
Under review as a conference paper at ICLR 2020

ADVECTIVENET: AN EULERIAN-LAGRANGIAN
FLUIDIC RESERVOIR FOR POINT CLOUD PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a novel physics-inspired deep learning approach for point
cloud processing motivated by the natural flow phenomena in fluid mechanics.
Our learning architecture jointly defines data in an Eulerian world space, using a
static background grid, and a Lagrangian material space, using moving particles.
By introducing this Eulerian-Lagrangian representation, we are able to naturally
evolve and accumulate particle features using flow velocities generated from a
generalized, high-dimensional force field. We demonstrate the efficacy of this
system by solving various point cloud classification and segmentation problems
with state-of-the-art performance. The entire geometric reservoir and data flow
mimics the pipeline of the classic PIC/FLIP scheme in modeling natural flow,
bridging the disciplines of geometric machine learning and physical simulation.

1 INTRODUCTION
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Figure 1: We build an advective net-
work to create a fluidic reservoir with
hybrid Eulerian-Lagrangian represen-
tations for point cloud processing.

The fundamental insight of deep learning is to discover fea-
ture representations from complex data sets using a hierar-
chical model composed of layers of simpler data structures.
These data structures, such as a uniform grid (Lecun et al.,
1998), an unstructured graph (Kipf & Welling, 2016), or a
hierarchical point set (Qi et al., 2016a; 2017), function as a
geometric reservoir to yield intricate underpinning patterns
by evolving the massive input data in a high-dimensional
parameter space. On another front, computational physics
researchers have been mastering the art of inventing geo-
metric data structures and simulation algorithms to model
complex physical systems. Lagrangian structures, which
track the motion in a moving local frame such as a par-
ticle system (Monaghan, 1992), and Eulerian structures,
which describe the evolution in a fixed world frame such
as a Cartersian grid (Foster & Fedkiw, 2001; Fedkiw et al.,
2001), are the two mainstream approaches. Various dif-
ferential operators have been devised on top of these data
structures to model complex fluid or solid systems.

Pioneered by E (2017) and popularized by many others,
e.g., (Long et al., 2018; Chen et al., 2018; Ruthotto &
Haber, 2018), treating the data flow as the evolution of a
dynamic system is connecting machine learning and physics simulation. As E (2017) notes, there
exists a mathematical equivalence between the forward data propagation on a neural network and
the temporal evolution of a dynamic system. Accordingly, the training process of a neural network
amounts to finding the optimal control forces exerted on a dynamic system to minimize a specific
energy form.

Point cloud processing is of particular interest under this perspective. The two main challenges:
to build effective convolution stencils and to evolve learned nonlinear features (Qi et al., 2016a;
Atzmon et al., 2018; Wang et al., 2019), can map conceptually to the challenges of devising world-
frame differential operators and tracking material-space continuum deformations when simulating
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a PDE-driven dynamic system in computational physics. We envision that the key to solving these
challenges lies in the adaption of the most suited geometric data structures to synergistically handle
the Eulerian and Lagrangian aspects of the problem. In particular, it is essential to devise data
structures and computational paradigms that can accommodate global fast convolutions, and at the
same time track non-linear feature evaluations.

The key motivation of this work originates from physical computing that tackles its various frame-
dependent and temporally-evolved computational challenges by creating the most natural and effec-
tive geometric toolsets under the two different viewpoints. We are specifically interested in uncov-
ering the intrinsic connections between a point cloud learning problem and a computational fluid
dynamic (CFD) problem. We observe that the two problems share an important common thread
regarding their computational model, which both evolve Lagrangian particles in an Eulerian space
guided by the first principle of energy minimization. Such observations shed new insight into the 3D
point cloud processing and further opens the door for marrying the state-of-the-art CFD techniques
to tackle the challenges emerging in point cloud learning.

