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ABSTRACT

Discrete choice models with unobserved heterogeneity are commonly used Econo-
metric models for dynamic Economic behavior which have been adopted in practice
to predict behavior of individuals and firms from schooling and job choices to
strategic decisions in market competition. These models feature optimizing agents
who choose among a finite set of options in a sequence of periods and receive
choice-specific payoffs that depend on both variables that are observed by the agent
and recorded in the data and variables that are only observed by the agent but
not recorded in the data. Existing work in Econometrics assumes that optimizing
agents are fully rational and requires finding a functional fixed point to find the
optimal policy. We show that in an important class of discrete choice models the
value function is globally concave in the policy. That means that simple algorithms
that do not require fixed point computation, such as the policy gradient algorithm,
globally converge to the optimal policy. This finding can both be used to relax be-
havioral assumption regarding the optimizing agents and to facilitate Econometric
analysis of dynamic behavior. In particular, we demonstrate significant computa-
tional advantages in using a simple implementation policy gradient algorithm over
existing “nested fixed point” algorithms used in Econometrics.

1 INTRODUCTION

Dynamic discrete choice model with unobserved heterogeneity is, arguably, the most popular model
that is currently used for Econometric analysis of dynamic behavior of individuals and firms in
Economics and Marketing (e.g. see surveys in Eckstein and Wolpin (1989), Dubé et al. (2002) Abbring
and Heckman (2007), Aguirregabiria and Mira (2010)). Even most recent Econometric papers on
single-agent dynamic decision-making use this setup to showcase their results (e.g. Arcidiacono and
Miller, 2011; Aguirregabiria and Magesan, 2016; Müller and Reich, 2018).In this model, pioneered
in Rust (1987), the agent chooses between a discrete set of options (typically 2) in a sequence of
discrete time periods to maximize the expected cumulative discounted payoff. The reward in each
period is a function of the state variable which follows a Markov process and is observed in the data
and also a function of an idiosyncratic random variable that is only observed by the agent but is not
reported in the data. The unobserved idiosyncratic component is designed to reflect heterogeneity of
agents that may value the same choice differently.

Despite significant empirical success in prediction of dynamic economic behavior under uncertainty,
dynamic discrete choice models frequently lead to seemingly unrealistic optimization problems that
economic agents need to solve. For instance, Hendel and Nevo (2006) features an elaborate functional
fixed point problem with constraints, which is computationally intensive, especially in continuous
state spaces, for consumers to buy laundry detergent in the supermarket. Common approach for this
functional fixed point problem is value function iteration (See Section 2.3 for more discussion).

At the same time, rich literature on Markov Decision Processes (cf. Sutton and Barto, 2018) have
developed several effective optimization algorithms, such as the policy gradient algorithm and its
variants, that do not require solving for a functional fixed point. However, the drawback of the policy
gradient is that the value function in a generic Markov Decision problem is not concave in the policy.
This means that gradient-based algorithms have no guarantees for global convergence for a generic
MDP. While for some specific and simple models where closed-form characterizations exist, the
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convergence results are shown by model-specific technique which is hard to generalize (e.g. Fazel
et al., 2018, for linear quadratic regulator).

In this paper our main goal is to resolve the dichotomy in empirical social science literature that
the rationality of consumers requires for them to be able to solve the functional fixed point problem
which is computationally intensive. Our main theoretic contribution is the proof that, in the class of
dynamic discrete choice models with unobserved heterogeneity, the value function of the optimizing
agent is globally concave in the policy. This implies that a large set of policy gradient algorithms that
have a modest computational power requirement for the optimizing agents have a fast convergence
guarantee in our considered class of dynamic discrete choice models. The importance of this result is
twofold.

First, it gives a promise that seemingly complicated dynamic optimization problems faced by con-
sumers can be solved by relatively simple algorithms that do not require fixed point computation
or functional optimization. This means that the policy gradient-style methods have an important
behavioral interpretation. As a result, consumer behavior following policy gradient can serve as
a behavioral assumption for estimating consumer preferences from data which is more natural for
consumer choice settings than other assumptions that have been used in the past for estimation of
preferences (e.g. ε-regret learning in Nekipelov et al. (2015)). Second, more importantly, our result
showing fast convergence of the policy gradient algorithm makes it an attractive alternative to the
search for the functional fixed point in this class of problems. While the goal of the Econometric
analysis of the data from dynamically optimizing consumers is to estimate consumer preferences
by maximizing the likelihood function, it requires to sequentially solve the dynamic optimization
problem for each value of utility parameters along the parameter search path. Existing work in
Economics prescribes to use fixed point iterations for the value function to solve the dynamic opti-
mization problem (see Rust (1987), Aguirregabiria and Mira (2007)). The replacement of the fixed
point iterations with the policy gradient method significantly speeds up the maximization of the
likelihood function. This makes the policy gradient algorithm our recommended approach for use
in Econometric analysis, and establishes practical relevance of many newer reinforcement learning
algorithms from behavioral perspective for social sciences.

2 PRELIMINARIES

In this section, we introduce the concepts of the Markov decision process (MDP) with choice-specific
payoff heterogeneity, the conditional choice probability (CCP) representation and the policy gradient
algorithm.

2.1 MARKOV DECISION PROCESS

A discrete-time Markov decision process (MDP) with choice-specific heterogeneity is defined as a
5-tuple 〈S,A, r, ε,P, β〉, where S is compact convex state space with diam(S) ≤ S̄ <∞, A is the
set of actions, r : S×A → R+ is the reward function, such that r(s, a) is the immediate non-negative
reward for the state-action pair (s, a), ε are independent random variables, P is a Markov transition
model where where p(s′|s, a) defines the transition density between state s and s′ under action a, and
β ∈ [0, 1) is the discount factor for future payoff. We assume that random variables ε are observed
by the optimizing agent and not recorded in the data. These variables reflect idiosyncratic differences
in preferences of different optimizing agents over choices. In the following discussion we refer to
these variables as “random choice-specific shocks."

In each period t = 1, 2, . . . ,∞, the nature realizes the current state st based on the Markov transition
P given the state-action pair (st−1, at−1) in the previous period t− 1, and the choice-specific shocks
εt = {εt,a}a∈A drawn i.i.d. from distribution ε. The optimizing agent chooses an action a ∈ A, and
her current period payoff is sum of the immediate reward and the choice-specific shock, i.e., r(s, a) +
εt,a. Given initial state s1, the agent’s long-term payoff is Eε1,s2,ε2,...

