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ABSTRACT

Exciting new work on generalization bounds for neural networks (NN) given
by Bartlett et al. (2017); Neyshabur et al. (2018) closely depend on two parameter-
dependant quantities a) the Lipschitz constant upper bound and b) the stable rank
(a softer version of rank). Even though these bounds typically have minimal
practical utility, they facilitate questions on whether controlling such quantities
together could improve the generalization behaviour of NNs in practice. To this
end, we propose stable rank normalization (SRN), a novel, provably optimal,
and computationally efficient weight-normalization scheme which minimizes the
stable rank of a linear operator. Surprisingly we find that SRN, despite being
non-convex, can be shown to have a unique optimal solution. We provide extensive
analyses across a wide variety of NNs (DenseNet, WideResNet, ResNet, Alexnet,
VGG), where applying SRN to their linear layers leads to improved classification
accuracy, while simultaneously showing improvements in generalization, evaluated
empirically using shattering experiments (Zhang et al., 2016); and three measures
of sample complexity by Bartlett et al. (2017), Neyshabur et al. (2018), & Wei &
Ma. Additionally, we show that, when applied to the discriminator of GANs, it
improves Inception, FID, and Neural divergence scores, while learning mappings
with a low empirical Lipschitz constant.

1 INTRODUCTION

Deep neural networks have shown astonishing ability to tackle a wide variety of problems and
have shown a great ability to generalize. Within this work we leverage very recent, and important,
theoretical results on the generalization bounds of deep networks to yield a practical low cost method
to normalize the weights within a network using a scheme which we call Stable Rank Normalization
(SRN). The motivation for SRN comes from the generalization bound for NNs given by Neyshabur

et al. (2018) and Bartlett et al. (2017), O
√∏d

i ‖Wi‖22
∑d
i=1 srank(Wi)

1 , that depend on two

parameter-dependent quantities: a) the scale-dependent Lipschitz constant upper-bound
∏d
i ‖Wi‖2

(product of spectral norms) and b) the sum of scale-independent stable ranks (srank(W)). Stable
rank is a softer version of the rank operator and is defined as the ratio of the Frobenious norm to the
spectral norm. Although these two terms appear frequently in these bounds, the empirical impact
of simultaneously controlling them on the generalization behaviour of NNs has not been explored
yet possibly because of the difficulties with optimizing stable rank. This is precisely the goal of this
work, and based on extensive experiments across a wide variety of NN architectures, we show that,
indeed, controlling them simultaneously improves the generalization behaviour, while improving
the classification performance of NNs. We observe improved training of Generative Adversarial
Networks (GAN) Goodfellow et al. (2014) as well.

To this end, we propose Stable Rank Normalization (SRN) which allows us to simultaneously control
the Lipschitz constant and the stable rank of a linear operator. Note that the widely used Spectral
Normalization (SN) (Miyato et al., 2018) allows explicit control over the Lipschitz constant, however,
as will be discussed in the paper, it does not have any impact on the stable rank. We would like to
emphasize that, as opposed to SN, SRN is optimal and unique even in situations when it is non-convex.
It is one of those rare cases where an optimal solution of a provably non-convex problem could be

1d and ‖Wi‖2 represents the number of layers and the spectral norm of the i-th linear layer Wi, respectively.
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found. Computationally, our proposed SRN for NNs is no more complicated than SN, just requiring
computation of the largest singular value which can be efficiently obtained using the power iteration
method (Mises & Pollaczek-Geiringer, 1929).

Experiments Although SRN is in principle applicable to any problem involving a sequence of
affine transformations, considering recent interests, we show its effectiveness when applied to the
linear layers of deep neural networks. We perform extensive experiments on a wide variety of NN
architectures (DenseNet, WideResNet, ResNet, Alexnet, VGG) for the analyses and show that, SRN,
while providing the best classification accuracy (compared against standard, or vanilla, training
and SN), consistently shows improvement on the generalization behaviour. We also experiment
with GANs and show that, SRN prefers learning discriminators with low empirical Lipschitz while
providing improved Inception, FID and Neural Divergence scores (Gulrajani et al., 2019).

We would like to note that although SN is being widely used for the training of GANs, its effect on
the generalization behaviour over a wide variety of NNs has not yet been explored. To the best of our
knowledge, we are the first to do so.

Contributions

• We propose SRN— a novel normalization scheme for simultaneously controlling the Lips-
chitz constant and the stable rank of a linear operator.

• Optimal unique solution to the provably non-convex stable rank normalization problem.
• Efficient and very easy to implement SRN algorithm for NNs.

2 BACKGROUND AND INTUITIONS

Neural Networks Consider fθ : Rm → Rk to be a feed-forward multilayer NN parameterized
by θ ∈ Rn, each layer of which consists of a linear followed by a non-linear2 mapping. Let
al−1 ∈ Rnl−1 be the input (or pre-activations) to the l-th layer, then the output (or activations)
of this layer is represented as al = φl(zl), where zl = Wlal−1 + bl is the output of the linear
(affine) layer parameterized by the weights Wl ∈ Rnl−1×nl and biases bl ∈ Rnl , and φl(.) is
the element-wise non-linear function applied to zl. For classification tasks, given a dataset with
input-output pairs denoted as (x ∈ Rm,y ∈ {0, 1}k;

∑
j yj = 1) 3, the parameter vector θ is learned

using back-propagation to optimize the classification loss (e.g., cross-entropy).

Singular Value Decomposition (SVD) Given W ∈ Rs×r with k ≤ min(s, r), we denote {σi}ki=1,
{ui}ki=1, and {vi}ki=1 as its singular values, left singular vectors, and right singular vectors, respec-
tively. Throughout this work, a set of singular values is assumed to be sorted σ1 ≥ · · · ≥ σk. σi(W)
denotes the i-th singular value of the matrix W. Using singular values, the matrix 2-norm ‖W‖2 and
the Frobenius norm ‖W‖F can be computed as σ1 and

√∑
i σ

2
i , respectively.

Stable Rank Below we provide the formal definition and some properties of stable rank.

Definition 2.1. The Stable Rank (Rudelson & Vershynin, 2007) of an arbitrary matrix W is defined
as srank(W) =

‖W‖2F
‖W‖22

=
∑k
i=1 σ

2
i (W)

σ2
1(W)

, where k is the rank of the matrix. Stable rank is

• a soft version of the rank operator and, unlike rank, is less sensitive to small perturbations.
• differentiable as both Frobenius and Spectral norms are almost always differentiable.
• upperbounded by the rank: srank(W) =

∑k
i=1 σ

2
i (W)

σ2
1(W)

≤
∑k
i=1 σ

2
1(W)

σ2
1(W)

= k.

• invariant to scaling, implying, srank(W) = srank(W
η ), for any η ∈ R \ {0}.

Lipschitz Constant Here we describe the global and the local Lipschitz constants. Briefly, the Lip-
schitz constant is a quantification of the sensitivity of the output with respect to the change in the input.
A function f : Rm 7→ Rk is globally L-Lipschitz continuous if ∃L ∈ R+ : ‖f(xi)− f(xj)‖q ≤

2e.g. ReLU, tanh, sigmoid, and maxout.
3yj is the j-th element of vector y. Only one class is assigned as the ground-truth label to each x.
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L ‖xi − xj‖p ,∀(xi,xj) ∈ Rm, where ‖·‖p and ‖·‖q represents the norms in the input and the output
metric spaces, respectively. The global Lipschitz constant Lg is:

Lg = max
xi,xj∈Rm
xi 6=xj

‖f(xi)− f(xj)‖q
‖xi − xj‖p

. (1)

The above definition of the Lipschitz constant depends on all pairs of inputs in the domain
Rm × Rm, (thus, global). However, one can define the local Lipschitz constant based on the
sensitivity of f in the vicinity of a given point x. Precisely, at x, for an arbitrarily small
δ > 0, the local Lipschitz constant is computed on the open ball of radius δ centered at x. Let
h ∈ Rm, ‖h‖p < δ, then, similar to Lg, the local Lipschitz constant of f at x, Ll(x), is greater

than or equal to suph6=0,‖h‖p<δ
‖f(x+h)−f(x)‖q

‖h‖p
. Assuming f to be Fréchet differentiable, as

h → 0, using f(x + h) − f(x) ≈ Jf (x)h, Ll(x) is the matrix (operator) norm of the Jacobian(
Jf (x) = ∂f(z)

∂z |x ∈ Rk×m
)

as follows:4

Ll(x)
(a)
= lim

δ→0
sup
h6=0
‖h‖p<δ

‖Jf (x)h‖q
‖h‖p

(b)
= sup

h6=0
h∈Rm

‖Jf (x)h‖q
‖h‖p

= ‖Jf (x)‖p,q . (2)

A function is said to be locally Lipschitz with local Lipschitz constant Ll if for all x ∈ Rm the
function is Ll locally-Lipschitz at x. Thus, Ll = supx∈Rm Ll (x). Notice that the Lipschitz constant
(global or local), greatly depends on the chosen norms. When p = q = 2, the upperbound on the local
Lipschitz constant at x boils down to the 2-matrix norm (maximum singular value) of the Jacobian
Jf (x) (see last equality of (2)). With these preliminary definitions, in Section 3, we discuss more
optimistic (or empirical) estimates of Ll and Lg , its link with generalization and then in Section 5,we
show empirically the effect of SRN on them and on generalization.

