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ABSTRACT

The composition of elementary behaviors to solve challenging transfer learning
problems is one of the key elements in building intelligent machines. To date,
there has been plenty of work on learning task-specific policies or skills but almost
no focus on composing necessary, task-agnostic skills to find a solution to new
problems. In this paper, we propose a novel deep reinforcement learning-based
skill transfer and composition method that takes the agent’s primitive policies to
solve unseen tasks. We evaluate our method in difficult cases where training policy
through standard reinforcement learning (RL) or even hierarchical RL is either not
feasible or exhibits high sample complexity. We show that our method not only
transfers skills to new problem settings but also solves the challenging environ-
ments requiring both task planning and motion control with high data efficiency.

1 INTRODUCTION

Compositionality is the integration of primitive functions into new complex functions that can fur-
ther be composed into even more complex functions to solve novel problems (Kaelbling & Lozano-
Pérez, 2017). Evidence from neuroscience and behavioral biology research shows that humans and
animals have the innate ability to transfer their basic skills to new domains and compose them hi-
erarchically into complex behaviors (Rizzolatti et al., 2001). In robotics, the primary focus is on
acquiring new behaviors rather than composing and re-using the already acquired skills to solve
novel, unseen tasks (Lake et al., 2017).

In this paper, we propose a novel policy ensemble composition method1 that takes the basic, task-
agnostic robot policies, transfers them to new complex problems, and efficiently learns a composite
model through standard- or hierarchical-RL (Lillicrap et al., 2015; Schulman et al., 2015; 2017;
Haarnoja et al., 2018b; Dayan & Hinton, 1993; Vezhnevets et al., 2017; Florensa et al., 2017;
Nachum et al., 2018). Our model has an encoder-decoder architecture. The encoder is a bidi-
rectional recurrent neural network that embeds the given skill set into latent states. The decoder is a
feed-forward neural network that takes the given task information and latent encodings of the skills
to output the mixture weights for skill set composition. We show that our composition framework
can combine the given skills both concurrently (and -operation) and sequentially (or -operation) as
per the need of the given task. We evaluate our method in challenging scenarios including problems
with sparse rewards and benchmark it against the state-of-the-art standard- and hierarchical- RL
methods. Our results show that the proposed composition framework is able to solve extremely hard
RL-problems where standard- and hierarchical-RL methods are sample inefficient and either fail or
yield unsatisfactory results.

2 RELATED WORK

In the past, robotics research has been primarily focused on acquiring new skills such as Dynamic
Movement Primitives (DMPs) (Schaal et al., 2005) or standard reinforcement learning policies. A lot
of research in DMPs revolves around learning compact, parameterized, and modular representations
of robot skills (Schaal et al., 2005; Ijspeert et al., 2013; Paraschos et al., 2013; Matsubara et al.,
2011). However, there have been quite a few approaches that address the challenge of composing

1Supplementary material and videos are available at https://sites.google.com/view/compositional-rl
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(a) (b) (c)

Figure 1: Composition as Markov Decision Process. Fig. (a) represents the graphical model for
a simple MDP. Fig. (b) is the augmented graphical model that integrates composition of sub-level
policies. Fig. (c) is the new MDP with the augmented state-space.

DMPs in an efficient, scalable manner. To date, DMPs are usually combined through human-defined
heuristics, imitation learning or planning (Konidaris et al., 2012; Muelling et al., 2010; Arie et al.,
2012; Veeraraghavan & Veloso, 2008; Zoliner et al., 2005). Likewise, RL (Sutton & Barto, 2018)
research is also centralized around learning new policies (Lillicrap et al., 2015; Schulman et al.,
2015; 2017; Haarnoja et al., 2018b) for complex decision-making tasks by maximizing human-
defined rewards or intrinsic motivations (Silver et al., 2016; Qureshi et al., 2017; 2018; Levine et al.,
2016).

To the best of the authors’ knowledge, there hardly exists approaches that simultaneously combine
and transfer past skills into new skills for solving new complicated problems. For instance, Todorov
(2009), Haarnoja et al. (2018a) and Sahni et al. (2017) require humans to decompose high-level
tasks into intermediate objectives for which either Q-functions or policies are obtained via learning.
The high-level task is then solved by merely maximizing the average intermediate Q-functions or
combining intermediate policies through temporal-logic. Note that these approaches do not combine
task-agnostic skills thus lack generalizability and the ability to transfer skills to the new domains.