To this end, this paper conducts a preliminary exploration to establish an Eulerian-Lagrangian flu-
idic reservoir that accommodates the learning process of point clouds. The key idea of the proposed
method is to solve the point cloud learning problem as a flow advection problem jointly defined in
a Eulerian world space and a Lagrangian material space. The defining characteristic distinguishing
our method from others is that the spatial interactions among the Lagrangian particles can evolve
temporally via advection in a learned flow field, like their fluidic counterpart in a physical circum-
stance. This inherently takes advantage of the fundamental flow phenomena in evolving and sepa-
rating Lagrangian features non-linearly (see Figure 1). In particular, we draw the idea of Lagrangian
advection on an Eulerian reservoir from both the Particle-In-Cell (PIC) method (Evans & Harlow,
1957) and the Fluid-Implicit-Particle (FLIP) method (Brackbill et al., 1987), which are wholly rec-
ognized as ’PIC/FLIP’ in modeling large-scale flow phenomena in both computational fluids, solids,
and even visual effects. We demonstrate the result of this synergy by building a physics-inspired
learning pipeline with straightforward implementation and matching the state-of-the-art with this
framework.

The key contributions of our work include:

• An advective scheme to mimic the natural flow convection process for feature separation;

• A fluid-inspired learning paradigm with effective particle-grid transfer schemes;

• A fully Eulerian-Lagrangian approach to process point clouds, with the inherent advantages
in creating Eulerian differential stencils and tracking Lagrangian evolution;

• A simple and efficient physical reservoir learning algorithm.

2 RELATED WORKS

This section briefly reviews the recent related work on point cloud processing. According to data
structures used for building the convolution stencil, the methods can be categorized as Lagrangian
(using particles only), Eulerian (using a background grid), and hybrid (using both). We also review
the physical reservoir methods that embed network training into a physical simulation process.

Lagrangian Lagrangian methods build convolution operators on the basis of local points. Exam-
ples include PointNet (Qi et al., 2016a), which conducts max pooling to combat any disorganized
points, PointNet++ (Qi et al., 2017), which leverages farthest point sampling to group particles,
and a set of work (Wang et al., 2019; Xu et al., 2018; Li et al., 2018b;a; Jiang et al., 2018) based
on k-nearest neighbors. Beyond the mesh-free approaches, researchers also seek to build effective
point-based stencils by establishing local connectivities among points. Most significantly, geometric
deep learning (Bruna et al., 2013; Bronstein et al., 2016) builds convolution operators on top of a
mesh to uncover the intrinsic features of objects’ geometry. In particular, we want to highlight the
work on dynamic graph CNN (Wang et al., 2019), which builds directed graphs in an extempora-
neous fashion in feature space to guide the point neighbor search process, which shares similarities
with our approach.
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Figure 2: Workflow overview: a) The feature vector for each particle is initialized by a 1× 1 con-
volution; b) Particles are embedded in an Eulerian grid; c) Features are interpolated from particles to
the grid (P2G); d) 3D convolution is applied on the grid to calculate generalized forces; e) A velocity
field is generated on the background grid; f) Particles advect in the Eulerian space using the inter-
polated velocities; g) Particles aggregate. The workflow exhibits two loops: First, grid features are
interpolated to particles (G2P) and appended to its feature vector (inner loop, blue arrow). Second,
particle positions are updated for the next time step (outer loop, red arrow). Finally, the Lagrangian
features are fed into a fully-connected network for classification and segmentation.

Eulerian Eulerian approaches leverage background discretizations to perform computation. The
most successful Eulerian method is the CNN (Lecun et al., 1998), which builds the convolution
operator on a 2D uniform grid. This Eulerian representation can be used to process 3D data by using
multiple views (Su et al., 2015; Qi et al., 2016b; Feng et al., 2018) and extended to 3D volumetric
grids (Maturana & Scherer, 2015; Qi et al., 2016b; Z. Wu, 2015). Grid resolution is the main
performance bottleneck for 3D CNN methods. Adaptive data structures such as Octree (Riegler
et al., 2016; Wang et al., 2017) and Kd-tree (Klokov & Lempitsky, 2017) were invented to alleviate
the problem. Another example of Eulerian structures is Spherical CNN (Cohen et al., 2018) that
projects 3D shapes onto a spherical coordinate system to define equivalent rotation convolution.