The local Lipschitz upper-bound for Neural Networks As mentioned earlier (2), Ll(x) =
‖Jf (x)‖p,q , where, in the case of NNs (proof along with why it is loose in Appendix C)

Ll(x) = ‖Jf (x)‖p,q ≤ ‖Wl‖p,q · · · ‖W1‖p,q and Ll = Ll(x) (3)

3 WHY STABLE RANK NORMALIZATION?

Lipschitz alone is not sufficient Although learning low Lipschitz functions has been shown to
provide better generalization (Anthony & Bartlett, 2009; Bartlett et al., 2017; Neyshabur et al., 2018;
2015; Yoshida & Miyato, 2017; Gouk et al., 2018), enable stable training of GANs (Arjovsky et al.,
2017; Gulrajani et al., 2017; Miyato et al., 2018) and help provide robustness against adversarial
attacks (Cisse et al., 2017), controlling Lipschitz upper bound alone is not sufficient to provide
assurance on the generalization error. One of the reasons is that it is scale-dependent, implying, for
example, even though scaling an entire ReLU network would not alter the classification behaviour, it
can massively increase the Lipschitz constant and thus the theoretical generalization bounds. This
suggests that either the bound is of no practical utility, or at least one should regulate both—the
Lipschitz constant, and the stable rank (scale-independent)—in a hope to see improved generalization
in practice.

Stable rank controls the noise-sensitivity As shown by Arora et al. (2018), one of the critical
properties of generalizable NNs is low noise sensitivity— the ability of a network to preferentially
carry over the true signal in the data. For a given noise distribution N , it can be quantified as

Φfθ,N = max
x∈D

Φfθ,N (x) , where Φfθ,N (x) := Eη∼N

[
‖fθ (x + η ‖x‖)− fθ (x)‖2

‖fθ (x)‖2

]
.

4Here, (a) is by definition of local lipschitzness and (b) is due to the property of norms that for any non-
negative scalar c, ‖cx‖ = c ‖x‖.
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For a linear mapping with parameters W and the noise distribution being normal-N (0, I), it can be
shown that ΦfW,N ≥ srank(W) (c.f. Proposition 3.1 in Arora et al. (2018)). Thus, decreasing the
stable rank directly decreases the lower bound of the noise sesnsitivity. In Figure 1, we show Φfθ,N
of a ResNet110 trained on CIFAR100. Note that athough the Lipschitz upper bound of SRN and SN
are the same, SRN (algorithmic details in Section 4) is much less sensitive to noise as the constraints
imposed enforce the stable rank to decrease to 30% of its original value, which in effect reduces the
noise sensitivity.

Figure 1: Noise Sensitivity
(lower the better). Test ac-
curacy: SRN (73.1%), SN
(71.5%), and Vanilla (72.4%).

Stable rank impacts empirical Lipschitz constant It is apparent
that the Lipschitz constant upper bound (

∏d
i ‖Wi‖2), along with

being scale-dependent, also is data-independant and hence, provides
a pessimistic estimate of the behaviour of a model on a particular
task or dataset. Considering this, a relatively optimistic estimate
of the model’s behaviour would be an empirical estimate of the
Lipschitz constant (Le) on a task-specific dataset 5. Note, local Le is
just the norm of the Jacobian at a given point 6. Empirically, Novak
et al. (2018) provided results showing how local Le (in the vicinity
of train data) is correlated with the generalization error of NNs. This
observation is further supported by the work of Wei & Ma; Nagarajan
& Kolter (2019); Arora et al. (2018) whereby the variants of Le are
used to derive generalization bounds. Thus, a tool that favours low
Le is likely to provide better generalization behaviour in practice.
To this end, we first consider a simple two layer linear-NN example
in Appendix B.2 and show that low rank mappings do favour low
Le. Since direct minimization of rank for NNs is non-trivial, the expectation is that learning low
stable rank (softer version of rank) might induce similar behaviour. We experimentally validate this
hypothesis by showing that, as we decrease the stable rank, the empirical Lipschitz decreases. This
shows SRN indeed prefers mappings with a low empirical Lipschitz constant.

4 STABLE RANK NORMALIZATION

Here we provide a theoretically sound procedure to do SRN. A big challenge in stable rank normal-
ization comes from the fact that it is scale-invariant (refer Definition 2.1), thus, any normalization
scheme that modifies W =

∑
i σiuiv

>
i to Ŵ =

∑
i
σi
η uiv

>
i will have no effect on the stable rank,

making SRN non-trivial. Examples of such schemes are SN (Miyato et al., 2018) where η = σ1,
and Frobenius normalization where η = ‖W‖F. As will be shown, our approach to stable rank
normalization is optimal and efficient. Note, the widely used SN (Miyato et al., 2018) is not optimal
(proof in Appendix A.2).

The SRN Problem Statement Given a matrix W ∈ Rm×n with rank p and spectral partitioning
index k (0 ≤ k < p), we formulate the SRN problem as:

arg min
Ŵk∈Rm×n

∥∥∥W − Ŵk

∥∥∥2

F
s.t. srank(Ŵk) = r︸ ︷︷ ︸

stable rank constraint

, λi = σi,∀i ∈ {1, · · · , k}︸ ︷︷ ︸
spectrum preservation constraints

. (4)

where, 1 ≤ r < srank(W) is the desired stable rank, λis and σis are the singular values of Ŵk and
W, respectively. The partitioning index k is used for the singular value (or the spectrum) preservation
constraint. It gives us the flexibility to obtain Ŵk such that its top k singular values are exactly the
same as that of the original matrix. Note, the problem statement is more general in the sense that
putting k = 0 removes the spectrum preservation constraint.

The Solution to SRN The optimal unique solution to the above problem is provided in Theorem 1
and proved in Appendix A.1. Note, at k = 0, the problem (4) is non-convex, otherwise convex.

5It can be the train-/test- data, the generated data (e.g., in GANs), or some interpolated data points.
6For completeness, we provide the relationship between the global and the local Le in Proposition B.1.
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Theorem 1. Given a real matrix W ∈ Rm×n with rank p, a target spectrum (or singular value)
preservation index k (0 ≤ k < p), and a target stable rank of r (1 ≤ r < srank(W)), the
optimal solution Ŵk to problem (4) is Ŵk = γ1S1 + γ2S2, where S1 =

∑max(1,k)
i=1 σiuiv

>
i and

S2 = W − S1. {σi}ki=1, {ui}ki=1 and {vi}ki=1 are the top k singular values and vectors of W, and,

depending on k, γ1 and γ2 are defined below. For simplicity, we first define γ =

√
rσ2

1−‖S1‖2F
‖S2‖F

, then

a) If k = 0 (no spectrum preservation), the problem becomes non-convex, the optimal solution

to which is obtained for γ2 =
γ + r − 1

r
and γ1 =

γ2

γ
, when r > 1. If r = 1, then γ2 = 0

and γ1 = 1. Since, in this case, ‖S1‖2F = σ2
1 , γ =

√
r−1σ1

‖S2‖F
.

b) If k ≥ 1, the problem is convex. If r ≥ ‖S1‖2F
σ2
1

the optimal solution is obtained for γ1 = 1,
and γ2 = γ and if not, the problem is not feasible.

c) Also,
∥∥∥Ŵk −W

∥∥∥
F

monotonically increases with k for k ≥ 1.

Intuitively, Theorem 1 partitions the given matrix into two parts, depending on k, and then scales
them differently in order to obtain the optimal solution. The value of the partitioning index k is a
design choice. If there is no particular preference to k, then k = 0 provides the most optimal solution.
We provide a simple example to better understand this. Given W = I3 (rank = srank(W) = 3), the
objective is to project it to a new matrix with stable rank of 2. Solutions to this problem are:

Ŵ1 =

[
1 0 0
0 1 0
0 0 0

]
, Ŵ2 =

1 0 0
0 1√

2
0

0 0 1√
2

 , Ŵ3 =


√
2+1
2

0 0

0
√
2+1

2
√
2

0

0 0
√

2+1

2
√
2

 (5)

Here, Ŵ1 is obtained using the standard rank minimization (Eckart-Young-Mirsky (Eckart & Young,
1936)) while Ŵ2 and Ŵ2 are the solutions of Theorem 1 with k = 1 and k = 0, respectively. It is
easy to verify that the stable rank of all the above solutions is 2. However, the Frobenius distance
(lower the better) of these solutions from the original matrix follows the order

∥∥∥W − Ŵ1

∥∥∥
F
>∥∥∥W − Ŵ2

∥∥∥
F
>
∥∥∥W − Ŵ3

∥∥∥
F

. As evident from the example, the solution to SRN, instead of
completely removing a particular singular value, scales them (depending on k) such that the new
matrix has the desired stable rank. Note that for Ŵ1 (true for any k ≥ 1), the spectral norm of
the original and the normalized matrices are the same, implying, γ1 = 1. However, for k = 0, the
spectral norm of the optimal solution is greater than that of the original matrix. It is easy to verify
from Theorem 1 that as k increases, γ2 decreases. Thus, the amount of scaling required for the second
partition S2 is more agressive. In all situations, the following inequality holds: γ2 ≤ 1 ≤ γ1.