Recent advancements lead to Hierarchical RL (HRL) that automatically decomposes the complex
tasks into subtasks and sequentially solves them by optimizing the given objective function (Dayan
& Hinton, 1993; Vezhnevets et al., 2017; Nachum et al., 2018). In a similar vein, the options frame-
work (Sutton et al., 1999; Precup, 2000) is proposed that solves the given task through temporal
abstraction. Recent methods such as option-critic algorithm (Bacon et al., 2017) simultaneously
learns a set of sub-level policies (options), their termination functions, and a high-level policy over
options to solve the given problem. Despite being an exciting step, the option-critic algorithm is
hard to train and requires regularization (Vezhnevets et al., 2016; Harb et al., 2018), or else it ends
up discovering options for every time step or a single option for the entire task. In practice, HRL
methods tend to exhibit high sample complexity and therefore, require a huge number of interactions
with the real environment. Furthermore, the sub-level options or objectives obtained via HRL are
inherently task-specific and therefore cannot be transferred to new domains.

3 BACKGROUND

We consider a standard RL formulation (Fig. 1 (a)) based on Markov Decision Process (MDP)
defined by a tuple {S,A,P,R}, where S and A represent the state and action space, P is the set of
transition probabilities, andR denotes the reward function. At time t ≥ 0, the agent observes a state
st ∈ S and performs an action at ∈ A. The agent’s action at transitions the environment state from
st ∈ S to st+1 ∈ S with respect to the transition probability P(st+1|st, at) and leads to a reward
rt ∈ R.

For compositionality, we extend the standard RL framework by assuming that the agent has ac-
cess to the finite set of primitive policies Π = {πi}Ni=0 that could correspond to agent’s skills,
controller, or motor-primitives. Our composition model is agnostic to the structure of primitive
policy functions, but for the sake of this work, we assume that each of the sub-policies {πi}Ni=0

solves the MDP defined by a tuple {Ŝ,A, P̂, R̂i}. Therefore, Ŝ , P̂ and R̂i are the state-space,
transition probabilities and rewards of the primitive policy πi, respectively. Each of the primitive
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Figure 2: Policy ensemble composition model that takes the state information st and a set of primi-
tive policies’ output {âi}Ni=0 to compute a composite action at.

policies πi : Ŝ × A → [0, 1], ∀i ∈ [0, 1, · · · , N ], takes a state ŝ ∈ Ŝ and outputs a distribu-
tion over the agent’s action space A. We define our composition model as a composite policy
πcθ : S × AN+1 × A → [0, 1], parameterize by θ, that outputs a distribution over the action space
conditioned on the environment’s current state s ∈ S and the primitive policies {âi ∈ A}Ni=0 ∼ Π.
The state space of the composite model is S = [Ŝ,G]. The space G could include any task spe-
cific information such as target locations. Hence, in our framework, the state inputs to the primitive
policies Π and composite policy πcθ need not to be the same.

In remainder of this section, we show that our composition model solves an MDP problem. To avoid
clutter, we assume that both primitive policy ensemble and composite policy have the same state
space S, i.e., G = ∅. The composition model samples an action from a distribution parameterized
by the actions of sub-level policies and the state s ∈ S of the environment. We can augment the naive
graphical model in Fig. 1 (a) to incorporate the outputs of sub-policies to determine the composite
actions, as shown in Fig. 1 (b). It can be seen that by defining a new state space Sc as AN+1 × S,
whereAN+1 : {Ai}Ni=0 are the outputs of sub-level policies, we can construct a new MDP, as shown
in Fig. 1 (c), to represent our composite model. This new MDP is defined as {Sc,A,Pc,R} where
Sc = AN × S is the new composite state-space, A is the action-space, Pc : Sc × Sc ×A → [0, 1]
is the transition probability function, andR is the reward function for the given task.

4 POLICY ENSEMBLE COMPOSITION

In this section, we present our policy ensemble composition framework, shown in Fig. 2. Our
composition model consists of i) the encoder network that takes the outputs of primitive policies and
embeds them into latent spaces; ii) the decoder network that takes current state st of the environment
and the latent embeddings from the encoder network to parameterize the attention network; iii)
the attention network that outputs the probability distribution over the primitive low-level policies
representing their mixture weights. The remainder of the section explains the individual models of
our composition framework and the overall training procedure.

4.1 ENCODER NETWORK

Our encoder is a bidirectional recurrent neural network (BRNN) that consists of Long Short-Term
Memory units (Hochreiter & Schmidhuber, 1997). The encoder takes the outputs of the policy
ensemble {âi}Ni=0 and transform them into latent states of forward and backward RNN, denoted
as {hfi }

N+1
i=0 and {hbi}

N+1
i=0 , respectively, where hfi , h

b
i ∈ Rd;∀i ∈ [0, 1, · · · , N + 1]. The N + 1

states of forward and backward RNN corresponds to their last hidden states denoted as hf and hb,
respectively, in Fig. 2.
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4.2 DECODER NETWORK

Our decoder is a simple feed-forward neural network that takes the last hidden states of the forward
and backward encoder network, i.e., {hf , hb}, and the current state of the environment s to map
them into a latent space h ∈ Rd. The state input to the decoder network is defined as s : [ŝ, g],
where ŝ ∈ Ŝ is the state input to the low-level policy ensemble and g ∈ G could be any additional
information related to the given task, e.g., goal position of the target to be reached by the agent.