[∑∞
t=1 β

t−1r(st, at) + εt,at
]
.

This expression makes it clear that random shocks ε play a crucial role in this model by allowing
us to define the ex ante value function of the optimizing agent which reflects the expected reward
from agent’s choices before the agent observes realization of εt. When the distribution of shocks ε is
sufficiently smooth (differentiable), the corresponding ex ante value function is smooth (differentiable)
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as well. This allows us to characterize the impact of agent’s policy on the expected value by
considering functional derivatives of the value function with respect to the policy.

In the remainder of the paper, we rely on the following assumptions.
Assumption 2.1. The state space S is compact in R and the action spaceA is binary, i.e.,A = {0, 1}.
Assumption 2.2. For all states s, the immediate reward r(s, 0) for the state-action pair (s, 0) is zero
i.e., r(s, 0) = 0, and the immediate reward r(s, 1) for the state-action pair (s, 1) is bounded between
[Rmin, Rmax].
Assumption 2.3. Choice-specific shocks ε are Type I Extreme Value random variables with location
parameter 0 (cf. Hotz and Miller, 1993) which are independent over choices and time periods.

Assumption 2.1, 2.2, 2.3 are present in most of the papers on dynamic decision-making in economics,
marketing and finance, (e.g. Dubé et al., 2002; Aguirregabiria and Mira, 2010; Arcidiacono and
Miller, 2011; Aguirregabiria and Magesan, 2016; Müller and Reich, 2018)

The policy and the value function A stationary Markov policy is a function σ : S × RA → A
which maps the current state s and choice-specific shock ε to an action. In our further discussion we
will show that there is a natural more restricted definition of the set of all feasible policies in this
model.

Given any stationary Markov policy σ, the value function Vσ : S → R is a mapping from the initial
state to the long-term payoff under policy σ, i.e.,

Vσ(s1) = Eε1,s2,ε2,...

[ ∞∑
t=1

βt−1
{
r(st, σ(st, εt)) + εt,σ(st,εt)

}]
.

Since the reward is non-negative and bounded, and the discount β ∈ [0, 1), value function Vσ is
well-defined and the optimal policy σ̃ (i.e., Vσ̃(s) ≥ Vσ(s) for all policies σ and states s) exists.
Furthermore, the following Bellman equation holds

Vσ(s) = Eε
[
r(s, σ(s, ε)) + εσ(s,ε) + β Es′ [Vσ(s′)|s, σ(s, ε)]

]
for all policies σ (1)

2.2 CONDITIONAL CHOICE PROBABILITY REPRESENTATION

Based on the Bellman equation (1) evaluated at the optimal policy, the optimal Conditional Choice
Probability δ̃(a|s) (i.e., the probability of choosing action a given state s in the optimal policy σ̃) can
be defined as

δ̃(a|s) = Eε[1{r(s, a) + εa + β Es′ [Vσ̃(s′)|s, a] ≥ r(s, a′) + εa′ + β Es′ [Vσ̃(s′)|s, a′] , ∀a′}]
The optimal policy σ̃ can, therefore, be equivalently characterized by threshold function π̃(s, a) =
r(s, a) + β Es′ [Vσ̃(s′)|s, a], such that the optimizing agent chooses action a† which maximizes the
sum of the threshold and the choice-specific shock, i.e., a† = argmaxa{π̃(s, a) + εa}. Similarly,
all non-optimal policies can be characterized by the corresponding threshold functions denoted π.
Under Assumption 2.3 the conditional choice probability δ can be explicitly expressed in terms of the
respective threshold π as (cf. Rust, 1996)

δ(a|s) = exp(π(s, a))

/(∑
a′∈A exp(π(s, a′))

)
.

We note that this expression induces a one-to-one mapping from the thresholds to the conditional
choice probabilities. Therefore, all policies are fully characterized by their respective conditional
choice probabilities. For notational simplicity, since we consider the binary action space A = {0, 1},
and the reward r(s, 0) is normalized to 0 we denote the immediate reward r(s, 1) as r(s); denote the
conditional choice probability δ(0|s) as δ(s); and denote π(s, 1) as π(s).

In the subsequent discussion given that the characterization of policy σ via its threshold is equivalent
to its characterization by conditional choice probability δ, we interchangeably refer to δ as the
“policy." Then we rewrite the Bellman equation for a given policy δ as

Vδ(s) =(1− δ(s)) r(s)− δ(s) log (δ(s))

− (1− δ(s)) log(1− δ(s)) + β Eε,s′
[
Vδ(s)(s

′)
∣∣∣s] (2)
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Now we make two additional assumptions that are compatible with standard assumptions in the
Econometrics literature.

Assumption 2.4. For all states s ∈ S, the conditional distribution of the next period Markov
state p(·|s, 1) first-order stochastically dominates distribution p(·|s, 0), i.e., for all ŝ ∈ S,
Prs′ [s′ ≤ ŝ|s, 1] ≤ Prs′ [s′ ≤ ŝ|s, 0].

Assumption 2.5. Under the optimal policy δ̃, the value function is non-decreasing in states, i.e.,
Vδ̃(s) ≤ Vδ̃(s′) for all s, s′ ∈ S s.t. s < s′.

Consider a myopic policy δ̄(s) = (exp(r(s)) + 1)−1 which uses threshold π̄(s) = r(s). This policy
corresponds to agent optimizing the immediate reward without considering how current actions
impact future rewards. Under Assumption 2.4 and Assumption 2.5, the threshold for optimal policy
is at least the threshold of myopic policy, i.e., π̃(s) ≥ π̄(s). Hence, Lemma 2.1 holds.

Lemma 2.1. The optimal policy δ̃ chooses action 0 with weakly lower probability than the myopic
policy δ̄ in all states s ∈ S, i.e., δ̃(s) ≤ δ̄(s).

