
Under review as a conference paper at ICLR 2020

LEARNING TO LEARN VIA GRADIENT COMPONENT
CORRECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based meta-learning algorithms require several steps of gradient descent
to adapt to newly incoming tasks. This process becomes more costly as the num-
ber of samples increases. Moreover, the gradient updates suffer from several
sources of noise leading to a degraded performance. In this work, we propose
a meta-learning algorithm equipped with the GradiEnt Component COrrections, a
GECCO cell for short, which generates a multiplicative corrective low-rank ma-
trix which (after vectorization) corrects the estimated gradients. GECCO contains
a simple decoder-like network with learnable parameters, an attention module and
a so-called context input parameter. The context parameter of GECCO is updated
to generate a low-rank corrective term for the network gradients. As a result,
meta-learning requires only a few of gradient updates to absorb new task (often,
a single update is sufficient in the few-shot scenario). While previous approaches
address this problem by altering the learning rates, factorising network parameters
or directly learning feature corrections from features and/or gradients, GECCO is
an off-the-shelf generator-like unit that performs element-wise gradient correc-
tions without the need to ‘observe’ the features and/or the gradients directly. We
show that our GECCO (i) accelerates learning, (ii) performs robust corrections of
the gradients corrupted by a noise, and (iii) leads to notable improvements over
existing gradient-based meta-learning algorithms.

1 INTRODUCTION

Approaches (Finn et al., 2017; Zintgraf et al., 2019; Rusu et al., 2019; Ravi & Larochelle, 2017;
Antoniou et al., 2019; Rajeswaran et al., 2019) belong to the family of so-called gradient-based
meta-learning algorithms which are popular due to their ability to update a generic model to specific
incoming tasks. In the absence of abundant data (e.g., low-shot learning) the gradient information
is often noisy which degrades the performance of meta-learners. Due to low sample nature of this
problem, the noise further intensifies if higher-order solvers are are required e.g., Hessian.

In this work, we introduce a new meta-learning algorithm that benefits from the GradiEnt Compo-
nent COrrections (a GECCO cell for short) to overcome the impurity of the gradient information in
low-shot and/or dynamic regimes.

In the literature, a large family of meta-learning solutions can be understood as models that, in one
way or another, correct the gradient information. Algorithms such as Meta-SGD (Li et al., 2017),
MAML++ (Antoniou et al., 2019)) and LEO (Rusu et al., 2019) adaptively alter the step-size of the
gradient updates (by adjusting the learning rate) to attenuate the effect of the noise.

However, Wu et al. (2018) have noted that in some cases, so-called short-horizon bias may exist in
the real setting so that the models trained on short horizons will fail to generalize to longer horizons.
Moreover, numerous prior works show that the performance and training stability depend on learning
rates. This problem is highly related to so-called gradient steps for which a long unrolling of the
gradient updates requires tuning its learning rates for the best performance.

Gradient steps. When adapting to specific tasks, MAML employs early stopping after a few of gra-
dient steps to implicitly regularize the solution. However, MAML also suffers from practical prob-
lems concerning gradient updates for large neural networks in meta-learning setting especially in the
few-shot scenario, as discussed in (Rusu et al., 2019). Specifically, updates of high-dimensional pa-

1

Under review as a conference paper at ICLR 2020

rameters suffer from overfitting due to a few samples being available for training. Our experiments
confirm this observation as discussed in Section 4. Another problem emerges when a meta-learning
approach is employed to deal with the multi-shot scenario as described in (Flennerhag et al., 2019).
The more data samples are provided, the more parameter updates are required for a network to con-
verge to a good solution. Thus, a rapid adaptation of neural networks to a new task is desirable but
difficult to achieve. Similarly, it is also expensive to calculate the Hessian matrix (which typically
helps to converge to better solutions) with long steps for every task as is discussed in Rajeswaran
et al. (2019).

When a meta-learner is employed to learn in dynamic environments, the existence of corrupted data
such as noisy labels or noisy signals makes the meta-learner vulnerable to such a noise. For the
second-order solvers, the noise further affects the calculation of the Hessian matrix thus interfering
with the curvature of the objective. In turns, this leads to a performance degradation of the model. In
this paper, we demonstrate that existing algorithms are susceptible to noisy gradients which affects
their performance. To address this issue, we propose a GECCO cell which corrects such noisy
gradients. Our evaluations shows that the performance of meta-learning algorithms drops heavily
when gradients are affected by the noise or corrupted. Therefore, a model that is stable to the
gradient noise is also expected to exploit the meta-knowledge from the incoming tasks better.