Algorithm 1 Stable Rank Normalization

Require: W ∈ Rm×n, r, k ≥ 1
1: S1 ← 0, β ← ‖W‖2F, η ← 0, l← 0
2: for i ∈ {1, · · · , k} do
3: {ui,vi, σi} ← SV D(W, i)
4: . Power method to get i-th singular value
5: if r ≥

(
σ2
i + η

)
/σ2

1 then
6: S1 ← S1 + σiuiv

>
i

7: η ← η + σ2
i , β ← β − σ2

i

8: l← l + 1
9: else

10: break
11: end if
12: end for
13: η ← rσ2

1 − η
14: return Ŵl ← S1 +

√
η
β
(W − S1), l

Algorithm 2 SRN for a Linear Layer in NN

Require: W ∈ Rm×n, r, learning rate α, mini-
batch dataset D

1: Initialize u ∈ Rm with a random vector.
2: v← W>u

‖W>u‖ , u← W>v

‖W>v‖
3: . Perform power iteration
4: σ(W) = u>Wv
5: Wf = W/σ(W) . Spectral Normalization
6: Ŵ = Wf − uv>

7: if
∥∥∥Ŵ∥∥∥

F
≤
√
r − 1 then

8: return Wf

9: end if
10: Wf = uv> + Ŵ

√
r−1

‖Ŵ‖
F

. Stable Rank

Normalization
11: return W←W − α∇WL(Wf ,D)
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Algorithm for Stable Rank Normalization We provide a general procedure in Algorithm 1 to
solve the stable rank normalization problem for k ≥ 1 (the solution for k = 0 is straightforward
from Theorem 1). Claim 2 provides the properties of the algorithm. The algorithm is constructed so
that the prior knowledge of the rank of the matrix is not necessary.
Claim 2. Given a matrix W, the desired stable rank r, and the partitioning index k ≥ 1, Algorithm 1
requires computing the top l (l ≤ k) singular values and vectors of W. It returns Ŵl and the scalar
l such that srank(Ŵl) = r, and the top l singular values of W and Ŵl are the same. If l = k,
then the solution provided is the optimal solution to the problem (4) with all the constraints satisfied,
otherwise, it returns the largest l up to which the spectrum is preserved.

Combining Stable Rank and Spectral Normalization for NNs Following the arguments pro-
vided in Section 1 and 3, for better generalizability, we propose to normalize both the stable rank and
the spectral norm of each linear layer of a NN simultaneously. To do so, we first perform approximate
SN (Miyato et al., 2018), and then perform optimal SRN (using Algorithm 1). We use k = 1 to
ensure that the first singular value (which is now normalized) is preserved. Algorithm 2 provides a
simplified procedure for the same for a given linear layer of a NN. Note, the computational cost of
this algorithm is exactly the same as that of SN, which is to compute the top singular value using the
power iteration method.

5 EXPERIMENTS

Dataset and Architectures For classification, we perform experiments on ResNet-110 (He et al.,
2016), WideResNet-28-10 (Zagoruyko & Komodakis, 2016), DenseNet-100 (Huang et al., 2017),
VGG-19 (Simonyan & Zisserman, 2014), and AlexNet (Krizhevsky & Hinton, 2009) using the
CIFAR100 (Krizhevsky & Hinton, 2009) dataset. We train them using standard training recipes
with SGD, using a learning rate of 0.1 (except AlexNet where we use a learning rate of 0.01), and a
momentum of 0.9 with a batch size of 128 (further details in Appendix D).

For GAN experiments, we use CIFAR100, CIFAR10, and CelebA (Liu et al., 2015) datasets. We
show results on both, conditional and unconditional GANs. Please refer to Appendix E.1 for further
details about the training setup.

Choosing stable rank Given a matrix W ∈ Rm×n, the desired stable rank r is controlled using a
single hyperparameter c as r = c min(m,n), where c ∈ (0, 1]. For simiplicity, we use the same c for
all the linear layers. It is trivial to note that if c = 1, or for a given c, if srank(W) ≤ r, then SRN boils
down to SN. For classification, we choose c = {0.3, 0.5}, and compare SRN against standard training
(Vanilla) and training with SN. For GAN experiments, we choose c = {0.1, 0.3, 0.5, 0.7, 0.9}, and
compare SRN-GAN against SN-GAN (Miyato et al., 2018), WGAN-GP (Gulrajani et al., 2017), and
orthonormal regularization GAN (Ortho-GAN) (Brock et al., 2016).

Result Overview

• SRN improves classification accuracy on a wide variety of architectures.
• Normalizing stable rank improves the learning capacity of spectrally normalized networks.
• SRN shows remarkably less memorization, even on settings very hard to generalize.
• SRN shows much improved generalization behaviour evaluated using recently proposed

sample complexity measures.
• As we decrease the stable rank, the empirical Lipschitz of SRN-GAN decreases. Proving

our arguments provided in Section 3.
• SRN-GAN provides much improved Neural divergence score (ND) (Gulrajani et al., 2019)

compared to SN-GAN, proving that it is robust to memorization in GANs as well.
• SRN-GAN also provide improved Inception and FID scores in all our experiments (except

one where SN-GAN is better).

5.1 CLASSIFICATION EXPERIMENTS

We perform each experiment 5 times using a new initialization each time and report the mean, and
the 75% confidence interval for the test error in Figure 2. These experiments show that the test
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(a) Resnet110 (b) WideResnet-28 (c) Alexnet (d) Densenet-100 (e) VGG-19

Figure 2: Test accuracies on CIFAR100 for clean data. Higher is better.

(a) Resnet110 (b) WideResNet-28 (c) Alexnet (d) Densenet-100 (e) VGG-19

Figure 3: Train accuracies on CIFAR100 for shattering experiment. Lower indicate less memorization,
thus, better.

accuracy of SRN, on a wide variety NNs, is always higher than the Vanilla and SN (except for
SRN-50 on Alexnet where SRN and SN are almost equal). However, SN performs slightly worse
than Vanilla for WideResNet-28 and ResNet110. The fact that SRN does involve SN, combined with
the above statement, indicate that even though SN reduced the learning capability of these networks,
normalizing stable rank must have improved it significantly in order for SRN to outperform Vanilla.
For example, in the case of ResNet110, SN is 71.5% accurate whereas SRN provides an accuracy of
73.2%. In addition to this, we would like to note that even though SN is being used extensively for the
training of GANs, it is not a popular choice when it comes to training standard NNs for classification.
We suspect that this is because of the decrease in the capacity, which we have shown to be increased
by the stable rank normalization, proving the worth of SRN for calssification tasks as well.

5.2 STUDY OF GENERALIZATION BEHAVIOUR

Our last set of experiments established that SRN provides improved classification accuracies on
various NNs. Here we study the generalization behaviour of these models. Quantifying generalization
behaviour is non-trivial and there is no clear answer to it. However, we utilize recent efforts that
explore the theoretical understanding of generalization and use them to study it in practice.

Shattering Experiments We begin with the most acceptable approach to inspect generalization
behaviour in NNs, the shattering experiment (Zhang et al., 2016). It is a test of whether the network
can fit the training data well but not a randomized version of it (each image of the dataset is assigned
a random label). As there is no correlation of the labels with the data points P (y|x) is essentially
uninformative because it is uniformly random. Thus, the test accuracy on this task is almost 1%. A
high training accuracy — which indicates a high generalization gap (difference between train and test
accuracy) can be achieved only by memorizing the train data 7. Figure 3 shows that SRN reduces
memorization on random labels (thus, reduces the estimate of the Rademacher complexity (Zhang
et al., 2016)). Note, as shown in the classification experiments, the same model was able to achieve
the highest training accuracy when the labels were not randomized.

Stable-50 Stable-30 Spectral (SN) Vanilla

WD 12.02± 1.77 11.87± 0.57 11.13± 2.56 10.56± 2.32
w/o WD 17.71± 2.30 19.04± 4.53 17.22± 1.94 13.49± 1.93

Table 1: Highly non-generalizable setting. Training error for ResNet-110 on CIFAR100 with
randomized labels, low lr= 0.01, and with and without weight decay. (Higher is better.)

7The training of all the models of one architecture were stopped after the same number of epochs - double
the number of epochs the model were trained on the clean dataset.
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(a) R110-Jac-Norm (b) R110-Spec-L1 (c) R110-Spec-Fro

(d) WRN-Jac-Norm (e) WRN-Spec-L1 (f) WRN-Spec-Fro

(g) D100-Jac-Norm (h) D100-Spec-L1 (i) D100-Spec-Fro

Figure 4: (log) Sample complexity (Calg) of ResNet-110 (Figure 4a to 4c), WideResNet-28-10 (Fig-
ure 4d to 4f), and Densenet-100 (Figure 4g to 4i) quantified using the three measures discussed in the
paper. Left is better. Vanilla is omitted from Figure 4b, 4c, 4h and 4i as it is too far to the right. Also,
in situations where SRN-50 and SN performed the same, we removed the histogram to avoid clutter.

We also look specifically at highly non-generalizable settings — low learning rate and without weight
decay. As shown in Table 1, SRN consistently achieves lower generalization error (by achieving a
low train error) both in the presence and the absence of weight decay 8. Similar results are reported
for Alexnet and WideResNet in Appendix D.1.