4.3 ATTENTION NETWORK

The composition weights (see Fig. 2) {wi ∈ [0, 1]}Ni=0 are determined by the attention network as
follows:

qi = WT · tanh(Wf · hfi +Wb · hbi +Wd · h);∀i ∈ [0, N ] (1)
where Wf ,Wb,Wd ∈ Rd×d and W ∈ Rd. The weights {wi}Ni=0 for the composite policy are
computed using gumbel-softmax denoted as softmax(q/T), where T is the temperature term (Jang
et al., 2016).

4.4 COMPOSITE POLICY

Given the primitive policy ensemble Π = {πi}Ni=0, the composite action is the weighted sum of
all primitive policies outputs, i.e., πcθ =

∑N
i wiπi. Since, we consider the primitive policies to be

Gaussian distributions, the output of each primitive policy is parameterized by mean µ and variance
σ, i.e., {âi ∼ N (µi, σi)}Ni=0 ← {πi}Ni=0. Hence, the composite policy can be represented as
πcθ =

∑N
i wiN (µi, σi), where N (·) denotes Gaussian distribution, and

∑
i wi = 1. Given the

mixture weights, other types of primitive policies, such as DMPs (Schaal et al., 2005), can also be
composed together by the weighted combination of their normalized outputs.

4.5 COMPOSITE MODEL TRAINING OBJECTIVE

The general objective of RL methods is to maximize the cumulative expected reward, i.e., J(πcθ) =
Eπcθ [

∑∞
t=0 γ

trt], where γ : (0, 1] is a discount factor. We consider the policy gradient methods to
update the parameters θ of our composite model, i.e., θ ← θ + η5θ J(πcθ), where η is the learning
rate. We show that our composite policy can be trained through standard RL and HRL methods,
described as follow.

4.5.1 STANDARD REINFORCEMENT LEARNING

In standard RL, the policy gradients are determined by either on-policy or off-policy updates (Lil-
licrap et al., 2015; Schulman et al., 2015; 2017; Haarnoja et al., 2018b) and any of them could be
used to train our composite model. However, in this paper, we consider off-policy soft-actor critic
(SAC) method (Haarnoja et al., 2018b) for the training of our policy function. SAC maximizes the
expected entropyH(·) in addition to the expected reward, i.e.,

J(πcθ) =

T∑
t=0

Eπcθ [r(st, at) + λH(πcθ(·|st))] (2)

where λ is a hyperparameter. We use SAC as it motivates exploration and has been shown to capture
the underlying multiple modes of an optimal behavior. Since there is no direct method to estimate a
low-variance gradient of Eq (2), we use off-policy value function-based optimization algorithm (for
details refer to Appendix A.1 of supplementary material).

4.5.2 HIERARCHICAL REINFORCEMENT LEARNING

In HRL, there are currently two streams - task decomposition through sub-goals (Nachum et al.,
2018) and option framework (Bacon et al., 2017) that learns temporal abstractions. In the options
framework, the options can be composite policies that are acquired with their termination functions.
In task decomposition methods that generate sub-goal through high-level policy, the low-level policy
can be replaced with our composite policy. In our work, we use the latter approach (Nachum et al.,
2018), known as HIRO algorithm, to train our policy function.
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(a) Ant Random Goal (b) Ant Cross Maze (c) Pusher (d) HalfCheetah Hurdle

(e) Ant Maze (f) Ant Push (g) Ant Fall

Figure 3: Benchmark control and manipulation tasks requiring an agent to reach or move the object
to the given targets (shown in red for pusher and green for rest).

Like, standard HIRO, we use two level policy structure. At each time step t, the high-level policy
πhiθ′ , with parameters θ′, observes a state st and takes an action by generating a goal gt ∈ S in
the state-space S for the composite low-level policy πc:lowθ to achieve. The πc:lowθ takes the state
st, the goal gt, and the primitive actions {âi}N0 to predict a composite action at through which an
agent interacts with the environment. The high-level policy is trained to maximize the expected task
rewards given by the environment whereas the composite low-level policy is trained to maximize
the expected intrinsic reward defined as the negative of distance between current and goal states, i.e.,
‖st + gt − st+1‖2. To conform with HIRO settings, we perform off-policy correction of the high-
level policy experiences and we train both high- and low-level policies via TD3 algorithm (Fujimoto
et al., 2018) (for details refer to Appendix A.2 of supplementary material).