2.3 MDP IN ECONOMICS AND POLICY GRADIENT

Our motivation in this paper comes from empirical work in Economics and Marketing where
optimizing agents are consumers or small firms who make dynamic decisions while observing
the current state s and the reward r(s, a) for their choice a. These agents often have limited
computational power making it difficult for them to solve the Bellman equation to find the optimal
policy. They also may have only sample access to the distribution of Markov transition which further
complicates the computation of the optimal policy. In this context we contrast the value function
iteration method which is based on solving the fixed point problem induced by the Bellman equation
and the policy gradient method.

Value function iteration In the value function iterations, e.g., discussed in Jaksch et al. (2010);
Haskell et al. (2016), the exact expectation in the Bellman equation (1) is replaced by an empirical
estimate and then functional iteration uses the empirical Bellman equation to find the fixed point, i.e.,
the optimal policy. Under certain assumptions on MDPs, one can establish convergence guarantees
for the value function iterations, e.g., Jaksch et al. (2010); Haskell et al. (2016). However, to run these
iterations may require significant computation power which may not be practical when optimizing
agents are consumers or small firms.

Policy gradient In contrast to value function iterations, policy gradient algorithm and its variations
are model-free sample-based methods. At a high level, policy gradient parametrizes policies {δθ}θ∈Θ

by θ ∈ Θ and computes the gradient of the value function with respect to the current policy δθ and
update the policy in the direction of the gradient, i.e., θ ← θ + α∇θVδθ . Though the individuals
considered in the Economic MDP models may not compute the exact gradient with respect to a policy
due to having only sample access to the Markov transition, previous work has provided approaches to
produce an unbiased estimator of the gradient. For example, REINFORCE (Williams, 1992) updates
the policy by θ ← θ + αR∇θ log(δθ(a|s)) where R is the long-term payoff on path. Notice that this
updating rule is simple comparing with value function iteration. The caveat of the policy gradient
approach is the lack of its global convergence guarantee for a generic MDP. In this paper we show
that such guarantee can be provided for the specific class of MDPs that we consider.

3 WARM-UP: LOCAL CONCAVITY OF THE VALUE FUNCTION AT THE OPTIMAL
POLICY

To understand the convergence of the policy gradient, in this section we introduce our main technique
and show that the concavity of the value function with respect to policies is satisfied in a fixed
neighborhood around the optimal policy. We rely on the special structure of the value function
induced by random shocks ε which essentially “smooth it" making it differentiable. We then use
Bellman equation (7) to compute strong Fréchet functional derivatives of the value functions and
argue that the respective second derivative is negative at the optimal policy. We use this approach in
Section 4 to show the global concavity of the value function with respect to policies.
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By ∆ we denote the convex compact set that contains all continuous functions δ : S → [0, 1] such that
0 ≤ δ(·) ≤ δ̄(·). The Bellman equation (7) defines the functional Vδ(·). Recall that Fréchet derivative
of functional Vδ(·), which maps bounded linear space ∆ into the space of all continuous bounded
functions of s, at a given δ(·) is a bounded linear functional DVδ(·) such that for all continuous h(·)
with ‖h‖2 ≤ H̄: Vδ+h(·)− Vδ(·) = DVδ(·)h(·) + o(‖h‖2). When functional DVδ(·) is also Fréchet
differentiable, we refer to its Fréchet derivative as the second Fréchet derivative of functional Vδ(·)
and denote it D2Vδ(·).
Theorem 3.1. Value function Vδ is twice Freéchet differentiable with respect to δ at the choice
probability δ̃ corresponding to optimal policy and its Fréchet derivative is negative at δ̃ in all states s,
i.e., D2Vδ̃(s) ≤ 0.

We sketch the proof idea of Theorem 3.1 and defer its formal proof to Appendix A. Start with the
Bellman equation (7) of the value function, the Fréchet derivative of the value function is the fixed
point of the following Bellman equation

DVδ(s) = (log(1− δ(s))− log(δ(s))− r(s))
+ β (Es′ [Vδ(s′)|s, 0]− Es′ [Vδ(s′)|s, 1]) + β Eε,s′ [DVδ(s′)|s] ,

(3)

and

D2Vδ(s) = − 1

δ(s)(1− δ(s))
− 2β(Es′ [DVδ(s′)|s, 1]− Es′ [DVδ(s′)|s, 0]) + β Es′

[
D2Vδ(s

′)|s
]
.

(4)

A necessary condition for its optimum yielding δ̃ is DVδ̃(s) = 0 for all states s. As a result, equation
(9) implies that its second Fréchet derivative is negative for all states, i.e.,D2Vδ̃(s) ≤ 0.

The Bellman equation (9) of the second Fréchet derivative suggests that D2Vδ(s) ≤ 0 for all states s
if

1

δ(s)(1− δ(s))
+ 2β(Es′ [DVδ(s′)|s, 1]− Es′ [DVδ(s′)|s, 0]) ≥ 0 (5)

The first term in the inequality (5) is always positive for all policies in ∆, but the second term can
be arbitrary small. In the next section, we will introduce a nature smoothness assumption on MDP
(i.e., Lipschitz MDP) and show that the local concavity can be extended to global concavity, which
implies that the policy gradient algorithm for our problem converges globally under this assumption.

4 GLOBAL CONCAVITY OF THE VALUE FUNCTION

In this section, we introduce the notion of the Lipschitz Markov decision process, and Lipschitz
policy space. We then restrict our attention to this subclass of MDPs. Our main result shows the
optimal policy belongs to the Lipschitz policy space and the policy gradient globally converges in
that space. We defer all the proofs of the results in this section to Appendix B.