Hybrid There have been recent attempts to transfer data between Lagrangian and Eulerian rep-
resentations for efficient convolution implementation. These data transfer methods can be one-way
(Wang et al., 2017; Klokov & Lempitsky, 2017; Tchapmi et al., 2017; Le & Duan, 2018), in which
case the data is mapped from points to grid cells permanently, or two-way (Su et al., 2018; Atzmon
et al., 2018; Liu et al., 2019), in which case data is pushed forward from particle to grid for con-
volution and pushed backward from grid to particle for evolution. Auto-encoders on point clouds
(Fan et al., 2016; Achlioptas et al., 2017; Yang et al., 2017; Yu et al., 2018) can be also regarded
as a hybrid approach, where encoded data is Eulerian and decoded data is Lagrangian. In addition,
we want to mention the physical reservoir computing techniques that focus on the leverage of the
temporal, physical evolution to solve learning problems, e.g., see (Jaeger, 2001) and (Maass et al.,
2002). Physical reservoir computing is demonstrating successes in various applications (Jalalvand
et al., 2015; Jaeger, 2002; Hauser et al., 2012; Lukoeviius & Jaeger, 2009; Tanaka et al., 2019).

3 ALGORITHM

PIC/FLIP overview Before describing the details of our method, we begin with briefly surveying
the background of the PIC/FLIP method. PIC/FLIP uses a hybrid grid-particle representation to de-
scribe fluid evolution. The particles are used for tracking materials, and the grid is used for discretiz-
ing space. Properties such as mass, density, and velocity are carried on particles. Each simulation
step consists of four substeps: particle-to-grid transfer (P2G), grid force calculation (Projection),
grid-to-particle transfer (G2P), and moving particles (advection). In the P2G step, the properties on
each particle are interpolated onto a background grid. In the Projection step, calculations such as
adding body forces and enforcing incompressibility are conducted on the background grid. After
this, the velocities on grid nodes are interpolated back onto particles (G2P). Finally, particles move
to their new positions for the next time step using the updated velocities (Advection). As summa-
rized above, the key philosophy of PIC/FLIP is to carry all features on particles and to perform all
differential calculations on the grid. The background grid functions as a computational paradigm
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that can be established extemporaneously when needed. Data will transfer from particle to grid and
then back to particle to finish a simulation loop.

Our proposed approach follows the same design philosophy as PIC/FLIP by storing the learned
features on particles and conducting differential calculations on the grid. The Lagrangian features
will evolve with the particles moving in an Eulerian space and interact with local grid nodes. As
shown in Figure 2, the learning pipeline mimics the PIC/FLIP simulation loop in the sense that
Lagrangian particles are advected passively in an Eulerian space guided by a learned velocity field.

Initialization We initialize a particle system P and a background grid G as the Lagrangian and
Eulerian representations respectively for processing point clouds. We use the subscript p to refer to
particle indices and i to refer to the grid nodes. For the Lagrangian portion, the particle system has
n particles, with each particle Pp carrying its position xp ∈ R3, velocity vp ∈ R3, mass mp ∈ R,
and a feature vector fp ∈ Rk (k = 64 initially). The particle velocity is zero at the beginning.
The particle mass mp = 1 will keep constant over the entire evolution. The feature vector fp is
initialized by feeding xp into a multi-layer perceptron (MLP) to extend the dimension.

For the Eulerian part, we start with a 3D uniform grid G to represent the bounding box of the
particles. The resolution of the grid is N3 (N = 16 for most of our cases). At the beginning, the
particle system and its bounding box are normalized to the space of [−1, 1]3. Each grid node Gi of
G stores data interpolated from the particles.