Empirical Evaluation of Generalization Behaviour When all the factors in training (eg. architec-
ture, dataset, optimizer, among other) as in SRN vs SN vs Vanilla, are fixed, and the only variability
is in the normalization, the generalization error can be written as

|Train Err− Test Err| ≤ Õ

(√
Calg

m

)
(6)

where Õ (·) ignores the logarithmic terms, m is the number of samples in the dataset, and Calg

denotes a measure of sample complexity for a given algorithm. Lower the value of Calg, the better is
the generalization. Before we give various expressions for Calg, we first define a common quantity
in all these expressions, called the margin γ = fθ (x) [y]−maxj 6=y fθ (x) [j]. It measures the gap
between the output of the network on the correct label and the other labels. Now we define three
recently proposed sample complexity measures useful to quantify the generalization behaviour:

• Spec-Fro:
∏L
i=1 ‖Wi‖22

∑L
i=1 srank(Wi)

γ2
(Neyshabur et al., 2018). This bound is the

main motivation of this paper; the two quantities used to normalize the margin (γ) is the
product of spectral norm i.e.

∏L
i=1 ‖Wi‖22 (or worst case lipschitzness) and sum of stable

rank i.e.,
∑L
i=1 srank(Wi) (or an approximate parameter count like rank of a matrix).

• Spec-L1:

∏L
i=1 ‖Wi‖22

(∑L
i=1

‖Wi‖
2/3
2,1

‖Wi‖
2/3
2

)3

γ2
, where ‖.‖2,1 is the matrix 2-1 norm. As

showed by Bartlett et al. (2017), Spec-L1 is the spectrally normalized margin, and unlike
just the margin, is a good indicator of the generalization properties of a network.

8These result are reported after 200 epochs. It can be looked on as combined with early stopping, which is a
powerful way of avoiding memorizing random labels (Li et al.).
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(a) Varying stable rank constraints (b) Comparison against different approaches

Figure 5: eLhist for unconditional GAN on CIFAR10. Dashed vertical lines represent 95th percentile.
Solid circles and crosses represent the inception score for each histogram. Figure 5a shows SRN-GAN
for different stable rank constraints (e.g. 90 implies c = 0.9). Figure 5b compares various approaches.
Random-GAN represents random initialization (no training). For SRN-GAN, we use c = 0.7.

• Jac-Norm:
∑L
i=1

‖hi‖2 ‖Ji‖2
γ

(Wei & Ma), where hi is the ith hidden layer and Ji = ∂γ
∂hi

i.e., the Jacobian of the margin with respect to the ith hidden layer (thus, a vector). Note,
Jac-Norm depends on the norm of the Jacobian (local empirical Lipschitz) and norm of the
hidden layers - additional data-dependent terms compared to Spec-Fro and Spec-L1, thus
captures a more realistic (and optimistic) generalization behaviour.

We evaluate above mentioned sample complexity measures on 10, 000 points from the dataset and
plot the distribution of the log using a histogram shown in Figure 4. The more to the left the histogram,
the better is the generalization capacity of the network.

For better clarity, we provide the 90 percentile for each of these histograms in Table 2. As the plots
and the table show, both SRN and SN produces a much smaller quantity than a Vanilla network and
in 7 out of the 9 cases, SRN is better than SN. The difference between SRN and SN is much more
significant in the case of Jac-Norm. As this depend on the empirical lipschitzness, it provides the
empirical validation of our arguments in Section 3.

Above experiments indicate that SRN, while providing enough capacity for the standard classification
task, is remarkably less prone to memorization and provides improved generalization.

Model Algorithm Jac-Norm Spec-L1 Spec-Fro

ResNet-110
Vanilla 17.7 ∞ ∞

Spectral (SN) 17.8 10.8 7.4
SRN-30 17.2 10.7 7.2

WideResNet-28-10

Vanilla 16.2 14.60 11.18
Spectral (SN) 16.13 7.23 4.5

SRN-50 15.8 7.3 4.5
SRN-30 15.7 7.20 4.4

Densenet-100

Vanilla 19.2 ∞ ∞
Spectral (SN) 17.8 12.2 9.4

SRN-50 17.6 12 9.2
SRN-30 17.7 11.8 9.0

Table 2: Values of 90 percentile of log complexity measures from Figure 4. Here∞ refers to the
situations where the product of spectral norm blows up. This is the case in deep networks like
ResNet-110 and Densenet-100 where the absence of spectral normalization (Vanilla) allows the
product of spectral norm to grow arbitrarily large with increasing number of layers. Lower is better.

5.3 TRAINING OF GENERATIVE ADVERSARIAL NETWORKS (SRN-GAN)

In GANs, there is a natural tension between the capacity and the generalizability of the discriminator.
The capacity ensures that if the generated distribution and the data distribution are different, the
discriminator has the ability to distinguish them. At the same time, the discriminator has to be

1Results are taken from Miyato et al. (2018). The rest of the results in the tables are generated by us.
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generalizable, implying, the class of hypothesis should be small enough to ensure that it is not just
memorizing the dataset. Based on these arguments, we use SRN in the discriminator of GAN which
we call SRN-GAN, and compare it against SN-GAN, WGAN-GP, and orthonormal regularization
based GAN (Ortho-GAN).

Algorithm Inception Score FID Intra-FID

U
nc

on
d.

Orthonormal1 7.92± .04 23.8 -
WGAN-GP 7.86± .07 21.7 -
SN-GAN1 8.22± .04 20.67 -

SRN-GAN-70% 8.53± 0.04 19.83 -
SRN-GAN-50% 8.33± 0.06 19.57 -

C
on

d. SN-GAN 8.71± .04 16.049 26.24
SRN-GAN- 70% 8.93± 0.12 15.92 24.01
SRN-GAN- 50% 8.76± 0.09 16.89 27.3

Table 3: Inception and FID score on CIFAR10.

Histogram of the Empirical Lip-
schitz Constant (eLhist) Along
with providing results using eval-
uation metrics such as Inception
score (IS) (Salimans et al., 2016) ,
FID (Heusel et al., 2017), and Neu-
ral divergence score (ND) (Gulrajani
et al., 2019), we use histograms of the
empirical Lipschitz constant, refered
to as eLhist from now onwards, for
the purpose of analyses. For a given
trained GAN (unconditional), we cre-
ate 2, 000 pairs of samples, where
each pair (xi,xj) consists of xi (ran-
domly sampled from the ‘real’ dataset) and xj (randomly sampled from the generator). Each pair
is then passed through the discriminator to compute ‖f(xi)−f(xj)‖2/‖xi−xj‖2, which we then use
to create the histogram. In the conditional setting, we first sample a class from a discrete uniform
distribution, and then follow the same approach as described for the unconditional setting

Model IS FID

SN-GAN 9.04 23.2
SRN-GAN (Our)8.85 19.55

Table 4: CIFAR100 experiments.
Model CIFAR10 CelebA

SN-GAN 10.69 0.36
SRN-GAN (Our) 11.97 0.64

Table 5: Neural Discriminator
Loss (Higher the better).

Effect of Stable Rank on eLhist and Inception Score
As shown in Figure 5a, lowering the value of c (aggressive
reduction in the stable rank) moves the histogram towards
zero, implying, lower empirical Lipschitz constant. This val-
idates our arguments provided in Section 3. Lowering c also
improves inception score, however, extreme reduction in the
stable rank (c = 0.1) dramatically collapses the histogram
to zero and also drops the inception score significantly. This
is due to the fact that at c = 0.1, the capacity of the discrim-
inator is reduced to the point that it is not able to learn to
differentiate between the real and the fake samples anymore.

Table 3 and 4 show that SRN-GAN consistently provide bet-
ter FID score and an extremely competitive inception score
on CIFAR10 (both conditional and unconditional setting)
and CIFAR100 (unconditional setting). In Table 5, we compare the ND loss on CIFAR10 and CelebA
datasets. Note, ND has been looked as a metric more robust to memorization than FID and IS in recent
works (Gulrajani et al., 2019; Arora & Zhang, 2017). We report our exact setting to compute ND
in Appendix E.1. We essentially report the loss incurred by a fresh classifier trained to discriminate
the generator distribution and the data distribution. Thus higher the loss, the better the generated
images. As evident, SRN-GAN provides better ND scores on both datasets. For a qualitative analysis
of the images, we compare generations in both conditional and unconditional setting in Appendix F.
Comparing different approaches In addition, in Figure 5b, we provide eLhist for comparing
different approaches. Random-GAN, as expected, has a low empirical Lipschitz constant and
extremely poor inception score. Unsurprisingly, WGAN-GP has a lower Le than Random-GAN,
due to its explicit constraint on the Lipschitz constant, while providing a higher inception score. On
the other hand, SRN-GAN, by virtue of its softer constraints on the Lipschitz constant, trades off
a higher Lipschitz constant for a better inception score—highlighting the flexibility provided by
SRN. Additional experiments in Appendix E.2 show more detailed behaviour of GANs in regards to
empirical lipschitz in a variety of settings.

6 CONCLUSION
We proposed a new normalization (SRN) that allows us to constrain the stable rank of each affine
layer of a NN, which in turn learns a mapping with low empirical Lipschitz constant. We also provide
optimality guarantees of SRN. On a variety of neural network architectures, we showed that SRN
improves the generalization and memorization properties of a standard classifier. In addition, we
show that SRN improves the training of GANs and provide better inception, FID, and ND scores.
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A TECHNICAL PROOFS

Here we provide an extensive proof of Theorem 1 (Appendix A.1). We also provide the optimal
solution to the spectral norm problem in Appendix A.2. Auxiliary lemmas on which our proof
depends are provided in Appendix A.3.