4.1 LIPSCHITZ MARKOV DECISION PROCESS

Lipschitz Markov decision process has the property that for two state-action pairs that are close with
respect to Euclidean metric in S, their immediate rewards r and Markovian transition P should be
close with respect to the Kantorovich or L1-Wasserstein metric. Kantorovich metric is, arguable,
the most common metric used used in the analysis of MDPs (cf. Hinderer, 2005; Rachelson and
Lagoudakis, 2010; Pirotta et al., 2015).
Definition 4.1 (Kantorovich metric). For any two probability measures p, q, the Kantorovich metric
between them is

K(p, q) = sup
f

{∣∣∣∣∫
X

fd(p− q)
∣∣∣∣ : f is 1-Lipschitz continuous

}
Definition 4.2 (Lipschitz MDP). A Markov decision process is (Lr, Lp)-Lipschitz if

∀s, s′ ∈ S |r(s)− r(s′)| ≤ Lr |s− s′|
∀s, s′ ∈ S, a, a′ ∈ A K(p(·|s, a), p(·|s′, a′)) ≤ Lp (|s− s′|+ |a− a′|)
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4.2 CHARACTERIZATION OF THE OPTIMAL POLICY

Our result in Section 3, demonstrates that the second Fréchet derivative of Vδ with respect to δ is
negative for a given policy δ when inequality (5) holds. To bound the second term of (5) from below,
i.e., Es′ [DVδ(s′)|s, 0]− Es′ [DVδ(s′)|s, 1], it is sufficient to show that Fréchet derivative DVδ(·) is
Lipschitz-continuous. Even though we already assume that the Markov transition is Lipschitz, it is
still possible that DVδ is not Lipschitz: Bellman equation (8) for DVδ depends on policy δ(s) via
log(1− δ(s))− log(δ(s)), which can be non-Lipschitz in state s for general policies δ. Therefore,
to guarantee Lipschitzness of the Fréchet derivative of the value function it is necessary to restrict
attention to the space of Lipschitz policies. In this subsection, we show that this restriction is
meaningful since the optimal policy is Lipschitz.

Theorem 4.1. Given (Lr, Lp)-Lipschitz MDP, the optimal policy δ̃ satisfies∣∣∣∣∣log

(
1− δ̃(s)
δ̃(s)

)
− log

(
1− δ̃(s†)
δ̃(s†)

)∣∣∣∣∣ ≤
(
Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣
for all state s, s† ∈ S where Rmax = maxs∈S r(s) is the maximum of the immediate reward r over
S.

4.3 CONCAVITY OF THE VALUE FUNCTION WITH RESPECT TO LIPSCHITZ POLICIES

In this subsection, we present our main result showing the global concavity of the value function
for our specific class of Lipschitz MDPs with unobserved heterogeneity over the space of Lipschitz
policies.
Definition 4.3. Given (Lr, Lp)-Lipschitz MDP, define its Lipschitz policy space ∆ as

∆ = {δ :δ(s) ≤ δ̄(s) ∀s ∈ S and∣∣∣∣log

(
1− δ(s)
δ(s)

)
− log

(
1− δ(s†)
δ(s†)

)∣∣∣∣ ≤ (Lr +
2βRmaxLp

1− β

) ∣∣s− s†∣∣ ∀s, s† ∈ S} ,
where δ̄ is the myopic policy.

Theorem 4.1 and Lemma 2.1 imply that the optimal policy δ̃ lies in this Lipschitz policy space ∆ for
any Lipschitz MDP.
Definition 4.4 (Condition for global convergence). We say that (Lr, Lp)-Lipschitz MDP satisfies the
sufficient condition for global convergence if

2βLp < 1 and
2βLp

1− 2βLp

(
2Lr +

4βRmaxLp
1− β

)
≤
(

exp(Rmin) + 1
)2

exp(Rmin)
. (6)

Theorem 4.2. Given (Lr, Lp)-Lipschitz MDP which satisfies the condition for global convergence
(6), value function Vδ is concave with respect to policy δ in the Lipschitz policy space ∆, i.e.,
D2Vδ(s) ≤ 0 for all s ∈ S, δ ∈ ∆.

4.4 THE RATE OF GLOBAL CONVERGENCE OF THE POLICY GRADIENT ALGORITHM

In this subsection, we establish the rate of global convergence a simple version of the policy gradient
algorithm assuming oracle access to the Fréchet derivative of the value function. While this analysis
provides only a theoretical guarantee, as discussed in Section 2.3, in practice the individuals are able
to produce an unbiased estimator of the exact gradient. As a result, the practical application of the
policy gradient algorithm would only need to adjust for the impact of stochastic noise in the estimator.

Since we assume that individuals know the immediate reward function r, the algorithm can be
initialized at the myopic policy δ̄ with threshold π̄(s) = r(s), which is in the Lipschitz policy space
∆. From Lemma 2.1 it follows that the myopic policy is pointwise in S greater than the optimal
policy, i.e., δ̄(s) ≤ δ̃(s). Consider policy δ with threshold π(s) = r(s) + β

1−βRmax − β
2Rmin. Note

that Bellman equation (7) implies that V (s) is between Rmin

2 and Rmax

1−β for all states s. Thus, policy

δ pointwise bounds the optimal policy δ̃ from below, i.e., δ(s) ≤ δ̃(s). Our convergence rate result
applies to the policy gradient within the bounded Lipschitz policy set ∆̂.
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Definition 4.5. Given (Lr, Lp)-Lipschitz MDP, define its bounded Lipschitz policy space ∆̂ as

∆̂ = {δ :δ(s) ≤ δ(s) ≤ δ̄(s) ∀s ∈ S and∣∣∣∣log

(
1− δ(s)
δ(s)

)
− log

(
1− δ(s†)
δ(s†)

)∣∣∣∣ ≤ (Lr +
2βRmaxLp

1− β

) ∣∣s− s†∣∣ ∀s, s† ∈ S} .
For simplicity of notation, we introduce constants m and M which only depend on β, Rmin, Rmax,
Lr and Lp, whose exact expressions are deferred to the supplementary material for this paper.
Theorem 4.3. Given a (Lr, Lp)-Lipschitz MDP, which satisfies the condition for global convergence
(6) and constants m and M defined above, for any step size α ≤ 1

M , the policy gradient initialized at
the myopic policy δ̄ and updating as δ ← α∇δVδ in the bounded Lipschitz policy space ∆̂ after k
iterations, it produces policy δ(k) satisfying

Vδ̃(s)− Vδ(k)(s) ≤
(1− αm)k

(exp(Rmin) + 1)
2 at all s ∈ S.

5 EMPIRICAL APPLICATION

To demonstrate the performance of the algorithm, we use the data from Rust (1987) which made the
standard benchmark for the Econometric analysis of MDPs. The paper estimates the cost associated
with maintaining and replacing bus engines using data from maintenance records from Madison
Metropolitan Bus City Company over the course of 10 years (December, 1974—May, 1985). The data
contains monthly observations on the mileage of each bus as well as the dates of major maintenance
events (such as bus engine replacement).