Particle-to-grid transfer The data flow begins with a transfer of properties from particles to grid
nodes according to the mass interpolation

mi =
∑
p

ωipmp, (1)

and the feature interpolation
fi =

∑
p

ωipmpfp/mi, (2)

with the transfer weight ωip calculated using an interpolation function ωip = P (xi − xp). In our
implementation, we chose to use the Gaussian interpolation for P as:

wip = e−‖xi−xp‖2/2σ2

(3)

with σ as the standard deviation for the Gaussian kernel. We pick σ = 1/N to concentrate the
particle contribution within one grid cell.

Generalized grid forces With the feature vectors transferred from particles to grid nodes, we
devise a 3D CNN on the grid to calculate a generalized force field based on the Eulerian features. The
network consists of three convolution layers, with each layer as a combination of 3D convolution,
batch norm, and ReLU. The input of the network is a vector field F(kj)×N×N×N composed of the
feature vectors on all grid nodes, with k as the feature vector size (64 by default) and j as the iteration
index in the evolution loop (see Figure 2). The output is a convoluted vector field F(kj)×N×N×N

c
with the same size as F.

We use Fc for two purposes: 1) To interpolate Fc from the grid back onto particles and append it to
the current feature vector in order to enrich its feature description (see G2P and Figure 2 (d→ b) for
details); 2) To feed Fc into another single-layer network to generate the new Eulerian velocity field
V for the particle advection. Specifically, this V is interpolated back onto particles in the same way
as the feature interpolation to update the particle positions for the next iteration (see Advection for
details).

Grid-to-particle transfer The interpolation from grid to particles is executed using tri-linear in-
terpolation, which is a common scheme for property transfer in simulation and learning code.

Advection The essence of an advection process is to solve the advection equation with the La-
grangian form Dv/Dt = 0 or the Eulerian form ∂v/∂t+ v · ∇v = 0. The advection equation de-
scribes the passive evolution of particle properties within a flow field. With the learned grid velocity
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field in hand, we will update the particle velocity following the conventional scheme of PIC/FLIP.
Specifically, the new velocity is first updated by interpolating the Eulerian velocity to particles (the
PIC step):

vn+1
PIC = G2P (vn+1

g ) (4)

Then, we interpolate the difference between the new and the old Eulerian velocity:

vn+1
FLIP = vnp +G2P (vn+1

g − P2G(vnp )), (5)

and then add them to the particle with a weight α (=0.5 in default.):

vn+1
p = α ∗ vn+1

PIC + (1− α) ∗ vn+1
FLIP (6)

With the updated velocity on each particle from the G2P interpolation, the particle’s position for
the next time step can be updated using a standard time integration scheme (explicit Euler in our
implementation):

xn+1
p = xnp + vn+1

p ∆t. (7)

Boundary conditions We apply a soft boundary constraints by adding an penalty term in the
objective function to avoid particles moving outside of the grid:

φb =
1

n

∑
p

max(0, ‖xp‖2 − 1) (8)

where xp represents the pth particle in the whole batch and n is the number of particles in the whole
batch. We penalize on all the particles that run outside the grid.

We also design gather penalty and diffusion objectives to enhance the particle diffusion and cluster-
ing effects during the evolution (specifically for the segmentation application):

φg =
1

2

∑
l

∑
m

max(0, 1− ‖cl − cm‖) (9)

φd =
1

n

∑
l

∑
p

‖cl − xlp‖ (10)

where cl and cm are the centers of particles of label l and m and xlp is the pth particle with label l.

4 NETWORK ARCHITECTURE

The global architecture of our network is shown in Figure 3. Our model starts from a point cloud
with position information on each point. After an MLP (32,32,64), each point carries a feature
vector of length 64. These features are fed into an interpolation module to exchange information
with neighbors. The generated features mainly have two uses: the first is to generate velocity for each
particle through the advection module; the second is to be used along with the new advected particle
position to collect information from neighbors by another interpolation module. This interpolation-
advection process repeats for a certain number of times to accumulate features in the feature space
and to aggregate particles in the physical space.