A.1 PROOF FOR OPTIMAL STABLE RANK NORMALIZATION. (MAIN THEOREM)

Theorem 1. Given a real matrix W ∈ Rm×n with rank p, a target spectrum (or singular value)
preservation index k (0 ≤ k < p), and a target stable rank of r (1 ≤ r < srank(W)), the
optimal solution Ŵk to problem (4) is Ŵk = γ1S1 + γ2S2, where S1 =

∑max(1,k)
i=1 σiuiv

>
i and

S2 = W − S1. {σi}ki=1, {ui}ki=1 and {vi}ki=1 are the top k singular values and vectors of W, and,

depending on k, γ1 and γ2 are defined below. For simplicity, we first define γ =

√
rσ2

1−‖S1‖2F
‖S2‖F

, then

a) If k = 0 (no spectrum preservation), the problem becomes non-convex, the optimal solution

to which is obtained for γ2 =
γ + r − 1

r
and γ1 =

γ2

γ
, when r > 1. If r = 1, then γ2 = 0

and γ1 = 1. Since, in this case, ‖S1‖2F = σ2
1 , γ =

√
r−1σ1

‖S2‖F
.

b) If k ≥ 1, the problem is convex. If r ≥ ‖S1‖2F
σ2
1

the optimal solution is obtained for γ1 = 1,
and γ2 = γ and if not, the problem is not feasible.

c) Also,
∥∥∥Ŵk −W

∥∥∥
F

monotonically increases with k for k ≥ 1.

Proof. Here we provide the proof of Theorem 1 (in the main paper) for all the three cases with
optimality and uniqueness guarantees. Let Ŵk be the optimal solution to the problem for any of
the two cases. From Lemma 5, the SVD of W and Ŵk can be written as W = UΣV> and

Ŵk = UΛV>, respectively. Then, L =
∥∥∥W − Ŵk

∥∥∥2

F
= 〈Σ− Λ,Σ− Λ〉F. From now onwards,

we denote Σ and Λ as vectors consisting of the diagonal entries, and 〈., .〉 as the vector inner product
10.

Proof for Case (a): In this case, there is no constraint enforced to preserve any of the singular values
of the given matrix while obtaining the new one. The only constraint is that the new matrix should
have the stable rank of r. Let us assume Σ = (σ1, · · · , σp), Σ2 = (σ2, · · · , σp), Λ = (λ1, · · · , λp)
and Λ2 = (λ2, · · · , λp). Using these notations, we can write L as:

L = 〈Σ,Σ〉+ 〈Λ,Λ〉 − 2 〈Σ,Λ〉
= 〈Σ,Σ〉+ λ2

1 + 〈Λ2,Λ2〉 − 2σ1λ1 − 2 〈Σ2,Λ2〉 (7)

Using the stable rank constraint srank(Ŵk) = r, which is r = 1 +

∑p
j=2 λ

2
j

λ2
1

.

Case for r > 1 If r > 1 we obtain the following equality constraint, making the problem non-
convex.

λ2
1 =
〈Λ2,Λ2〉
r − 1

(8)

However, we will show that the solution we obtain is optimal and unique. Substituting (8) into (7) we
get

L = 〈Σ,Σ〉+
〈Λ2,Λ2〉
r − 1

+ 〈Λ2,Λ2〉 − 2σ1

√
〈Λ2,Λ2〉
r − 1

− 2 〈Σ2,Λ2〉 (9)

10〈., .〉F represents the Frobenius inner product of two matrices, which in the case of diagonal matrices is the
same as the inner product of the diagonal vectors.
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Setting
∂L

∂Λ2
= 0 to get the family of critical points

2Λ2

r − 1
+ 2Λ2 −

4σ1Λ2

2
√

(r − 1) 〈Λ2,Λ2〉
− 2Σ2 = 0

=⇒ Σ2 = Λ2

(
1

r − 1
+ 1− σ1

1
√

(r − 1) 〈Λ2,Λ2〉

)
(10)

=⇒ Σ2 [i]

λ2 [i]
=

(
1

r − 1
+ 1− σ1

1
√

(r − 1) 〈Λ2,Λ2〉

)
=

1

γ2
∀ 1 ≤ i ≤ p (11)

As the R.H.S. of 11 is independant of i, the above equality implies that all the critical points of (9)
are a scalar multiple of Σ2, implying, Λ2 = γ2Σ2. Note that the domain of Λ2 are all strictly positive
vectors and thus, we can ignore the critical point at Λ2 = 0. Substituting this into (10) we obtain

Σ2 = γ2Σ2

(
1

r − 1
+ 1− σ1

γ2

√
(r − 1) 〈Σ2,Σ2〉

)
Using the fact that 〈Σ2,Σ2〉 = ‖S2‖2F in the above equality and with some algebraic manipulations,
we obtain γ2 = γ+r−1

r where, γ =
√
r−1σ1

‖S2‖F
. Note, r ≥ 1, γ ≥ 0, and Σ ≥ 0, implying, Λ2 =

γ2Σ2 ≥ 0.

Local minima: Now, we will show that Λ2 is indeed a minima of (9). To show this, we compute
the hessian of L. Recall that

∂L

∂Λ
=

2r

r − 1
Λ− 2σ1Λ√

(r − 1) ‖Λ‖22
− 2Σ2

H =
∂2L

∂2Λ
=

2r

r − 1
I− 2σ1√

(r − 1) ‖Λ‖22

(
‖Λ‖2 I− 1

‖Λ‖2
ΛΛ>

)

= 2

(
r

r − 1
−

σ1 ‖Λ‖2√
(r − 1) ‖Λ‖22

)
I +

2σ1√
r − 1 ‖Λ‖32

(
ΛΛ>

)

Now we need to show that H at the solution Λ2 is PSD i.e. ∀ x ∈ Rp−1, x>H (Λ2)x ≥ 0

x>Hx = 2

(
r

r − 1
−

σ1 ‖Λ‖2√
(r − 1) ‖Λ‖22

)∥∥x2
2

∥∥+
2σ1√

r − 1 ‖Λ‖32
x>
(
ΛΛ>

)
x

(a)

≥ 2

(
r

r − 1
−

σ1 ‖Λ‖2√
(r − 1) ‖Λ‖22

)
‖x‖22

(b)

≥ 2

(
r

r − 1
− σ1

(r − 1)λ1

)
‖x‖22

(c)
=

2r

r − 1

(
1− γ

(γ + r − 1)

)
‖x‖22

(d)

≥ 2r

r − 1

(
1− 1

(1 + r − 1)

)
‖x‖22 = 2 ‖x‖22 ≥ 0

Here (a) is due to the fact that the matrix ΛΛ> is an outer product matrix and is hence PSD. (b)
follows due to (8) and (c) follows by substituting λ1 = γ1σ1 and then the value of γ1. Finally (d)

follows as
(

1− γ

(γ + r − 1)

)
is decreasing with respect to γ and we know that γ < 1 due to the

assumption that srank(W) < r. Thus, we can substitute γ = 1 to find the minimum value of the
expression. This concludes our proof that Λ2 is indeed a local minima of L.

Uniquesness: The uniqueness of Λ2 as a solution to (9) is shown in Lemma 6 and is also guaranteed
by the fact that γ2 has a unique value. Using Λ2 = γ2Σ2 and λ1 = γ1σ1 in (8), we obtain a unique
solution γ1 = γ2

γ .
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Now, we need to show that it is also an unique solution to Theorem 1.

For all solutions to Theorem 1 that have singular vectors which are different than that of W,
by Lemma 5, the matrix formed by replacing the singular vectors of the solution with that of W is
also a solution. Thus, if there were a solution with different singular values than Ŵk, it should have
appeared as a solution to (9). However, we have shown that (9) has a unique solution.

Now, we need to show that among all matrices with the same singular values as that of Ŵk, Ŵk

is strictly better in terms of
∥∥∥W − Ŵk

∥∥∥ . This requires a further assumption that every non-zero
singular value of Λ2 has a multiplicity of 1 i.e. they are all distinctly unique. Intuitively, this doesn’t
allow to create a different matrix by simply interchanging the singular vectors associated with the
equal singular values. As the elements of Σ2 are distinct, the elements of Λ2 = γ2Σ2 are also distinct
and thus by the second part of Lemma 5, Ŵk is strictly better, in terms of

∥∥∥W − Ŵk

∥∥∥, than all

matrices which have the same singular values as that of Ŵk. This concludes our discussion on the
uniqueness of the solution.

Case for r = 1: Substituting r = 1 in the constraint r = 1 +

∑p
j=2 λ

2
j

λ2
1

we get

r − 1 =

∑p
j=2 λ

2
j

λ2
1

= 0 =⇒
p∑
j=2

λ2
j = 0

As it is a sum of squares, each of the individual elements is also zero i.e. λj = 0 ∀2 ≤ j ≤ p.
Substituting this into (7), we get the following quadratic equation in λ1

L = 〈Σ,Σ〉+ λ2
1 − 2σ1λ1 (12)

which is minimized at λ1 = σ1, thus proving that γ1 = 1 and γ2 = 0.