5 EXPERIMENTS AND RESULTS

We evaluate and compare our method against standard RL, and HRL approaches in challenging
environments (shown in Fig. 3) that requires complex task planning and motion control. The imple-
mentation details of all presented methods and environment settings are provided in Appendix B of
supplementary material. We also do an ablative study in which we take away different components
of our composite model to highlight their importance. Furthermore, we depict attention weights of
our model in a navigation task to highlight its ability of concurrent and sequential composition.

We consider the following seven environments for our analysis: (1) Pusher: A simple manipulator
has to push an object to a given target location. (2) Ant Random Goal: In this environment, a
quadruped-Ant is trained to reach the randomly sampled goal location in the confined circular region.
(3) Ant Cross Maze: The cross-maze contains three target locations. The task for a quadruped Ant
is to reach any of the three given targets by navigating through a 3D maze without collision. (4)
HalfCheetah Hurdle: In this problem, the task for a halfcheetah is to run and jump over the three
barriers to reach the given target location. (5) Ant Maze: A ⊃-shaped maze poses a challenging
navigation task for a quadruped-Ant. In this task, the agent is given random targets all along the
maze to reach while training. However, during the evaluation, we test the agent for reaching the
farthest end of the maze. (6) Ant Push: A challenging environment that requires both task and
motion planning. The environment contains a movable block, and the goal region is located behind
that block. The task for an agent is to reach the target by first moving to the left of the maze so
that it can move up and right to push the block out of the way for reaching the target. (7) Ant Fall:
A navigation task where the target is located across the rift in front of the agent’s initial position.
There also happen to be a moveable block, so the agent has to move to the right, push the block
forward, fill the gap, walk across, and move to the left to reach the target location. (8) Multi-goal
Point Mass: In this scenario, the task is to navigate a point-mass to one of the four goals located
diagonally to agent initial position.
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Figure 4: Comparison results of our method against several standard RL methods averaged over
ten trials in a set of difficult tasks. The vertical and horizontal axis represents the distance of the
agent/object from the target and environment steps in millions, respectively. Note that our compo-
sition framework learns to solve the task with high samples efficiency, whereas other benchmark
methods either fail or perform poorly.

In all tasks, we also acquire primitive skills of the agent for our composite policy. For Ant, we use
four basic policies for moving left, right, up, and down. The pusher uses two primitive policies that
are to push an object to the left and down. In HalfCheetah hurdle environment, the low-level policies
include jumping and running forward. Finally fot the point-mass robot, the composition model takes
four policies for moving in the up, down, left and right directions. Furthermore, in all environments,
except pusher, the primitive policies were agnostic of high-level tasks ( such as target locations) that
were therefore provided separately to our composite model via decoder network. This highlights the
ability of our model to transfer basic robot skills to novel problems.

Methods Environments
Ant Random Goal Ant Cross Maze Pusher HalfCheetah Hurdle

SAC 0.21± 0.08 0.78± 0.06 0.17± 0.02 0.79± 0.01
TRPO 1.09± 0.15 0.85± 0.15 0.64± 0.09 0.87± 0.05
PPO 1.06± 0.11 0.95± 0.07 0.71± 0.06 0.88± 0.04

Our Method 0.11 ± 0.05 0.11 ± 0.02 0.14 ± 0.02 0.27 ± 0.22

Table 1: Performance comparison of our model against SAC (Haarnoja et al., 2018b), TRPO (Schul-
man et al., 2015), and PPO (Schulman et al., 2017) on benchmark control tasks in terms of distance
(lower the better) of an agent from the given target. The mean final distances with standard devia-
tions over ten trials are reported. We also normalize the reported values by the agent initial distance
from the goal so values close to 1 or higher show failure. It can be seen that our method (shown in
bold) accomplishes the tasks by reaching goals whereas other methods fail except for SAC in simple
Pusher and Ant Random Goal environments.

5.1 COMPARATIVE STUDY

In our comparative studies, we divide our test environments into two groups. The first group includes
Pusher, Random Goal Ant, Ant Cross Maze, and HalfCheetah-Hurdle environments, whereas the
second group comprises the remaining environments that require task and motion planning under
weak reward signals.