Rust (1987) assumes that the engine replacement decisions follow an optimal stopping policy derived
from solving a dynamic discrete choice model of the type that we described earlier. Using this
assumption and the data, he estimates the cost of operating a bus as a function of the running mileage
as well as the cost of replacing the bus engine. We use his estimates of the parameters of the return
function and the state transition probabilities (bus mileage) to demonstrate convergence of the gradient
descent algorithm.

In Rust (1987) the state st is the running total mileage of the bus accumulated by the end of period t.
The immediate reward is specified as a function of the running mileage as:

r(st, a, θ1) =

{
−RC + εt1, if a = 1

−c(st, θ1) + εt0, if a = 0

where RC is the cost of replacing the engine, c(st, θ1) is the cost of operating a bus that has st miles.

Following Rust (1987), we take c(st, θ1) = θ1st. Further, as in the original paper, we discretize the
mileage taking values in the range from 0 to 175 miles into an even grid of 2,571 intervals. Given the
observed monthly mileage, Rust (1987) assumes that transitions on the grid can only be of increments
0, 1, 2, 3 and 4. Therefore, transition process for discretized mileage is fully specified by just four
parameters θ2j = Pr[st+1 = st + j|st, a = 0], j = 0, 1, 2, 3. Table 1 describes parameter values
that we use directly from Rust (1987).

Table 1: parameter values in from Rust (1987).
Parameter Value

RC 11.7257
θ1 0.001× 2.45569

(θ20, θ21, θ22, θ23) (0.0937, 0.4475, 0.4459, 0.0127)
β 0.99

We use the gradient descent algorithm to update the policy threshold π : ε1 + π ≥ ε0 ⇒ a = 1,
where a = 1 denotes the decision to replace the engine. We set the learning rate using the RMSprop
method1.

1We use standard parameter values for RMSProp method: β = 0.1, ν = 0.001 and ε = 10−8. The
performance of the the method was very similar to that when we used ADAM to update the threshold values.
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We use “the lazy projection" method to guarantee the search over Lipschitz policy space.
The policy space is parametrized by the vector of thresholds (π1, . . . , πN ) corresponding to
discretized state space (s1, . . . , sN ). It is initialized at the myopic policy, i.e. π

(0)
1 =

u(s1), . . . , π
(0)
N = u(sN ). At step k the algorithm updates the thresholds to the value π(k∗)

i =

π
(k−1)
i − αDδ(k−1)V (si)L(π

(k−1)
i )(1− L(π

(k−1)
i )), where L(·) is the logistic function and policy

δ
(k)
j = L(π

(k−1)
j ) for i, j = 1, . . . , N. To make the“lazy projection" updated values π(k∗)

i are ad-

justed to the closest monotone set of values π(k)
1 ≤ π(k)

2 ≤ . . . ≤ π(k)
N . The algorithm terminates at

step k where the norm maxi |DVδ(k)(si)| ≤ τ for a given tolerance τ .2 The formal definition of lazy
projection can be found in Appendix C.

Figure 3 demonstrates convergence properties of our considered version of the policy gradient
algorithm. We used the “oracle" versions of the gradient and the value function that were obtained by
solving the corresponding Bellman equations. We initialized the algorithm using the myopic threshold
π̄(s) = −RC + c(s, θ1); with the convergence criterion set to be based on the value maxi |DVδ(si)|3.

In the original model in Rust (1987), the discount factor used when estimating parameters of the cost
function was very close to 1. However, performance of the algorithm improves drastically when the
discount factor is reduced. This feature is closely related to the Hadamard stability of the solution of
the Bellman equation (e.g. observed in Bajari et al. (2013)) and is not algorithm-specific. In all of the
follow-up analysis by the same author (e.g. Rust (1996)) the discount factor is set to more moderate
values of .99 or .9 indicating that these performance issues were indeed observed with the settings in
Rust (1987). Figure 3 illustrates the performance of the algorithm for the case where the discount
factor is set to 0.994. For the same convergence criterion, the algorithm converges much faster.

Figure 1: Convergence of gradient descent, discount factor β = 0.99

Figure 2: Performance of the norm maxi |DVδ(si)| and the second derivative maxi |D2Vδ(si)|,
discount factor β = 0.99

2To optimize the performance of the method it is also possible to consider a mixed norm of the form
maxi |π(k)(si)− π(k−1)(si)|+ λmaxi |DVδ(k)(si)|∞ ≤ τ for some calibrated weight λ. This choice would
control both the rate of decay of the gradient and the advancement of the algorithm in adjusting the thresholds.

3The particular tolerance value used was 0.03 for illustrative purposes.
4When we reduce the cost of replacing the engine along with the discount factor, which ensures that there is

significant variation in threshold values across states, convergence is improved even further
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APPENDIX

A OMITTED PROOF FOR THEOREM 3.1

Theorem 3.1. Value function Vδ is twice Freéchet differentiable with respect to δ at the choice
probability δ̃ corresponding to optimal policy and its Fréchet derivative is negative at δ̃ in all states s,
i.e., D2Vδ̃(s) ≤ 0.

Proof. We start with the Bellman equation of the value function.

Vδ(s) =(1− δ(s)) r(s)− δ(s) log (δ(s))

− (1− δ(s)) log(1− δ(s)) + β Eε,s′
[
Vδ(s)(s

′)
∣∣∣s] (7)

First of all, note that in (7) the first three terms on the right hand side of the equation simple
nonlinear functions δ(·) and thus the directional derivative with respect to δ(·) can be taken as an
ordinary derivative with respect to δ as a parameter. Next note that if functional Jδ(·) is directionally
differentiable with respect to δ and for all h(·), d

dτ Jδ+τ h(·)|τ=0/h(·) is invariant, then Jδ(·) is
Fréchet differentiable with respect to δ and the obove ratio is its Fréchet derivative. As a result, the
Fréchet derivative of simple functional (1− δ(s)) r(s)− δ(s) log (δ(s))− (1− δ(s)) log(1− δ(s))
with respect to δ(·) exists and equal to log(1− δ(s))− log(δ(s))− r(s). This expression is itself a
Freéchet-differentiable functional with Fréchet derivative equal to −1/(δ(s)(1 − δ(s))), meaning
that the original functional (1 − δ(s)) r(s) − δ(s) log (δ(s)) − (1 − δ(s)) log(1 − δ(s)) is twice
Fréchet differentiable with the second Fréchet derivative −1/(δ(s)(1− δ(s))). Whenever the state
transition is affected by the individual decision we need to consider decomposition of the conditional
expectation with respect to the future state:

Eε,s′ [Vδ(s′)|s] = (1− δ(s)) Es′ [Vδ(s′)|s, 1] + δ(s) Es′ [Vδ(s′)|s, 0] .

