.1 ADVERSARIAL LOSS

Supposex i � pdata (x i ). Then we expect that for all other domainsj , Gjj j � i jj (x i ; i ) should be
indistinguishable underD j from (true) examples drawn frompdata (x j ). Additionally, eachD j
should aim to minimize the ability forG to generate examples that it cannot identify as fake. This
forms the adversarial objective for a speci�c domain as:

L GAN (G; D i ) = E
x i � pdata (x i )

[logD i (x i )] +
X

j 6= i

E
x j � pdata (x j )

[log(1 � D i (G� (x j )))]

whereG� denotes iteratively applyingG until x j is transformed into domainX i , i.e. jj j � i jj times.
Taking this over all possible source domains, we get an overall adversarial objective as:

L GAN (G; D1; : : : ; Dn ) = E
i � q( i )

2

4 E
x i � pdata (x i )

[logD i (x i )] +
X

j 6= i

E
x j � pdata (x j )

[log(1 � D i (G� (x j )))]

3

5

whereq(i ) is a prior on the set of domains, eg. uniform.

3.2 LOOPCONSISTENCYLOSS

Within (Zhu et al., 2017), an adversarial loss was supplemented with a cycle consistency loss that
ensured applying the generator from domainA to domainB followed by applying aseparategener-
ator fromB to A acts like an identity function. However, LoopGAN only has a single generator and
supports an arbitrary number of domains. Instead, we build a loop of computations by applying the
generatorG to a source imagen times (equal to the number of domains being modeled). This con-
stitutes loop consistency and allows us to reduce the set of possible transformations learned to those
that adhere to the consistency condition. Loop consistency takes the form of anL 1 reconstruction
objective for a domainX i as:

L Loop (G; X i ) = E
x i � p(x i )

jj x i � Gn (x i ; i )k1

3.3 FULL OBJECTIVE

The combined loss of LoopGAN over both adversarial and loop-consistency losses can be written
as:

L (G; D1; : : : ; Dn ; X 1; : : : ; X n ) = L GAN (G; D1; : : : ; Dn ) + � Ei � q( i ) [L Loop (G; X i )]]

= Ei � q( i )

h
Ex i � pdata (x i )

h
logD i (x i )

i
+

X

j 6= i

Ex j � pdata (x j ) [log (1 � D i (G� (x j )))]

+ � Ex i � pdata (x i ) kx i � Gn (x i )k1

i
(1)

where� weighs the trade-off between adversarial and loop consistency losses.

An example instantiation of our framework for one loop in a four-domain problem is shown in
Figure 1.

4 IMPLEMENTATION

4.1 NETWORK ARCHITECTURE

We adopt the network architecture for style transfer proposed in (Johnson et al., 2016) as our gen-
erator. This architecture has three main components: a down-sampling moduleEnc(x), a sequence
of residual blocksT(h; i ), and an up-sampling moduleDec(h). The generatorG therefore is the
compositionG(x; i ) = Dec(T(Enc(x); i )) where the dependence ofT oni only relates to the step-
speci�c AdaIN parameters (Huang & Belongie, 2017) while all other parameters are independent of
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i . Following the notations from (Johnson et al., 2016; Zhu et al., 2017), let c7-k denote a 7� 7 Conv-
ReLU layer with k �lters and stride 1, dk denote a 3� 3 Conv-ReLU layer with k �lters and stride
2, Rk denote a residual block with two 3� 3 Conv-AdaIn-ReLU layers with k �lters each, uk de-
notes a 3� 3 fractional-strided-Conv-LayerNorm-ReLU layer with k �lters and stride1

2 . The layer
compositions of modules are down-sampling: c7-32, d64, d128; residual blocks: R128� 6; up-
sampling: u128, u64, c7-3. We use the PatchGAN discriminator architecture as (Zhu et al., 2017):
c4-64, c4-128, c4-256, c4-1, where c4-k denotes a 4� 4 Conv-InstanceNorm-LeakyRelu(0.2) layer
with k �lters and stride 2.