In the first group of settings, we compare our composite model trained with SAC (Haarnoja et al.,
2018b) against the standard Gaussian policies obtained using SAC (Haarnoja et al., 2018b), PPO
(Schulman et al., 2017), and TRPO (Schulman et al., 2015). We exclude HRL methods in these
cases for two reasons. First, the environment rewards sufficiently represent the underlying task,
whereas HRL approaches are applicable in cases that have a weak reward signal or require task and
motion planning. Second, HRL methods usually need a large number of training steps generally
much more than tradition RL methods. Table 1 presents the mean and standard deviation of the
agent’s final distance from the given targets after the end of an evaluation rollout over the ten trials.
Fig. 4 shows the mean learning performance over all trials during the three million training steps. In
these set of problems, TRPO and PPO entirely fail to reach the goal, and SAC performs reasonably
well but only in simple Ant Random Goal and Pusher environments as it fails in other cases. Our
composite policy obtained using SAC successfully solves all tasks and exhibit high data-efficiency
by learning in merely a few thousand training steps.
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Figure 5: Performance comparison of our composition model trained with HIRO against standard
HIRO in three challenging environments with a standard Ant of 150 units torque limit. We report
mean and standard error, over ten trials, of agent final distances from the given given goals, normal-
ized by their initial distance, over 10 million steps.

Figure 6: Ablative Study: Performance comparison, averaged over ten trials, of our composite
model against its ablated variations that lack attention model or both attention and bidirectional-
RNN (AttBRNN) in three different environments.

In our second group of environments, we use distance-based rewards that are weak signals as greed-
ily following them does not lead to solving the problem. Furthermore, in these environments, poli-
cies trained with standard RL, including our composite policy, failed to solve the problem even after
20 million training steps. Therefore, we trained our composite policy with HIRO (Nachum et al.,
2018) and compared its performance against standard HIRO formulation (Nachum et al., 2018). We
also tried to include option-critic framework (Bacon et al., 2017), but we were unable to get any
considerable results with their online implementation despite several attempts with the parameter
tuning. One of the reasons option-critic fails is because it relies purely on task rewards to learn,
which makes them inapplicable for cases with weak reward signals (Nachum et al., 2018). Fur-
thermore, unlike HIRO that used a modified Ant with 30 units joint torque limit, we use Mujoco
standard Ant that has a torque limit of 150 units and makes the learning even harder as the Ant is
now more prone to instability.

Fig. 5 shows the learning performance, averaged over ten trials, during 10 million steps. In these
problems, the composite policy with HIRO outperforms standard HIRO (Nachum et al., 2018) by
a significant margin that certifies the utility of solving RL tasks using composition by leveraging
basic pre-acquired skills. HIRO performs poorly with standard Ant as it imposes a harder control
problem since the agent should also learn to balance the Ant to prevent it from flipping over due to
high torques. We were able to replicate the results of HIRO (Nachum et al., 2018) on their modified
Ant (Torque Limit 30) and also, our composition model gave comparably better results on modified
Ant than standard Ant. However, we use a standard-Ant to conform among all Ant environments
presented in this paper. In the Ant Fall environment, composition model struggles to perform well
which we believe is because the low-level policies were trained in a 2D planner space rather than a
3D space with an elevation that slightly changes the underlying state-space.

5.2 ABLATIVE STUDY

We remove attention-network, and both attention-network and BRNN (AttBRNN) from our com-
position model to highlight their importance in the proposed architecture in solving complex prob-
lems. We train all models with SAC (Haarnoja et al., 2018b). The first model is our composite
policy without attention in which the decoder network takes the state information and last hidden
states of the encoder (BRNN) to directly output actions rather than mixture weights. The second
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model is without attention network and BRNN; it is a feed-forward neural network that takes the
state information and the primitive actions and predicts the action to interact with the environment.
Fig. 6 shows the mean performance comparison, over ten trials, of our composite model against its
ablated versions on a Ant Random Goal, Cross Maze Ant, and Pusher environment. We exclude
remaining test environments in this study as ablated models completely failed to perform or show
any progress. Note that the better performance of our method compared to ablated versions high-
light the merits of our architecture design. Intuitively, BRNN allows the dynamic composition of a
skill set of variable lengths and the attention network bypasses the complex transformation of action
embeddings (model-without-attention) or actions and state-information (AttBRNN model) directly
to action space.

5.3 DEPICTION OF ATTENTION WEIGHTS

Figure 7: Each path corresponds to its adja-
cent attention weight mapping. The weighting
”strength” of each primitive policy is depicted for
each step (i.e. up (U), down (D), left (L), and right
(R)). Each path begins at the origin and ends when
the point-mass is within one unit of a goal. The
plot contours represent the position cost.

In order to further assess the merit of utilizing
an attention network, we apply our model to a
simple 2D multi-goal point-mass environment
as shown in Fig. 7. The point-mass is initial-
ized around the origin (with variance σ2 = 0.1)
and must randomly choose one of four goals
to reach. For this experiment we use dense re-
wards with both a positional and actuation cost.
Primitive policies of up (+y), down (−y), left
(−x), and right (+x) were trained and com-
posed to reach goals, represented here as red
dots, in the “diagonal” directions where a com-
bination of two or more primitive policies are
required to reach each goal.