Interpolation module The data flow inside the interpolation module starts with particles, passes
through layers of grids, then sinks back to particles. The workflow follows the sequence of P2G→
Conv → G2P → Concatenation. This module takes the position and the feature vector as
input. The feature vectors are first fed into an MLP to reduce its dimensions to 32, which saves
computational time and prevents over-fitting. Then, we apply three layers of convolution that are
each a combination of 3D convolution, batch norm, and ReLU, with a hidden-layer size as (32,16,32)
on the grid. Afterwards, the input and output features (with 32-dimension each) are concatenated
together and appended to the original feature vector.
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Figure 3: Network architectures: a) The top diagram demonstrates the global architecture of our
Eulerian-Lagrangian fluidic reservoir network with detailed information for tensor dimensionality
and modular connectivity. The blue box is for particle states and the orange box is for grid states.
The dot green box and the dot red box are for the functional modules of interpolation and advection
with more details illustrated in b) and c). The states are connected with multi-layer perceptrons
(MLP-marked arrows in the diagram). Each MLP has a number of hidden layers with a different
number of neurons (specified by the numbers within the parentheses). b) The bottom left figure
shows the details of the interpolation module updating the particle features by transferring data on
the grid and concatenating on the particles. c) The bottom right figure shows the advection module
which updates the particle positions with the generalized Eulerian forces calculated on the grid.

Advection module The data flows from particles, to grid, to particles in the advection module
following the similar direction as in the interpolation module (see Figure 3 bottom-right and Figure 2
inner-loop). The primary difference lies in the update of particle positions: the neighboring relations
between the grid cells and the moving particles are changed after each advection step. Similar to the
interpolation module, particle features are reduced to 32-dimension by an MLP first. Then, these
features are interpolated onto the grid following a two-layer convolution (32, 16) to obtain a high-
dimensional, generalized force field on the grid. A velocity field is generated from this force field by
another single-layer network. The velocity field is then interpolated back to particles for Lagrangian
advection. The output of the advection module is a set of particles with new positions that is ready
to process for the next outer loop as in Figure 2.

5 EXPERIMENTS

We conducted three parts of experiments, including the ablation tests and the applications for classi-
fication and segmentation. We implemented the system in PyTorch (see the submitted source code)
and conducted all the tests on a single RTX 2080 Ti GPU. In the ablation tests, we evaluated the
functions of the advection module, grid resolution, and number of points on ShapeNet (Yi et al.,
2016) and ModelNet40 (Z. Wu, 2015). To make the ablation test on ShapeNet simple, we only use
the point positions for training and testing and we train one network for all objects. The main results
are illustrated in Figure 4. For classification, we tested our network on ModelNet40 and its subset
ModelNet10. We used the class prediction accuracy as our metric. For segmentation, we tested our
network on ShapeNet (Yi et al., 2016) and S3DIS data set (Armeni et al., 2016). We used mean
Intersection over Union (mIoU) to evaluate our method and compare with other benchmarks.

5.1 ABLATION EXPERIMENTS

Advection To verify the effectiveness of the advection module, we turn off these modules by
replacing them with the interpolation modules for placeholder. We conducted the comparison on
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Figure 4: Ablation Test. Left) We test the effect of time steps on ShapeNet. Middle) We test the
performance with different grid resolution on ShapeNet. We compare the networks using PIC and
PIC/FLIP on the same figure. Right) We test the performance with number of points on ModelNet40.

the ShapeNet data set (Yi et al., 2016). The mIoU reached 85.1% with the advection module in
comparison to 84.3% without it, necessitating the role of the advection step.

Next, We also tested the performance of advection with different number of time steps, evaluated
mIoU on ShapeNet. We got the performance of 83.4%, 84.6%, 85.1% and 84.9% with one, two,
three, and four time steps, indicating the necessity of the multiple-step advection. Meanwhile, these
results imply the risk of over-fitting due to the multiple iterations and we suggest that the number of
steps depends on the data set and the model.

We then performed test for a frozen velocity field over the entire learning iterations. We only trained
one velocity field and reuse for multiple times for the whole loop. This change resulted in the
decrease of the mIoU from 85.1% to 83.9% (is only slight better than our standard network with a
single time step). This result endorses the importance of the temporally varying velocity.