Proof for Case (b): In this case, the constraints are meant to preserve the top k singular values of the
given matrix while obtaining the new one. Let Σ1 = (σ1, · · · , σk) , Σ2 = (σk+1, · · · , σp) , Λ1 =
(λ1, · · · , λk) , Λ2 = (λk+1, · · · , λp). Since satisfying all the constraints imply Σ1 = Λ1, thus,

L :=
∥∥∥W − Ŵk

∥∥∥2

F
= 〈Σ2 − Λ2,Σ2 − Λ2〉. From the stable rank constraint srank(Ŵk) = r, we

have

r =
〈Λ1,Λ1〉+ 〈Λ2,Λ2〉

λ2
1

∴ 〈Λ2,Λ2〉 = rλ2
1 − 〈Λ1,Λ1〉 = rσ2

1 − 〈Σ1,Σ1〉 (13)

The above equality constraint makes the problem non-convex. Thus, we relax it to srank(Ŵk) ≤ r to
make it a convex problem and show that the optimality is achieved with equality. Let rσ2

1−〈Σ1,Σ1〉 =
η. Then, the relaxed problem can be written as

min
Λ2∈Rp−k

L := 〈Σ2 − Λ2,Σ2 − Λ2〉

s.t. Λ2 ≥ 0, 〈Λ2,Λ2〉 ≤ η.

We introduce the Lagrangian dual variables Γ ∈ Rp−k and µ corresponding to the positivity and the
stable rank constraints, respectively. The Lagrangian can then be written as

L (Λ2,Γ, µ)Γ≥0,µ≥0 = 〈Σ2 − Λ2,Σ2 − Λ2〉+ µ (〈Λ2,Λ2〉 − η)− 〈Γ,Λ2〉 (14)

Using the primal optimality condition
∂L
∂Λ2

= 0, we obtain

2Λ2 − 2Σ2 + 2µΛ2 − Γ = 0

=⇒ Λ2 =
Γ + 2Σ2

2 (1 + µ)
(15)
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Using the above condition on Λ2 with the constraint 〈Λ2,Λ2〉 ≤ η, combined with the stable rank
constraint of the given matrix W that comes with the problem definition, srank(W) > r (which
implies 〈Σ2,Σ2〉 > η), the following inequality must be satisfied for any Γ ≥ 0

1 <
〈Σ2,Σ2〉

η
≤ 〈Γ + Σ2,Γ + Σ2〉

η
≤ (1 + µ)2 (16)

For the above inequality to satisfy, the dual variable µmust be greater than zero, implying, 〈Λ2,Λ2〉−η
must be zero for the complementary slackness to satisfy. Using this with the optimality condition (15)
we obtain

(1 + µ)
2

=
〈Γ + 2Σ2,Γ + 2Σ2〉

4η

Substituting the above solution back into the primal optimality condition we get

Λ2 = (Γ + 2Σ2)

√
η√

〈Γ + 2Σ2,Γ + 2Σ2〉
(17)

Finally, we use the complimentary slackness condition Γ� Λ2 = 011 to get rid of the dual variable Γ
as follows

Γ� (Γ + 2Σ2)

√
η√

〈Γ + 2Σ2,Γ + 2Σ2〉
= 0

It is easy to see that the above condition is satisfied only when Γ = 0 as Σ2 ≥ 0 and η > 0. Therefore,
using Γ = 0 in (17) we obtain the optimal solution of Λ2 as

Λ2 =

√
η√

〈Σ2,Σ2〉
Σ2 =

√
rσ2

1 − ‖S1‖2F
‖S2‖2F

Σ2 = γΣ2 (18)

Proof for Case (c): The monotonicity of
∥∥∥Ŵk −W

∥∥∥
F

for k ≥ 1 is shown in Lemma 3.

Note that by the assumption that srank(W) < r, we can say that γ < 1. Therefore in all the cases
γ2 < 1. Let us look at the required conditions for γ1 ≥ 1 to hold. When k ≥ 1, γ1 = 1 holds. When
k = 0, for γ1 > 1 to be true, γ2 < γ should hold, implying, (γ − 1) < r (γ − 1), which is always
true as r > 1 (by the definition of stable rank).
Lemma 3. For k ≥ 1, the solution to the optimization problem (4) obtained using Theorem 1 is
closest to the original matrix W in terms of Frobenius norm when only the spectral norm is preserved,
implying, k = 1.

Proof. For a given matrix W and a partitioning index k ∈ {1, · · · , p}, let Ŵk = Sk1 + γSk2 be the
matrix obtained using Theorem 1. We use the superscript k along with S1 and S2 to denote that this
refers to the particular solution of Ŵk. Plugging the value of γ and using the fact that

∥∥Sk2∥∥F
6= 0,

we can write ∥∥∥W − Ŵk

∥∥∥
F

= (1− γ)
∥∥Sk2∥∥F

=
∥∥Sk2∥∥F

−
√
rσ2

1 −
∥∥Sk1∥∥2

F

=
∥∥Sk2∥∥F

−
√
rσ2

1 − ‖W‖
2
F +

∥∥Sk2∥∥2

F
.

Thus,
∥∥∥W − Ŵk

∥∥∥
F

can be written in a simplified form as f(x) = x−
√
a+ x2, where x =

∥∥Sk2∥∥F

and a = rσ2
1−‖W‖

2
F. Note, a ≤ 0 as 1 ≤ r ≤ srank(W), and a+x2 ≥ 0 because of the condition

in Theorem 1. Under these settings, it is trivial to verify that f is a monotonically decreasing function
of x. Using the fact that as the partition index k increases, x decreases, it is straightforward to
conclude that the minimum of f(x) is obtained at k = 1.

11� is the hadamard product
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A.2 PROOF FOR OPTIMAL SPECTRAL NORMALIZATION

The widely used spectral normalization (Miyato et al., 2018) where the given matrix W ∈ Rm×n is
divided by the maximum singular value is an approximation to the optimal solution of the spectral
normalization problem defined as

arg min
Ŵ

∥∥∥W − Ŵ
∥∥∥2

F
(19)

s.t. σ(Ŵ) ≤ s,

where σ(Ŵ) denotes the maximum singular value and s > 0 is a hyperparameter. The optimal
solution to this problem is shown in Algorithm 3. In what follows we provide the optimality proof

Algorithm 3 Spectral Normalization

Require: W ∈ Rm×n, s
1: W1 ← 0, p← min(m,n)
2: for k ∈ {1, · · · , p} do
3: {uk,vk, σk} ← SV D(W, k) . perform power method to get k-th singular value
4: if σk ≥ s then
5: W1 ←W1 + s ukv

>
k

6: W←W − σk ukv
>
k

7: else
8: break . exit for loop
9: end if

10: end for
11: return W←W1 + W

of Algorithm 3 for the sake of completeness. Let SVD (W) = UΣV> and let us assume that
Z = SΛT> is a solution to the problem 19. Trivially, X = UΛV> also satisfies σ (X) ≤ s. Now,
‖W −X‖2F =

∥∥U (Σ− Λ) V>
∥∥2

F
= ‖(Σ− Λ)‖2F ≤ ‖W − Z‖2F, where the last inequality directly

comes from Lemma 4. Thus the singular vectors of the optimal solution must be the same as that of
W. This boils down to solving the following problem

arg min
Λ∈Rmin(m,n)

+

‖Λ− Σ‖2F s.t. Λ [i] ≤ s ∀i ∈ {0,min (m,n)} . (20)

Here, without loss of generality, we abuse notations by considering Λ and Σ to represent the diagonal
vectors of the original diagonal matrices Λ and Σ, and Λ [i] as its i-th index. It is trivial to see that the
optimal solution with minimum Frobenius norm is achieved when

Λ [i] =

{
Σ [i] , if Σ [i] ≤ s
s, otherwise.

This is exactly what Algorithm 3 implements.

A.3 AUXILIARY LEMMAS

Lemma 4. [Reproduced from Theorem 5 in Mirsky (1960)] For any two matrices A,B ∈ Rm×n
with singular values as σ1 ≥ · · · ≥ σn and ρ1 ≥ · · · ≥ ρn, respectively

‖A−B‖2F ≥
n∑
i=1

(σi − ρi)2

Proof. Consider the following symmetric matrices

X =

[
0 A

A> 0

]
,Y =

[
0 B

B> 0

]
,Z =

[
0 A−B

(A−B)
>

0

]
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Let τ1 ≥ · · · ≥ τn be the singular values of Z. Then the set of characteristic roots of X,Y
and Z in descending order are {ρ1, · · · , ρn,−ρn, · · · ,−ρ1}, {σ1, · · · , σn,−σn, · · · ,−σ1}, and
{τ1, · · · , τn,−τn, · · · ,−τ1}, respectively. By Lemma 2 in Wielandt (1955)

[σ1 − ρ1, · · · , σn − ρn, ρn − σn, · · · , ρ1 − σ1] � [τ1, · · · τn,−τn,−τ1] ,

which implies that
n∑
i=1

(σi − ρi)2 ≤
n∑
i=1

τ2
i = ‖A−B‖2F (21)

Lemma 5. Let A,B ∈ Rm×n where SVD(A) = UΣV> and B is the solution to the following
problem

B = arg min
srank(W)=r

‖W −A‖2F . (22)

Then, SVD (B) = UΛV> where Λ is a diagonal matrix with non-negative entries. Implying, A and
B will have the same singular vectors.