The four mappings in the figure give us insight
into how the attention network is utilizing the
given primitives to achieve the desired task. At
each step in a given path, the weights {wi}Ni=0
for each low-level policy are assigned and com-
posed together to move the point-mass in the
desired direction. We see here that even with
some noise and short-term error, the attention
weights are strongest for primitive policies that
move the point-mass to its chosen goal. We also see that multiple policies are activated at once
to achieve more direct movements toward the goal, as opposed to “stair-stepping” where only one
primitive is activated at a time. Both of these observations point to the concurrent and sequential
nature of this composition model.

6 CONCLUSIONS AND FUTURE WORK

We present a novel policy ensemble composition method that combines a set of independent and
task-agnostic primitive policies through reinforcement learning to solve the given tasks. We show
that our method can transfer the given skills to novel problems and can compose them both sequen-
tially (or -operation) and concurrently (and -operation) to find a solution for the task in hand. Our
experiments highlight that composition is vital for solving problems requiring complex motion skills
and decision-making where standard reinforcement learning and hierarchical reinforcement learn-
ing methods either fail or need a massive number of interactive experiences to achieve the desired
results.

In our future work, we plan to extend our method to automatically acquire the missing skills in the
given skillset that are necessary to solve the specific problems. We also aim towards a system that
learns the hierarchies of composition models by combining primitive policies into complex policies
that would further be composed together for a combinatorial outburst in the agent’s skillset.
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Algorithm 1: Composition model training using SAC
Initialize parameter vectors φ, φ′, θ, ξ
Input: Primitive policies Π = {πi}Ni=0
for each iteration do

for each environment step do
Compute primitive policies state ŝt ← st\gt
Sample primitive actions {âi,t}Ni=0 ∼ Π(ŝt)

Sample composite action at ∼ πcθ(at|st, {âi,t}Ni=0)
Sample next state st+1 ∼ p(st+1|st, at)
M←M∪ {(st, at, {âi,t}Ni=0, rt, st+1)}

for each gradient step do
Update value function φ← φ− η5φ JV (φ)
Update Q-function ξ ← ξ − η5ξ JQ(ξ)
Update policy θ ← θ − η5θ Jπc(θ)
φ′ ← τφ+ (1− τ)φ′

A COMPOSITE MODEL TRAINING ALGORITHMS

A.1 TRAINING WITH SOFT ACTOR-CRITIC

In this section, we briefly describe the procedure to train our composition model using SAC
(Haarnoja et al., 2018b). Although any RL method can be used to optimize our model, we use SAC
as it is reported to perform better than other training methods. Our composite policy is a tractable
function πcθ(at|st, {πi}Ni=0) parameterized by θ. The composite policy update through SAC requires
the approximation of Q- and value-functions. The parametrized value- and Q-function are denoted
as Vφ(st) with parameters φ, and Qξ(st, at) with parameters ξ, respectively. Since, SAC algorithm
build on the soft-policy iteration, the soft value-function Vφ(st) and soft Q-function Qξ(st, at) are
learned by minimizing the squared residual error JV (φ) and squared Bellman error JQ(ξ), respec-
tively, i.e.,

JV (φ) = Est∼M[
1

2
(Vφ(st)− V̂ (st))

2] (3)

JQ(ξ) = E(st,at)∼M[
1

2
(Qξ(st, at)− Q̂(st, at))

2] (4)

whereM is a replay buffer, V̂ (st) = Eat∼πcθ [Qξ(st, at)−log πcθ(at|st)] and Q̂ is the Bellman target
computed as follows:

Q̂(st, at) = r(st, at) + γEst+1∼p[Vφ′(st + 1)] (5)

The function Vφ′(st) is the target value function with parameters φ′. The parameters φ′ are the mov-
ing average of the parameters φ computed as τφ+ (1− τ)φ′, where τ is the smoothing coefficient.
Finally the policy parameters are updated by minimizing the following expected KL-divergence.

Jπc(θ) = Est∼M
[
DKL

(
πcθ(·|st)

∣∣∣∣ exp(Qξ(st, ·))
Zξ(st)

)]
(6)

whereZξ is a partition function that normalizes the distribution. Since, just-like SAC, our Q-function
is differentiable, the above cost function can be determined through a simple reparametization trick,
see Haarnoja et al. (2018b) for details. Like SAC, we also maintain two Q-functions that are trained
independently, and we use the minimum of two Q-functions to compute Eqn. 3 and Eqn. 6. This
way of using two Q-function has been shown to alleviate the positive biasness problem in the policy
improvement step. The overall training procedure is summarized in Algorithm 1.