Under standard technical conditions that allow the swap of the derivative and the integral

DEs′ [Vδ(s′)|s] = (Es′ [Vδ(s′)|s, 0]− Es′ [Vδ(s′)|s, 1]) + Es′ [DVδ(s′)|s]
Thus, the Fréchet derivative of the value function should be the fixed point of the following Bellman
equation

DVδ(s) = (log(1− δ(s))− log(δ(s))− r(s))
+ β (Es′ [Vδ(s′)|s, 0]− Es′ [Vδ(s′)|s, 1]) + β Eε,s′ [DVδ(s′)|s] ,

(8)

and

D2Vδ(s) = − 1

δ(s)(1− δ(s))
− 2β(Es′ [DVδ(s′)|s, 1]− Es′ [DVδ(s′)|s, 0]) + β Es′

[
D2Vδ(s

′)|s
]
.

(9)

Given that both these equations are Type II Fredholm integral equations for DVδ(·) and D2Vδ(·)
which have unique solutions whenever β < 1 that are bounded and continuous (see Dunford and
Schwartz (1957)) and, thus, unique solutions for both equations exist and Vδ(·) is indeed Fréchet-
differentiable. This means that the necessary condition for its optimum yielding δ̃ is DVδ̃(s) = 0
for all states s. As a result, equation (9) implies that its second Fréchet derivative is negative for all
states, i.e.,D2Vδ̃(s) ≤ 0.
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B OMITTED PROOFS IN SECTION 4

B.1 OMITTED PROOF OF THEOREM 4.1

Theorem 4.1. Given an (Lr, Lp)-Lipschitz MDP, the optimal policy δ̃ satisfies∣∣∣∣∣log

(
1− δ̃(s)
δ̃(s)

)
− log

(
1− δ̃(s†)
δ̃(s†)

)∣∣∣∣∣ ≤
(
Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣
for all state s, s† ∈ S where Rmax = maxs∈S r(s) is the maximum of the immediate reward r over
S.

Proof. At the optimal policy δ̃, the Fréchet derivative of the value function is zero, i.e., DVδ̃(s) = 0
for all state s. Therefore, from the Bellman equation (8) we establish that

log

(
1− δ̃(s)
δ̃(s)

)
= r(s) + β (Es′

[
Vδ̃(s

′)|s, 1
]
− Es′

[
Vδ̃(s

′)|s, 0
]
)

Thus, for all states s, s† ∈ S,∣∣Es′[Vδ̃(s′)|s, a]− Es′
[
Vδ̃(s

′)|s†, a
]∣∣

=

∣∣∣∣∫
s′∈S

Vδ̃(s
′)(p(s′|s, a)− p(s′|s†, a))ds′

∣∣∣∣
=
Rmax

1− β

∣∣∣∣∫
s′∈S

(1− β)

Rmax
Vδ̃(s

′)(p(s′|s, a)− p(s′|s†, a))ds′
∣∣∣∣

≤Rmax

1− β
sup
‖f‖L≤1

{∣∣∣∣∫
s′∈S

f(s′)(p(s′|s, a)− p(s′|s†, a))ds′
∣∣∣∣}

=
Rmax

1− β
K(p(·|s, a), p(·|s†, a)) ≤ RmaxLp

1− β
∣∣s− s†∣∣

where we use upper bounds sups∈S Vδ̃(s) ≤
Rmax

1−β and ‖ (1−β)
Rmax

Vδ̃(s
′)‖L ≤ 1. Thus,∣∣∣∣∣log

(
1− δ̃(s)
δ̃(s)

)
− log

(
1− δ̃(s′)
δ̃(s†)

)∣∣∣∣∣
=|r(s)− r(s†) + β (Es′

[
Vδ̃(s

′)|s, 1
]
− Es′

[
Vδ̃(s

′)|s, 0
]
)

− β (Es′
[
Vδ̃(s

′)|s†, 1
]
− Es′

[
Vδ̃(s

′)|s†, 0
]
)|

≤
∣∣r(s)− r(s†)∣∣+ β

∣∣Es′[Vδ̃(s′)|s, 1]− Es′
[
Vδ̃(s

′)|s†, 1
]∣∣

+ β
∣∣Es′[Vδ̃(s′)|s, 0]− Es′

[
Vδ̃(s

′)|s†, 0
]∣∣

≤
(
Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣
B.2 OMITTED PROOF OF THEOREM 4.2

Theorem 4.2. Given an (Lr, Lp)-Lipschitz MDP which satisfies the condition for global convergence
(6), the value function Vδ is concave with respect to policy δ in the Lipschitz policy space ∆, i.e.,
D2Vδ(s) ≤ 0 for all s ∈ S, δ ∈ ∆.

To show Theorem 4.2, we first introduce the following lemma establishing Lipschitz continuity of the
Fréchet derivative of the value function.

Lemma B.1. Given a (Lr, Lp)-Lipschitz MDP, for all policies δ in the the Lipschitz policy space

∆, the Fréchet derivative of the respective value function DVδ(·) is
(

2Lr+
4βRmaxLp

1−β
1−2βLp

)
-Lipschitz

11
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continuous, i.e., for all states s, s† ∈ S,

∣∣DVδ(s)−DVδ(s
†)
∣∣ ≤ (2Lr +

4βRmaxLp
1−β

1− 2βLp

)∣∣s− s†∣∣ .
Proof. We begin with the Bellman equation (8) for the Fréchet derivative of value function.

DVδ(s) = log

(
1− δ(s)
δ(s)

)
− r(s)

+ β (Es′ [Vδ(s′)|s, 0]− Es′ [Vδ(s′)|s, 1]) + β Eε,s′ [DVδ(s′)|s]

We use the concept of the contraction mapping to prove the result of the Lemma.