Grid and data resolution We also evaluated the network performance with different grid resolu-
tions. We tested the mIoU on ShapeNet. We get results of 84.8%, 85.0%, 85.1% and 85.1% with
the resolution of 63, 83, 123 and 163, showing that our method can work with a low-resolution grid.
We also tested our network’s robustness against number of points on ModelNet40 data set. We get
the performance of 91.7%, 91.4%, 90.1% and 84.1% with number of points of 1024, 512, 256 and
128, showing strong robustness against missing points.

PIC/FLIP interpolation We highlight the role of our momentum-conserving interpolation
scheme by testing the different variations. In the segmentation task, we removed the normaliza-
tion part in Equation 2 to accumulate the grid features from their neighbors without smoothing. This
change results in the decrease of the mIoU from 85.1% to 79.3%. Also, to highlight the importance
of the PIC/FLIP advection scheme, we compared the mIoU on ShapeNet with PIC/FLIP and with
only PIC. Both methods reach 85.1% on a 163 grid. But the performance dropped to 84.1%, 84.3%,
84.9% with grid resolution of 63, 83, 123 with PIC only.

5.2 APPLICATIONS

Classification We tested our network on ModelNet40 (Z. Wu, 2015) and ModelNet10 for clas-
sification. ModelNet40 contains 12,311 3D mesh models from 40 categories, among which 9843
models are training set and 2468 models are testing set. We used the point cloud data set (Qi et al.,
2016a) with 2048 points uniformly sampled from these 3D mesh models. The first 1024 points were
used for both training and testing. ModelNet10 is a subset of ModelNet40 with only ten different
classes. For data augmentation, we randomly rotated objects along the up-axis in addition to ran-
domly dropping and jittering points by N(0, 0.02). We use a grid resolution 123 and 163 to train the
ModelNet40 and ModelNet10 respectively. As shown in Table 1, our result is among the state-of-art
with only minor parameter tuning.

Segmentation We tested our algorithm for object part segmentation on ShapeNet (Yi et al., 2016),
which contains 16,881 mesh models from 16 categories. We used a grid resolution 163 for training
and testing. We showed the state-of-art performance of our approach in Table 2. Notice that part of
our result is close to DGCNN in complex shapes with a small portion in the data set, such as car,

7



Under review as a conference paper at ICLR 2020

Figure 5: Visualization of segmentation. We visualize examples for most categories. Each example
consists of initial shape, intermediary grouping, and final part prediction.

Figure 6: This figure visualize the advection of an air plane in each steps. The first is the origin
point cloud and the following three are the three timestamps in the advection. We also visualize the
velocity field for each timestamp. Note that we rotate the point cloud and normalize the velocity
field for visualization purpose.

motor and rocket (see Figure 5). More examples animating the segmentation process can be seen in
Figure 5. In Figure 6, we visualized the whole advection process for an airplane showing the point
evolution. We also tested our algorithm for semantic segmentation in scenes on the Stanford Large-
Scale 3D Indoor Spaces Data set (S3DIS) (Armeni et al., 2016). Notice that we only use a grid
resolution 83 for this test case. As shown in Table 3, the performance of our model is comparable to
the state-of-the-art for a large scale real-world data.

Table 1: Classification results on ModelNet10 and ModelNet40.
Method Input ModelNet10 ModelNet40
Points with only XYZ
SO-Net 2048 points 94.1 90.9
PCNN 1024 points 94.9 92.3
PointNet 1024 points - 89.2
PointGrid 1024 points - 92.0
DGCNN 1024 points - 92.9
PointCNN 1024 points - 92.5
Ours (163/123) 1024 points 94.3 91.7
Additional input features
O-CNN octree (2563) with normals - 86.5
VoxNet grid (323) - 83.0
Kd-Net 32k points to kd-tree(depth 15) 94.0 91.8
FPNN grid (643) - 87.5
PointNet++ 5000 points with normals - 91.9
SpiderCNN 1024 points with normals - 92.4
SO-Net 5000 points with normals 95.7 93.4
Ours (163/123) 1024 points with normals 95.7 93.0
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Table 2: Segmentation results on ShapeNet.