A.2 TRAINING WITH HIRO

In this section, we outline the algorithm to train composite policy through HIRO that employs the
two level policy structure. The high-level policy generates the sub-goals for the low-level composite
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Algorithm 2: Composition model training using HIRO
Initialize parameter vectors φ, φ′, θ, ξ
Input: Primitive policies Π = {πi}Ni=0
for each iteration do

for each environment step do
Compute primitive policies state ŝt ← st\gt
Sample primitive actions {âi,t}Ni=0 ∼ Π(ŝt)

Sample high-level action gt ∼ πhi(ŝt)
Sample composite action at ∼ πcθ(at|st, gt, {âi,t}Ni=0)
Sample next state st+1 ∼ p(st+1|st, at)
M←M∪ {(st, gt, at, {âi,t}Ni=0, rt, st+1)}

for each gradient step do
Sample mini-batch with c-step transitions
{(gk, skt:t+c, akt:t+c−1, {âkj,t:t+c−1}Nj=0, r

k
t:t+c−1)}Bk=1 ∼M

Compute rewards for low-level policy {rloi }Bi=0 ← {rlo(si, gi, si+1)}Bi=0

Update πc:lo w.r.t Qlo using {(sk, gk, ak, {âi,k}Ni=0, r
lo
k , sk+1)}B−1k=0 (Nachum et al.,

2018)
Update πhi w.r.t Qhi using {(sk, ĝk,

∑c−1
i=k rk, sk+c)}

B−1
k=0 (Nachum et al., 2018)

policy to achieve. The low-level composite policy also have access to the primitive policy actions.
Like HIRO, we use TD3 algorithm (Fujimoto et al., 2018) to train both high-level and low-level
policies with their corresponding Q-functions, Qhi and Qlo, respectively. The low-level policy
πc:lowθ , with parameters θ, is trained to maximize the Q-values from the low-level Q-function Qlo

for the given state-goal pairs. The Q-function (Qlo) parameters ξ are optimized by minimizing
temporal-difference error for the given transitions, i.e.,

J loQ (ξ) =
(
rlo(st, gt, st+1) + γQloξ (st+1, gt+1, π

c:lo
θ (st+1, gt+1, {â}N0 ))−Qloξ (st, gt, at)

)2
(7)

where rlo(st, gt, st+1) = −‖st + gt − st+1‖ and gt+1 ∼ πhiθ′ (st+1).

The high-level policy πhiθ′ , with parameters θ′, is trained to maximize the values of Qhi. The Q-
function (Qhi) parameters ξ′ are trained through minimizing the following loss for the given transi-
tions.

JhiQ (ξ′) =
( c−1∑
t=0

Rt(st, at, st+1) + γQhiξ′ (st+c, π
hi
θ′ (st+c))−Qhiξ (st, ĝt)

)2
(8)

During training, the continuous adaptation of low-level policy poses a non-stationery problem for
the high-level policy. To mitigate the changing behavior of low-level policy, Nachum et al. (2018)
introduced off-policy correction of the high-level actions. During correction, the high-level policy
action g is usually re-labeled with ĝ that would induce the same low-level policy behavior as was
previously induced by the original high-level action g (for details, refer to (Nachum et al., 2018)).
Algorithm 2 presents the procedure to train our composite policy with HIRO.

B IMPLEMENTATION DETAILS

B.1 ENVIRONMENT DETAILS

In this section, we present the environment details including reward functions, primitive policies,
and state space information. The reward functions are presented in the Table 3 together with the
overall reward scaling values.

B.1.1 ANT ENVIRONMENTS

In these environments, we use 8 DOF four-legged Ant with 150 units torque limit. The primitive
policies of moving left, right, down and up were shared across all these tasks. In these environments,
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the information g in the state s : [ŝ, g] corresponds to the target location. Let us introduce the
notation to defined reward function. Let rxy , gxy , u, and fc denote xy-position of the robot’s torso,
xy-position of the goal, joint torques, and contact-cost, respectively. The scaling factors are defined
as λ. The reward function for the following environments is defined as with reward scaling of 5
units:

−λg||rxy − gxy||2 + λvvxy + λsI(IsAlive)− λct||u||2 − λcfc (9)

Ant Random Goal: In this environment, the ant has to navigate to any randomly sampled target
within the confined circular region of radius 5 units. The goal radius is defined to be 0.25 units. The
reward function coefficients λg , λv , λs, λct, and λc are 0.3, 0.0, 0.05, 0.01, and 0.001, respectively.

Ant Cross Maze: In this environment, the ant has to navigate through the 3D maze to reach
any of the target sampled from the three targets. The goal radius is defined to be 1.0 units. The
reward function parameters are same as for the random-goal ant environment.