Proof. Let us assume that Z = SΛT> is a solution to the problem 22 where S 6= U and T 6= V.
Trivially, X = UΛV> also lies in the feasible set as it satisfies srank(X) = r (note stable rank
only depends on the singular values). Using the fact that the Frobenius norm is invariant to unitary
transformations, we can write ‖A−X‖2F =

∥∥U (Σ− Λ) V>
∥∥2

F
= ‖(Σ− Λ)‖2F. Combining this

with Lemma 4, we obtain ‖A−X‖2F = ‖(Σ− Λ)‖2F ≤ ‖A− Z‖2F. Since, S 6= U and T 6= V, we
can further change ≤ to a strict inequality <. This completes the proof.

Generally speaking, the optimal solution to problem 22 with constraints depending only on the
singular values (e.g. stable rank in this case) will have the same singular vectors as that of the original
matrix.

Further the inequality in (21) can be converted into a strict inequality if neither of A and B have
repeated singular values. Using that strict inequality, if both Σ and Λ have no repeated values, then B
is the only solution to (22) that has the singular valyes of Λ.

Lemma 6. Let y1 = ax1 + bx̂1 and y2 = ax2 + bx̂2, where x̂1 and x̂2 denotes the unit vectors.
Then, y1 = y2 if x1 = x2.

B EMPIRICAL LIPSCHITZ CONSTANT

B.1 RELATING EMPIRICAL LOCAL AND GLOBAL LIPSCHITZ CONSTANTS

Proposition B.1. Let f : Rm 7→ R be a Fréchet differentiable function, D the dataset, and
Conv (xi,xj) denotes the convex combination of a pair of samples xi and xj , then ∀p, q ∈ [1,∞]
such that 1

p + 1
q = 1

max
xi,xj∈D

|f(xi)− f(xj)|
‖xi − xj‖p

≤ max
xi,xj∈D

x∈Conv (xi,xj)

‖Jf (x)‖q
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Proof. Let f : Rm → R be a differentiable function on an open set containing xi and xj such that
xi 6= xj . By applying fundamental theorem of calculus

|f (xi)− f (xj)| =
∣∣∣∣∫ 1

0

∇f (xi + θ (xj − xi))
>

(xj − xi) ∂θ

∣∣∣∣
≤
∫ 1

0

∣∣∣∇f (xi + θ (xj − xi))
>

(xj − xi)
∣∣∣ ∂θ

(a)

≤
∫ 1

0

‖∇f (xi + θ (xj − xi))‖q ‖(xj − xi)‖p ∂θ

≤
∫ 1

0

max
θ∈(0,1)

‖∇f (xi + θ (xj − xi))‖q ‖(xj − xi)‖p ∂θ

= max
θ∈(0,1)

‖∇f (xi + θ (xj − xi))‖q ‖(xj − xi)‖p
∫ 1

0

∂θ

∴
|f (xi)− f (xj)|
‖(xj − xi)‖p

≤ max
θ∈(0,1)

‖∇f (xi + θ (xj − xi))‖q = max
x∈Conv (xi,xj)

‖∇f (x)‖q .

The inequality (a) is due to Hölder’s inequality.

B.2 EFFECT OF RANK ON THE EMPIRICAL LIPSCHITZ CONSTANTS

Let f(x) = W2W1x be a two-layer linear NN with weights W1 and W2. The Jacobian in this case
is independent of x. Thus, the local Lipschitz constant is the same for all x ∈ Rm, implying, local
Le = Ll(x) = Ll = ‖W2W1‖ ≤ ‖W2‖ ‖W1‖. Note, in the case of 2-matrix norm reducing the
rank will not affect the upperbound. However, as will be discussed below, rank reduction greatly
influences the global Le.

Let xi and xj be random pairs from D and ∆x 6= 0 be the difference xi − xj , then, the global Le
is max{xi,xj}∈D

‖W2W1∆x‖
‖∆x‖ . Let k1 and k2 be the ranks, and σ1 ≥ · · · ≥ σk1 and λ1 ≥ · · · ≥ λk2

the singular values of the matrices W1 and W2, respectively. Let Pi = uiū
>
i be the orthogonal

projection matrix corresponding to ui and ūi, the left and the right singular vectors of W1. Similarly,
we define Qi for W2 corresponding to vi and v̄i. Then, W2W1 =

∑k2
i=1

∑k1
j=1 λiσjQiPj . The

upperbound, λ1σ1, can only be achieved if ∆x = ū1 ‖∆x‖ and u1 = v̄1 (a perfect alignment),
which is highly unlikely. In practice, not just the maximum singular values, as is the case with the
Lipschitz upper-bound, rather the combination of the projection matrices and the singular values play
a crucial role in providing an estimate of global Le. Thus, reducing the singular values, which is
equivalent to minimizing the rank (or stable rank), will directly affect Le. For example, assigning
σj = 0, which in effect will reduce the rank of W1 by one, will nullify its influence on all projections
associated with Pj . Implying, all the k2 projections σj(

∑k2
i=1 λiQi)Pj that would propagate the

input via Pj will be blocked. This, in effect, will influence ‖W2W2∆x‖; hence the global Le. In
a more general setting, let ki be the rank of the i-th linear layer, then, each singular value of a j-th
layer can influence the maximum of

∏j−1
i=1 ki

∏l
i=j+1 ki many paths through which an input can

be propagated. Thus, mappings with low rank (stable) will greatly reduce the global Le. Similar
arguments can be drawn for local Le in the case of NN with non-linearity.

C THE LOCAL LIPSCHITZ UPPER-BOUND FOR NEURAL NETWORKS

As mentioned in Section 2, Ll(x) = ‖Jf (x)‖p,q , where, in the case of NN, the Jacobian is:

Jf (x) =
∂f (x)

∂x
:=

∂z1

∂x

∂φ1(z1)

∂z1
· · · ∂zl

∂al−1

∂φl(zl)

∂zl
. (23)

Using ∂zl
∂al−1

= Wl (affine transformation), and applying submultiplicativity of the matrix norms:

‖Jf (x)‖p,q ≤ ‖W1‖p,q

∥∥∥∥∂φ1(z1)

∂z1

∥∥∥∥ · · · ‖Wl‖p,q

∥∥∥∥∂φl(zl)∂zl

∥∥∥∥ . (24)
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Note, most commonly used activation functions φ(.) such as ReLU, sigmoid, tanh and maxout are
known to have Lipschitz constant of 1 (if scaled appropriately)12, thus, the upper bound can further
be written only using the operator norms of the intermediate matrices as

Ll(x) ≤ ‖Jf (x)‖p,q ≤ ‖Wl‖p,q · · · ‖W1‖p,q . (25)

Furthermore Ll (x) can be substituted by Ll, the local Lipschitz constant, as the upper
bound (Eq. (25)) is independent of x. Note that this is one of the main reasons why we con-
sider the empirical Lipschitz to better reflect the true behaviour of the function as the NN is never
exposed to the entire domain Rm but only a small subset dependant on the data distribution.

The other reason why this upper bound is a bad estimate is that the inequality in Eq (24) is tight only
when the partial derivatives are aligned, implying,

∥∥∥ ∂z`
∂z`−1

∂z`+1

∂z`

∥∥∥
2

=
∥∥∥ ∂z`
∂z`−1

∥∥∥
2

∥∥∥∂z`+1

∂z`

∥∥∥
2
∀l−2 ≤

` ≤ l. This problem has been referred to as the problem of mis-alignment and is similar to quantities
like layer cushion in Arora et al. (2018).

D EXPERIMENTAL DETAILS

WideResNet-28-10 We use a standard WideResNet with 28 layers and a growth factor of 10. In total,
the network has 36,539,124 trainable parameters. The network is the standard configuration with
batchnorm and ReLU activations and is trained with a weight decay of 1e− 4. The learning rate was
multiplied by 0.2 after 60, 120, and 160 epochs respectively.

ResNet-110 The ResNet-110 is a standard 110 layered ResNet with batch Norm and ReLU and has
1, 973, 236 parameters. The network is trained with SGD, an initial learning rate of 0.1, which is
multiplied 0.1 after 150 and 250 epochs respectively, a weight decay of 5e− 4 and a momentum of
0.9.

Densenet-100 The DenseNet-100 is a standard 100-layered densenet with Batchnorm and ReLU and
has a total of 800, 032 trainable parameters. The network is trained with SGD, an initial learning rate
of 0.1, which is multiplied by 0.1 after 150 and 250 epochs respectively, a weight decay of 1e− 4,
and a momentum of 0.9.

VGG19 The VGG19 model is the standard 19-layered VGG model with Batchnorm and ReLU. It
has a total of 20, 548, 392 trainable parameters and is trained with SGD with a momentum of 0.9
and a weight decay of 5e− 4. The inital learning rate is 0.1 and is multiplied by 0.1 after 150 and
250 epochs respectively. For the shattering experiments, we used the same architecture and the same
training recipe except the initial learning rate, which was deceased to 0.01 as the model failed to learn
the random labels with a large learning rate.

AlexNet The Alexnet model is the standard ALexNet model with 4, 965, 092 trainable parameters.
It was trained with SGD, with a momentum of 0.9, with an inital learning rate is 0.01, which is
multiplied by 0.1 after 150 and 250 epochs respectively. The optimizer was further augmented with a
weight decay rate of 5e− 4. Please refer to the next section for results on different learning rates and
with and without weight decay.