Method input mIoU aero bag cap car chair ear
phone guitar knife lamp laptop motor mug pistol rocket skate

board table

Points with only XYZ
PointNet 2k pnts 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PCNN 2k pnts 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
Kd-Net 4k pnts 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
DGCNN 2k pnts 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.0 93.3 82.6 59.7 75.5 82.0
PointCNN 2k pnts 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 82.9
Ours (163) 2k pnts 85.1 82.8 86.0 84.8 77.8 90.6 71.7 91.3 86.5 82.9 95.8 66.9 94.5 80.7 60.2 74.1 83.0
Additional input features
PointNet++ pnts, nors 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SO-Net pnts, nors 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
O-CNN + CRF nors 85.9 85.5 87.1 84.7 77.0 91.1 85.1 91.9 87.4 83.3 95.4 56.9 96.2 81.6 53.5 74.1 84.4
SpiderCNN pnts, nors 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
Ours (163) pnts. nors 85.3 82.8 73.8 87.9 79.6 90.8 69.8 91.5 87.0 83.2 96.2 70.7 95.1 83.1 62.1 75.8 82.4
Train Separately
SPLATNet pnts, img 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
Ours (163) 2k pnts 86.1 84.4 82.6 85.6 81.6 91.1 74.2 92.1 87.3 84.7 96.2 72.3 95.9 82.8 58.8 74.8 83.3

Table 3: Segmentation results on S3DIS.
Method mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter
Cross validation result
PointNet 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
SPGraph 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
Ours (83) 60.8 93.0 95.3 76.5 46.4 43.6 62.1 62.2 68.0 65.1 30.1 48.0 49.6 50.3
Area 5 result
PointNet 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22
SPGraph 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22
SegCloud 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60
PCCN 58.27 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22
PointCNN 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74
Ours (83) 56.65 94.07 97.91 79.14 0.16 15.42 43.62 62.68 79.35 75.18 29.51 57.02 59.12 43.23

6 DISCUSSION AND CONCLUSION

This paper presents a new perspective in treating the point cloud learning problem as a dynamic
advection problem in a learned background velocity field. The learning mechanism and the evolution
process is inspired by the fluid mechanics principles and the network architecture design is motivated
by the classic PIC/FLIP numerical scheme. The key technical contribution of the proposed approach
is to jointly define the point cloud learning problem as a flow advection problem in a world space
using a static background grid and the local space using moving particles.

Compared with the previous hybrid grid-point learning methods, e.g. two-way coupled particle-grid
schemes (Su et al., 2018; Atzmon et al., 2018; Liu et al., 2019), our approach solves the learning
problem from a dynamic system perspective which accumulates features in a flow field learned tem-
porally. The coupled Eulerian-Lagrangian data structure in conjunction with its accommodated G2P
and P2G interpolation schemes provide a complete solution to tackle the computational challenges
regarding stencil construction and feature evolution by leveraging a numerical infrastructure that is
matured in the scientific computing community. On another hand, our approach can be thought of
as a preliminary exploration in creating a new physical reservoir motivated by continuum mechanics
in order to find alternative solutions for the conventional point cloud processing networks. Such
reservoir computing techniques exhibit strong physical intuitions in the network mechanism design
and provide a intrinsically continuous interface for the feature evolution.

The main limitation of the proposed approach is its capability in scaling to a grid with higher res-
olution, which has been the main focus of developing a high-performance scientific computing
algorithm for physical simulation. Our future plan is to scale the algorithm to handle more com-
plex point clouds with sparse and adaptive grid structures to take advantage of the computational
power of modern platforms. We also plan to explore more geometric reservoirs and temporal evolu-
tion schemes from continuous physical simulations in order to accommodate the various emerging
learning problems that exhibit characteristics of natural systems.
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