In this paper, we develop a meta-learning algorithm with a GECCO cell which corrects the gradients
during training so that the parameters of a neural network are adapted rapidly and robustly to new
tasks. While prior works estimate transformations applied to gradients implicitly in the form of
additional layers or so-called modulation of deep neural networks (Zintgraf et al., 2019; Lee &
Choi, 2018; Rusu et al., 2019), our algorithm transforms the gradients explicitly by the multiplicative
gradient corrections. The GECCO corrector has the ability to learn by adapting itself to the loss by
adapting so-called context vector, it imposes low-rank correction patterns, and does not require direct
gradient and/or feature vector inputs, making it easily applicable to many existing meta-learners.
Our method converges fast and outperforms other meta-learners. Our contributions are threefold:

i. We propose a novel meta-learning algorithm with GECCO cells (gradient corrections) to
tackle the classification, regression, and reinforcement learning.

ii. We perform numerous experiments to show that our meta-learner achieves a good perfor-
mance with a mere 1-step in a few-shot scenario, etc. Meta-learning with GECCO also
achieves a good performance for deeper networks (easier to overfit) and higher-shot scenar-
ios.

iii. We provide an additional study by injecting various levels of the Gaussian noise to corrupt
gradients. We show that meta-learning with GECCO is able to recover from such a noise
while other methods have a low tolerance to such corruptions.

2 RELATED WORK

For the deep learning regime, meta-learning has progressed significantly and provided a framework
that can adapt to new tasks rapidly. One of the solutions in meta-learning is to optimize the model
parameters and hyperparameters in a meta level through gradient updates. Recent meta-learning
methods include (Balcan et al., 2019; Grant et al., 2018). For deep neural networks regime, several
gradient-based methods learn the update functions (Ravi & Larochelle, 2017; Andrychowicz et al.,
2016; Chen et al., 2017). These methods have additional parameters to learn the update functions,
while Finn et al. (2017) avoids additional model parameters. Our method lies in between these two
ends in that GECCO learns the update functions of the gradients with two levels (meta and task
objectives) as in MAML (Finn et al., 2017).

Currently, a wide variety of meta-learners are available which are an extension of a meta-learning
concept in MAML (Finn et al., 2017). As a first-order version of MAML, Reptile (Nichol et al.,
2018) has a direct update from initial parameters to the updated parameters in the last iteration.
CAVIA (Zintgraf et al., 2019) and LEO (Rusu et al. (2019)) deliver cheaper solutions that gen-
erate the modulation and additional layers for the main networks. To boost the performance,
MAML++ (Antoniou et al., 2019) appleis weights on the loss functions in the inner-loop for meta-
optimization. Furthermore, Meta-SGD (Li et al., 2017) is analogous to MAML++ but it reweights
the gradients in the inner-loop.

2

Under review as a conference paper at ICLR 2020

Train GECCO on task-1
Train GECCO on task-2
New task (w/o corrections)
New task (w/ corrections)

Figure 1: An illustration of GECCO corrections. Both axes represent two parameters. GECCO not
only corrects the gradients but also accelerates the optimization process.

Another perspective on meta-learning is that neural networks can self-modify according to a given
task. MAML (Finn et al., 2017), Reptile (Nichol et al., 2018), LEAP (Flennerhag et al., 2019) update
the whole networks based on the gradients from a given task. However, some approaches update
the networks partially such as fast and slow networks (Munkhdalai & Yu, 2017). This work is also
aligned with (M)T-Nets (Lee & Choi, 2018) where only several layers are updated and the rest is
fixed. These approaches have a lesser computational cost than updating whole model parameters.

Our work is also close to neural networks that can generate other networks with larger size. One
seminal work is HyperNetworks (Ha et al., 2017) that generates bigger neural networks from small
neural networks. Another work is the optimization technique that generates the gradients such that
neural networks do not have to wait for backpropagation from following layers. Jaderberg et al.
(2017) proposes synthetic gradients generated from small networks to produce gradients. These
methods can be viewed as a decoding process that produces big output vectors from small input
vectors.

3 PROPOSED METHOD

In this section, we introduce our meta-learner (ie., GECCO) to accelerate learning process for few-
and multi-shot classification, regression, and reinforcement learning. Before delving into details,
we recall that the objective in meta-learning is to 1. achieve rapid convergence for new tasks (task-
level) and 2. to generalize beyond seen tasks (meta-level). To achieve the meta-learning capability, a
common approach is to design models that can learn from limited data using the concept of episodic
training (Vinyals et al., 2016; Santoro et al., 2016). There, a model is presented with a set of tasks
(e.g., image classification), where for each task limited data is available.

GECCO is a gradient-based meta-learner. The core idea of gradient-based meta-learners is to adapt
the model in hand by performing a few steps of the gradient update. Assuming that the model is
initialized properly, one can expect that a few iterations of the gradient descent, even with limited
data, to lead to a well-adapted model. Our GECCO algorithm learns a good initialization point along
a gradient correction term to expedite gradient-based meta-learning.