Definition B.1. Let T : X → X be a mapping from a metric space X to itself,

• T is a contraction mapping (with modulus γ ∈ [0, 1)) if ρ(T (x), T (y)) ≤ γρ(x, y) for all
x, y ∈ X , where ρ is a metric on X .

• x is a fixed point of T if T (x) = x.

Lemma B.2. Suppose that X is a complete metric space and that T : X → X is a contraction
mapping with modulus γ. Then,

• T has a unique fixed point x∗.

• If X ′ ⊆ X is a closed subset for which T (X ′) ⊆ X ′, then x∗ ∈ X ′.

Consider the contraction mapping Tδ(x)(s) = log
(

1−δ(s)
δ(s)

)
− r(s) + β (Es′ [Vδ(s′)|s, 0] −

Es′ [Vδ(s′)|s, 1]) + β Eε,s′ [x(s′)|s], then the Bellman equation implies that DVδ is the fixed point of
contraction mapping Tδ . Since the Lipschitz continuity property forms a closed subset, by Lemma B.2,
it is sufficient to show for any LDV -Lipschitz continuous x, Tδ(x) is also LDV -Lipschitz continuous,

where LDV =
2Lr+

4βRmaxLp
1−β

1−2βLp
. Thus, consider states s, s† ∈ S,∣∣T (x)(s)− T (x)(s†)

∣∣
≤
∣∣∣∣log

(
1− δ(s)
δ(s)

)
− log

(
1− δ(s†)
δ(s†)

)∣∣∣∣+
∣∣r(s)− r(s†)∣∣

+ β
∣∣Es′ [Vδ(s′)|s, 0]− Es′

[
Vδ(s

′)|s†, 0
]∣∣

+ β
∣∣Es′ [Vδ(s′)|s, 1]− Es′

[
Vδ(s

′)|s†, 1
]∣∣

+ β
∣∣Es′ [x(s′)|s, 0] δ(s)− Es′

[
x(s′)|s†, 0

]
δ(s†)

∣∣
+ β

∣∣Es′ [x(s′)|s, 1] (1− δ(s))− Es′
[
x(s′)|s†, 1

]
(1− δ(s†))

∣∣
where ∣∣∣∣log

(
1− δ(s)
δ(s)

)
− log

(
1− δ(s†)
δ(s†)

)∣∣∣∣ ≤ (Lr +
2βRmaxLp

1− β

) ∣∣s− s†∣∣∣∣r(s)− r(s†)∣∣ ≤ Lr ∣∣s− s†∣∣
by the same calculation in the proof of Theorem 4.1, for a = 0, 1,

β
∣∣Es′ [Vδ(s′)|s, a]− Es′

[
Vδ(s

′)|s†, a
]∣∣ ≤ (Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣
12
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and ∣∣Es′ [x(s′)|s, 0] δ(s)− Es′
[
x(s′)|s†, 0

]
δ(s†)

∣∣
=

∣∣∣∣∫
s′∈S

(δ(s)− δ(s†))x(s′)(p(s′|s, a)− p(s′|s†, a))ds′
∣∣∣∣

=LDV

∣∣∣∣∫
s′∈S

(δ(s)− δ(s†))x(s′)

LDV
(p(s′|s, a)− p(s′|s†, a))ds′

∣∣∣∣
≤LDV sup

‖f‖L≤1

{∣∣∣∣∫
s′∈S

f(s′)(p(s′|s, a)− p(s′|s†, a))ds′
∣∣∣∣}

=LDVK(p(·|s, a), p(·|s†, a)) ≤ LDV Lp
∣∣s− s†∣∣

where we use the bound
∣∣δ(s)− δ(s†)∣∣ ≤ 1 and thus ‖ (δ(s)−δ(s†))x(s′)

LDV
‖L ≤ 1. Similarly,∣∣Es′ [x(s′)|s, 1] (1− δ(s))− Es′

[
x(s′)|s†, 1

]
(1− δ(s†))

∣∣ ≤ LDV Lp ∣∣s− s†∣∣
Combining all the bounds, we obtain that∣∣T (x)(s)− T (x)(s†)

∣∣ ≤ (2Lr +
4βRmaxLp

1− β
+ 2βLDV Lp

) ∣∣s− s†∣∣ .
Substitution LDV =

2Lr+
4βRmaxLp

1−β
1−2βLp

yields the statement of the Lemma.

Proof of Theorem 4.2. From the Bellman equation (9), it is sufficient to show

1

δ(s)(1− δ(s))
≥ 2β(Es′ [DVδ(s′)|s, 1]− Es′ [DVδ(s′)|s, 0]) (10)

We bound both sides separately. Since the policy satisfies δ(s) ≤ δ̄(s) for all states s, and δ̄(s) =
1

exp(r(s))+1 ≤
1
2 , the left hand side can be bounded from below as

1

δ(s)(1− δ(s))
≥ 1

δ̄(s)(1− δ̄(s))
≥
(

exp(Rmin) + 1
)2

exp(Rmin)

Meanwhile, the righthand side can be bounded from above by Lemma B.1. Let LDV =
2Lr+

4βRmaxLp
1−β

1−2βLp
,

2β |Es′ [DVδ(s′)|s, 1]− Es′ [DVδ(s′)|s, 0]|

=2β

∣∣∣∣∫
s′∈S

DVδ(s
′)(p(s′|s, 1)− p(s′|s, 0))ds′

∣∣∣∣
=2βLDV

∣∣∣∣∫
s′∈S

DVδ(s
′)

LDV
(p(s′|s, 1)− p(s′|s, 0))ds′

∣∣∣∣
≤2βLDV sup

‖f‖L≤1

{∣∣∣∣∫
s′∈S

f(s′)(p(s′|s, 1)− p(s′|s, 0))ds′
∣∣∣∣}

=2βLDVK(p(·|s, 1), p(·|s, 0)) ≤ 2βLp
1− 2βLp

(
2Lr +

4βRmaxLp
1− β

)
From the condition of global convergence

2βLp
1− 2βLp

(
2Lr +

4βRmaxLp
1− β

)
≤
(

exp(Rmin) + 1
)2

exp(Rmin)

it follows that the inequality (10) is satisfied and the Bellman equation (9) implies that D2Vδ(s) ≤ 0
for all states s ∈ S.