D.1 ADDITIONAL EXPERIMENTS ON GENERALIZATION

Alexnet experiments: Figure 6 shows the test error and generalization error of Alexnet trained
with a large learning rate of 0.1. Note that, the model fails to learn completely without weight decay.
Generlisation Error decresaes monotonically with decreasing c in the stable rank constraint. Test
error is the lowest for c = 0.5. The constraint becomes too aggressive for even c lower than that. The
slightly more interesting observation is that having a weight decay actually hurts generalization error
while it has a slightly positive effect on test error.

Low Learning Rate Here, we train a WideResnet-28-10 with SRN, SN, and vanilla methods with
an lr = 0.01 and weight decay of 5× 10−4 on randomly labelled CIFAR100. for 50 epochs. The
results are shown in Table 6 and it further supports that SRN is more robust to random noise than SN
or vanilla methods.

12implying, maxz

∥∥∥ ∂φ(z)∂z

∥∥∥
p
= 1.
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(a) Generalization Error (b) Test Error

Figure 6: Test Error and Generalization Error of AlexNet trained with SGD with lr = 0.1 on (clean)
CIFAR-100. (Lower is better

Stable-30 Spectral Vanilla
29.04 17.24 1.22

Table 6: Training Error for WideResNet-28-10 on CIFAR100 with randomized labels, low lr= 0.01,
and with weight decay. (Higher is better.)

With and without weight decay In Figure 7a, we show the training error of Alexnet trained with
SGD with and without weight decay (= 5e− 4) with a learning rate of 0.01. Again, we see that a
more aggressive stable rank constraint decreases fitting the random data . Similar results are seen for
ResNet-110 in Figure 7b.

E ADDITIONAL EXPERIMENTS ON GANS

E.1 GAN EXPERIMENTAL SETUP

Datasets and Network Architectures Each of the CIFAR datasets contain a total of 50, 000 RGB
images in the training set, where each image is of size 32× 32, and a further 10, 000 RGB images of
the same dimension in the test set. The CelebA dataset contains more than 200K images scaled to a
size of 64× 64. The model architecture for both the generator and the discriminator was chosen to be
a 32 layered ResNet (He et al., 2016) due to its previous superior performance in other works (Miyato
et al., 2018). We use Adam optimizer (Kingma & Ba, 2014) which depends on three main hyper-
parameters α- the initial learning rate, β1- the first order moment decay rate and β2- the second
order moment decay rate. We cross-validate these parameters in the set α ∈ {0.0002, 0.0005}, β1 ∈
{0, 0.5}, β2 ∈ {0.9, 0.999} and chose α = 0.0002, β1 = 0.0 and β2 = 0.999 which performed
consistently well in all of the experiments.

GAN objective functions In the case of conditional GANs (Mirza & Osindero, 2014), we used the
conditional batch normalization (Dumoulin et al., 2017) to condition the generator and the projection
discriminator (Miyato & Koyama, 2018) to condition the discriminator. The dimension of the latent
variable for the generator was set to 128 and was sampled from a zero mean and unit variance
Gaussian distribution. For training the model, we used the hinge loss version of the adversarial
loss (Lim & Ye, 2017; Tran et al., 2017) in all experiments except the experiments with WGAN-GP.
The hinge loss version was chosen as it has been shown to give consistently better performance in
previous works (Zhang et al., 2018; Miyato et al., 2018). For training the WGAN-GP model, we used
the original loss function as described in Gulrajani et al. (2017).

Evaluation Metrics We use Inception (Salimans et al., 2016) and Frechet Inception Dis-
tance (FID) (Heusel et al., 2017) scores for the evaluation of the generated samples. For measuring
the inception score, we generate 50, 000 samples, as was recommended in Salimans et al. (2016). For
measuring FID, we use the same setting as Miyato et al. (2018) where we sample 10, 000 data points
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(a) AlexNet (b) ResNet110

Figure 7: Training error on randomly labelled CIFAR-100 with a learning rate of 0.01 and with/ with
out weight decay. (Higher is better.

from the training set and compare its statistics with that of 5, 000 generated samples. In addition,
we use a recent evaluation metric called Neural divergence score Gulrajani et al. (2019) which is
more robust to memorization. The exact set-up for the same is discussed below. In the case of
conditional image generation, we also measure Intra-FID (Miyato et al., 2018), which is the mean
of the FID of the generator, when it is conditioned over different classes. Let FID(G, c) be the FID
of the generator G when it is conditioned on the class c ∈ C (where C is the set of classes), then,
Intra FID(G) = 1

|C|FID(G, c)

Neural Divergence Setup We train a new classifier inline with the architecture in Gulrajani et al.
(2019). It includes three convolution layers with 16, 32 and 64 channels, a kernel size of 5 × 5
and a stride of 2. Each of these layers are followed by a Swish activation (Ramachandran et al.,
2018) and then finally a linear layer that gives a single output. The network is initialized using
normal distribution with zero mean and the standard deviation of 0.02, and trained using Adam
optimizer with α = 0.0002, β1 = 0., β2 = 0.9 for a total of 100, 000 iterations with minibatch
of 128 generated samples and 128 samples from the test set13. We use the standard WGAN-GP
loss function, log (1 + exp (f (xfake))) + log (1 + exp (−xreal)), where f represents the network
described above. Finally, we generate 1 Million samples from the generator and report the average
log (1 + exp (f (xfake))) over these samples. Higher average value implies better generation as the
network in this case is unable to distinguish the generated and the real samples.

E.2 MORE EMPIRICAL LIPSCHITZ PLOTS

For the purpose of analysis, Figure 9b and 10b shows eLhist for pairs where each sample either comes
from the true data or from the generator, and we observe a similar trend. To verify that same results
hold in the conditional setup, we show comparisons for GANs with projection discriminator (Miyato
& Koyama, 2018) in Figure 8, 9a and 10a, and observe a similar trend. Further, to see the value of
the local Lipschitzness in the vicinity of real and generated samples we also plot the norm of the
Jacobian in Figure 11 and 12 in Appendix E.2 and observe mostly a similar trend. In Appendix E.3
(Figure 13), we also show that the discriminator training of SRN-GAN is more stable than SN-GAN.

Conditional GANs Figure 8 shows the eLihst of conditional GANs with projection discrimina-
tor (Miyato & Koyama, 2018).

13For CelebA, we used the training set.
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Figure 8: Comparison: eLhist of the discriminator in the conditional GAN setting with projection discriminator
on CIFAR100.

Empirical Lipschitzness between real samples and between fake samples. Figure 9 shows the
histogram of eLhist of the discriminator for pairs of fake samples i.e. samples generated by the
generator. Figure 10 shows eLhist of the discriminator when samples came from the dataset.

(a) Conditional GAN with projection discriminator. (b) Unconditional GAN setting.

Figure 9: Comparison: eLhist of the discriminator for pairs of samples selected from the generator on CIFAR10

(a) Conditional GAN with projection discriminator (b) Unconditional GAN setting.

Figure 10: Comparison: eLhist of the discriminator for pairs of samples from the real distribution on CIFAR10.

Jacobian norm in the vicinity of the points Here we compare the Jacobian of the discriminator
of the trained models in the vicinity of the samples from the generator and the real dataset. This
is a penalized measure in various algorithms Gulrajani et al. (2017); Petzka et al. (2018) (often
referred to as local perturbations) and was independently proposed by Kodali et al. (2018). Figure 11
and Figure 12 show the histogram of the norm of the Jacobian of the discriminator in the vicinity of
the generated and the real samples, respectively. To generate these plots, 2, 000 samples were used
from the respective distributions. It is interesting to note that the norm is the same for the points in the
vicinity of the real data points and the generated data points for the Stable Rank Normalization GAN
(SRN-GAN) as well for WGAN-GP whereas it varies between fake and real samples for Spectral
Normalization GAN (SN-GAN).
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(a) Conditional GAN with projection discriminator. (b) Unconditional GAN setting.

Figure 11: Jacobian norm of the discriminator in the neighbourhood of the samples from the generator trained
on CIFAR10.

(a) Conditional GAN with projection discriminator (b) Unconditional GAN setting.

Figure 12: Jacobian norm of the discriminator in the neighbourhood of the samples from the real dataset
(CIFAR10).

E.3 TRAINING STABILITY

Figure 13: Loss incurred by the discriminator. The loss of SRN-GAN with the stable rank constraint of 70 is
shifted upwards by 0.2 so that we can compare the change of the loss during training as opposed to the absolute
magnitude of the loss.

Training Stability In Figure 13 we show the discriminator loss during the course of the training
as an indicator of whether the generator gets sufficient gradient during training or not. These plots
clearly suggest that the discriminator loss is more consistent for SRN than the SN.
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F EXAMPLES OF GENERATED IMAGES

F.1 CELEBA IMAGES

For these images, we generated 100 images from the respective models and hand-picked the 10 best
images in terms of visual quality.

Figure 14: Image samples generated from the unconditional SRN-GAN.

Figure 15: Image samples generated from the unconditional SN-GAN.
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F.2 CIFAR10-UNCONDITIONAL GAN

(a) SRN-GAN - Rank 70%

(b) SRN-GAN - Rank 50%

(c) SN-GAN

(d) WGAN-GP

Figure 16: Image samples generated from the unconditional SRN-GAN, SN-GAN, and WGAN-GP.
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F.3 CIFAR10-CONDITIONAL SRN-GAN

(a) Air-planes (b) Cars (c) Birds

(d) Cats (e) Deers (f) Dogs

Figure 17: Image samples generated from the conditional SRN-GAN with projection discriminator.
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