4.2 RECURRENTTRANSFORMATION

Suppose we wish to translate somex i 2 X i to another domainX j . A naive approach would
formulate this as repeated application ofG, jj � i j times. However, referencing our de�nition ofG,
we can unroll this to �nd that we must applyEnc andDec j � i times throughout the computation.
However,Enc andDec are only responsible for bringing an observation into and out of the space
of T. This is not only a waste of computation when we only require an output atX j , but it has
serious implications for the ability of gradients to propagate through the computation. Therefore,
we implementG(x i ; i ) as: a single application ofEnc(x i ), j � i applications ofT(h), and a single
application ofDec(h). T is appliedrecurrentlyand the entire generator is of the form:

G(x i ; i ) = Dec(T j j � i j (Enc(x i )))

We show in our ablation studies that this re-formulation is critical to the learning process and the
resulting quality of the transformations learned. Additionally,T(h; i ) is given a a set of separate,
learnable normalization (AdaIN (Huang & Belongie, 2017)) parameters that it selects based off ofi
with all other parameters ofT being stationary across time steps. The overall architecture is shown
in Figure 2.

Figure 2:LoopGAN network. All modules share parameters.

4.3 TRAINING

For all datasets, the loop-consistency loss coef�cient� is set to 10. We use Adam optimizer
((Kingma & Ba, 2014)) with the initial learning rate of 0.0002,� 1 = 0 :5, and� 2 = 0 :999. We
train the face aging dataset and Alps seasons dataset for 50 epochs and 70 epochs respectively with
initial learning rate and linearly decay learning rate to 0 for 10 epochs for both datasets.

5 EXPERIMENTS

We apply LoopGAN to two very different sequential image generation tasks: face aging and chaging
seasons of scenery pictures. Baselines are built with two bi-domain models, CycleGAN (Zhu et al.,
2017) and UNIT (Liu et al., 2017) and also a general-purpose multi-domain model StarGAN (Choi
et al., 2018). We are interested in the sequential transformation capabilities of separately trained
bi-domains compared to LoopGAN. Therefore, for each of the two bi-domains models, we train
a separate model between every pair of sequential domains, i.e.X i and X i +1 and additionally
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Figure 3: Face Aging and Alps seasons change with LoopGAN compared to baselines. Input real images are
highlighted with rectangles (viewed in color).

train a model between every pair (not necessarily sequential) domains Xi and Xj (i 6= j). The
first approach allows us to build a baseline for sequential generation by chaining the (separately
learned) models in the necessary order. For instance, if we have four domains: A, B, C, D, then
we can train four separate CycleGAN (or UNIT) models: GAB ; GBC ; GCD; GDA and correctly
compose them to replicate the desired sequential transformation. Additionally, we can train direct
versions e.g. GAC of CycleGAN (or UNIT) for a more complete comparison against LoopGAN. We
refer to composed versions of separately trained models as Chained-CycleGAN and Chained-UNIT
depending on the base translation method used. Since StarGAN ((Choi et al., 2018)) inherently
allows transformation between any two domains, we can apply this in a chained or direct manner
without any additional models needing to be trained.

5.1 FACE AGING

We adopt the UTKFace dataset (Zhang & Qi, 2017) for modeling the face aging task. It consists
of over 20,000 face-only images of different ages. We divide the dataset into four groups in order
of increasing age according to the ground truth age given in the dataset as A consisting of ages
from 10-20, B containing ages 25-35, C containing ages 40-50, and D containing ages 50-100. The
number of images for each group are 1531, 5000, 2245, 4957, respectively, where a 95/5 train/test
split is made. The results of LoopGAN generation are shown in on the left side in Figure 3.

LoopGAN shows advantage over baseline models in two aspects. The overall facial structure is
preserved which we believe is due to the enforced loop consistency loss. Moreover, LoopGAN is
able to make more apparent age changes compared to the rest of baseline models.

In order to quantitatively compare the amount of age change between models, we obtain an age
distribution of generated images by running a pre-trained age estimator DEX (Rothe et al., 2015).
The estimated age distributions of generated images (from input test images) are compared against
those of the train images in Figure 4. The age distribution of LoopGAN generated images is closer
to that of the train images across all four age groups when compared to the baseline models —
suggesting that it more faithfully learns the sequential age distribution changes of the training data.
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