13
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B.3 OMITTED PROOF OF THEOREM 4.3

For notation simplicity, we introduce notations m and M such that

m =
1

1− β

((
exp(Rmin) + 1

)2
exp(Rmin)

− 2βLp
1− 2βLp

(
2Lr +

4βRmaxLp
1− β

))

M =
1

(1− β)2

(1− β)

(
exp

(
1

1−βRmax − β
2Rmin

)
+ 1
)2

exp( 1
1−βRmax − β

2Rmin)

+2β

(
exp

(
1

1− β
Rmax −

β

2
Rmin

)
+

2β

1− β
Rmax − (1 + β)Rmin

))
Theorem 4.3. Given a (Lr, Lp)-Lipschitz MDP, which satisfies the condition for global convergence
(6) and constants m and M defined above, for any step size α ≤ 1

M , the policy gradient initialized at
the myopic policy δ̄ and updating as δ ← α∇δVδ in the bounded Lipschitz policy space ∆̂ after k
iterations, it produces policy δ(k) satisfying

Vδ̃(s)− Vδ(k)(s) ≤
(1− αm)k

(exp(Rmin) + 1)
2

at all s ∈ S.

Our analysis follows the standard steps establishing convergence of the conventional gradient descent
algorithm which bounds the second Fréchet derivative of the value function Vδ with respect to the
policy δ from above and from below by m and M respectively.
Lemma B.3. Given a (Lr, Lp)-Lipschitz MDP, which satisfies the condition for global convergence
(6), for all policies δ in the bounded Lipschitz policy space ∆̂, for all states s ∈ S , the second Fréchet
derivative of the value function Vδ with respect to the policy δ is upperbounded as

D2Vδ(s) ≤ −m.

Proof. The Bellman equation (9) implies that

max
s

D2Vδ(s) ≤
1

1− β

(
−min

s

1

δ(s)(1− δ(s))

+ 2βmax
s

(Es′ [DVδ(s′)|s, 0]− Es′ [DVδ(s′)|s, 1])

)
By the same argument as in Theorem 4.2,

min
s

1

δ(s)(1− δ(s))
≥
(

exp(Rmin) + 1
)2

exp(Rmin)

max
s

(Es′ [DVδ(s′)|s, 1]− Es′
[
DVδ(s

′)|s†, 0
]
) ≤ 2βLp

1− 2βLp

(
2Lr +

4βRmaxLp
1− β

)
Thus, for all state s ∈ S,

D2Vδ(s) ≤ −m.
Lemma B.4. Given a (Lr, Lp)-Lipschitz MDP, which satisfies the condition for global convergence,
for all policy δ in the bounded Lipschitz policy space ∆̂, for all state s ∈ S , the second derivative of
the value function Vδ with respect to the policy δ is is lowerbounded as

D2Vδ(s) ≥ −M.

Proof. The Bellman equation (9) implies that

min
s

D2Vδ(s) ≥
1

1− β

(
−max

s

1

δ(s)(1− δ(s))

+ 2β
(

min
s

DVδ(s)−max
s

DVδ(s)
))
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By restricting policy to the bounded Lipschitz policy space ∆̂ we bound

max
s

1

δ(s)(1− δ(s))
≤ max

s

1

δ(s)(1− δ(s))
≤

(
exp

(
1

1−βRmax − β
2Rmin

)
+ 1
)2

exp( 1
1−βRmax − β

2Rmin)

Provided

min
s
Vδ(s) ≥

Rmin

2

max
s
Vδ(s) ≤

Rmax

1− β

min
s

(
log

(
1− δ(s)
δ(s)

)
− r(s)

)
≥ min

s

(
log

(
1− δ̄(s)
δ̄(s)

)
− r(s)

)
= 0

max
s

(
log

(
1− δ(s)
δ(s)

)
− r(s)

)
≤ max

s
log

(
1− δ(s)
δ(s)

)
−min

s
r(s)

≤ exp

(
1

1− β
Rmax −

β

2
Rmin

)
−Rmin

it follows from Bellman equation (8) that

min
s

DVδ(s) ≥
1

1− β

(
min
s

(
log

(
1− δ(s)
δ(s)

)
− r(s)

)
+ β(min

s
Vδ(s)−max

s
Vδ(s))

)
≥ β

1− β

(
Rmin

2
− Rmax

1− β

)
max
s

DVδ(s) ≤
1

1− β

(
max
s

(
log

(
1− δ(s)
δ(s)

)
− r(s)

)
+ β(max

s
Vδ(s)−min

s
Vδ(s))

)
≤ 1

1− β

(
exp

(
1

1− β
Rmax −

β

2
Rmin

)
+

β

1− β
Rmax −

2 + β

2
Rmin

)
Thus, for all state s ∈ S,

D2Vδ(s) ≥ −M.

Proof of Theorem 4.3. The convergence rate guarantee follows from Lemma B.3 and Lemma B.4,
under the standard arguments for the gradient descent algorithm for m-strongly concave and M -
smooth (i.e., M -Lipschitz gradient) functions (cf. Bansal and Gupta, 2017).

C MORE RESULTS IN SECTION 5

Algorithm 1 “Lazy projection”, (π1, . . . , πN ): thresholds corresponding to discretized state space
(s1, . . . , sN ); L(·): logistic function; policy δj = L(πj); α: step size; τ : termination tolerance

1: π(0)
1 ← u(s1), . . . , π

(0)
N ← u(sN ) // Initialize π(0) at the myopic policy

2: while maxi |DVδ(k)(si)| ≤ τ do
3: π

(k∗)
i ← π

(k−1)
i − αDδ(k−1)Vδ(k−1)(si)L(π

(k−1)
i )(1− L(π

(k−1)
i )) for all i ∈ [N ]

4: (π
(k)
1 , . . . , π

(k)
N )← the closest monotone thresholds of (π

(k∗)
1 , . . . , π

(k∗)
N ) // Lazy projection

5: return (π
(k)
1 , . . . , π

(k)
N )

We list the convergence of gradient descent and its derivative, second derivative at smaller discount
factor β = 0.9.
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Figure 3: Convergence of gradient descent, discount factor β = 0.9

Figure 4: Performance of the norm maxi |DVδ(si)| and the second derivative maxi |D2Vδ(si)|,
discount factor β = 0.9
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