For the remaining environment (Ant Maze, Ant Push and Ant Fall), we use the following reward
function with no reward scaling:

λg||rxyz − gxyz||2 − λct||u||2 − λcfc (10)

where coefficients λg , λct, and λc are set to be 1.0, 0.05, and 0.5× 10−4.

Ant Maze: In this environment, we place the Ant in a⊃-shaped maze for a navigation task between
given start and goal configurations. The goal radius is defined to be 5 units. During training, the
goal is uniformly sampled from [−4, 20] × [−4, 20] space, and the Ant initial location is always
fixed at (0, 0). During testing, the agent is evaluated to reach the farthest end of the maze located at
(0, 19) within L2 distance of 5.

Ant Push: In this environment, the Ant is initially located at (0, 0) coordinate, the moveable
block is at (0, 8), and the goal is at (0, 19). The agent is trained to reach randomly sampled tar-
gets whereas during testing, we evaluate the agent to reach the goal at (0, 19) within L2 distance of 5.

Ant Fall: In this environment, the Ant has to navigate in a 3D maze. The initial agent loca-
tion is (0, 0), and a movable block is at (8, 8) at the same elevation as Ant. Their is a rift in the
region [−4, 12] × [12, 20]. To reach the target on the other side of the rift, the Ant must push the
block down into the rift, and then step on it to get to the goal position.

Parameters SAC HIRO TRPO PPO
Learning rate (η) 3× 10−4 1× 10−4 - -
Discount factor (γ) 0.99 0.99 0.99 0.99
Nonlinearity in feedforward networks ReLU ReLU ReLU ReLU
Minibatch samples size 256 128 - -
Replay buffer size 106 2× 105 - -
Batch-size - - 1000 1000
Target parameters smoothing coefficient (τ ) 0.005 0.005 - -
Target parameters update interval 1 2 - -
Gradient steps 1 1 0.01 0.01
Gumbel-softmax temperature (T ) 0.5 0.5 - -

Table 2: Hyperparameters

B.1.2 PUSHER

In pusher environment, a simple manipulator has to move an object to the target location. The primi-
tive policies were to push the object to the bottom and left. In this environment, the state information
for both primitive policies and the composite policy include the goal location. Therefore, G, in this
case, is null. The reward function is given as:

−λg||oxy − gxy||2 − λo||rxy − oxy||2 − λct||u||2 (11)
where oxy , gxy , rxy , and u are xy-position of object, xy-position of goal, xy-position of arm, and
joint-torques. The coefficients λg , λo, and λct are 1.0, 0.1, and 0.1, respectively.
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Model Architectures Hidden units

Composition-HIRO

High-level Policy: Three layer feed forward network 300

Encoder Network: Bidirectional RNN with LSTMs 128

Decoder Network (Single layer feed forward network) 128

Attention Network: Wf ,Wb,Wd ∈ Rd×d;W ∈ Rd 128

Composition-SAC

Encoder Network: Bidirectional RNN with LSTMs 128

Decoder Network (Single layer feed forward network) 128

Attention Network: Wf ,Wb,Wd ∈ Rd×d;W ∈ Rd 128

HIRO
High-level Policy: Three layer feed forward network 300

Low-level Policy: Three layer feed forward network 300

Standard RL policy Two layer feed forward network 256

Table 3: Network Architectures

B.1.3 HALFCHEETAH-HURDLE

In halfcheetah-hurdle environment, a 2D cheetah has to jump over the three hurdles to reach the
target. In this environment, the information g in the state s : [ŝ, g] corresponds to the x-position of
the next nearest hurdle in front of the agent as well as the distance from that hurdle. The reward
function is defined as:

−λg||rxy − gxy||2 − λhchc(·) + λrgI(goal) + λz|vz|+ λvvx − λccc(·) (12)

where rxy , gxy , vz , and vx are xy-position of robot torso, xy-position of goal, velocity along z-axis,
and velocity along x-axis, respectively. The function hc(·) returns a count indicating the number of
hurdles in front of the robot. The indicator function I(goal) returns 1 if the agent has reached the
target otherwise 0. The function cc(·) is a collision checker which returns 1 if the agent collides with
the hurdle otherwise 0. The reward function coefficients λg , λhc, λrg , λz , λv , and λc are 0.1, 1.0,
1000, 0.3, 1.0 and 2, respectively.

B.2 HYPERPARAMETERS AND NETWORK ARCHITECTURES

Table 2 summarizes the hyperparameters used to train policies with SAC (Haarnoja et al., 2018b),
TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017), and HIRO (Nachum et al., 2018).

Table 3 summarizes the network architectures. The standard RL policy structure correspond to
simple SAC, TRPO and PPO policies. The right most column shows the hidden units per layer.
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