To put the discussion into context, we first provide a brief overview of the MAML (Finn et al.,
2017) algorithm. LetDtrnτ andDtstτ be the training and the validation sets of a given task τ ∼ p(T),
respectively. We assume that D := {xi, yi}|D|i=1,xi ∈ X , yi ∈ Y for some small |D|. Furthermore,
let h : X × Rn → Y be the functionality of the model of interest, parameterized by θ ∈ Rn. The
MAML seeks a universal initialization θ∗ by minimizing:

LMAML(θ∗) :=
∑

τ∼P (T)

L
(
Dtst
τ , θ∗ − α

K−1∑
k=0

∇L
(
Dtrn
τ , θkτ

))
. (1)

Here, θkτ = θk−1τ − α∇L
(
Dtrn
τ , θk−1τ

)
with θ0τ = θ∗. The loss terms are:

L
(
Dtrn
τ , θ

)
:= Ex,y∼Dtrn

τ

[
`(h(x, θ), y)

]
,

L
(
Dtst
τ , θ

)
:= Ex,y∼Dtst

τ

[
`(h(x, θ), y)

]
,

3

Under review as a conference paper at ICLR 2020

!!

!"

ℎ"

#′

Attention

Softmax("!)

ℎ!
Attention

Softmax("")

∇&ℒ(,*,&
+(Ψ)

∇ℒ/0

123! 12

Ψ23!

…

……
GECCO

cell

Forward

Backward

Main
networks

Ψ2

GECCO Cell

GECCO Architecture

…
124!

Ψ24!

#
1

2

3

Gradients Flow

∇ℒ/056 ∇ℒ/076

Forward

Backward

Outer
Product

"(Ψ23!) "(Ψ2) "(Ψ24!)

Layer
i-1

Layer
i

Layer
i+1

Figure 2: A GECCO cell.

where, ` : Y × Y → R is the loss of the model h. Intuitively, given a task τ , the MAML starts from
θ∗ and performs K gradient updates on Dtrn

τ to attain the adapted parameters θKτ (this is called the
inner-loop updates). Then it uses Dtst

τ and θKτ (which is dependent on θ∗) to improve the universal
initialization point θ∗ (this is called the outer-loop update).
Remark 1. We stress that the outer-loop in MAML requires higher-order derivatives to update the
initial parameters. This, in principle, increases the computational complexity and memory footprint
of MAML, limiting its deployment alongside large or very deep models. The first-order MAML
(FOMAML)(Finn et al., 2017) is a possible remedy as FOMAML only uses the gradient of the last
update in its computations. GECCO, while not entirely resolves the dependency on the higher order
gradients, requires less gradient updates and hence partially addresses the compute/memory issues.

We generalize the MAML model according to the following loss:

LGECCO(θ∗,Ψ) :=
∑

τ∼P (T)

L
(
Dtst
τ , θ∗ − α

K−1∑
k=0

gkτ (Ψ)�∇L
(
Dtrn
τ , θkτ

))
. (2)

Remark 2. The GECCO update can be viewed as an element-wise correction to the gradient vector.
This is analogous to a large list of quasi-Newton optimizers such as ADAM (Kingma & Ba, 2015)
or even the natural gradient descent method of Amari (Amari, 1998). Compared to the SGD op-
timizer, quasi-Newton methods often enjoy rapid convergence. Replacing SGD with quasi-Newton
techniques in the inner-loop of MAML may be beneficial. However, this adds another layer of
difficulty to the computation of gradient in the outer-loop. One can also understand the GECCO
updating scheme as a generalization to meta-learners that adaptively alter the learning rate of the
SGD (e.g., (Antoniou et al., 2019; Li et al., 2017; Rusu et al., 2019)).

In essence, what we would like to achieve by minimizing Eq. 2 is to jointly learn the universal
initialization point θ∗ and the gradient corrections gkτ (Ψ) to enrich adaptability of the meta-learner.
In what follows and without loss of generality, we assume n = n1 × n2 and elaborate on how the
gradient correction function gkτ (Ψ) ∈ Rn for a given task τ is obtained by a GECCO cell.

For reasons become clear shortly, a GECCO cell makes use of a context vector ν ∈ Rd to generate
the correction vector gkτ (Ψ). In doing so, the context vector ν is first processed by two sister modules
φ1 and φ2. This generates,

(ω1,h1) = φ1(ν), ω1 ∈ Ru,h1 ∈ Rn1×u,

(ω2,h2) = φ2(ν), ω2 ∈ Ru,h2 ∈ Rn2×u.

The output of the GECCO cell is then obtained as1

g(Ψ) = Vec
((
h1Softmax(ω1)

)(
h2Softmax(ω2)

)>)
. (3)

1 We have slightly abused the notation here in the sense that hSoftmax(ω) means that the softmax output
is applied element-wise over the columns of h.

4

Under review as a conference paper at ICLR 2020

The form in Eq. equation 3 uses a low-rank approximation to generate the correction term. This es-
sentially enables us to scale up GECCO cells to very large networks and also acts as a regularization
(see more details in Appendix B).

With the above, the only remaining piece of the GECCO algorithm is the way the context vector is
created. In doing so, we first reset ν = ~0 and generate an intermediate gkτ (Ψ). We then update ν as

ν′ ← −∇νL
(
θi − αgτ (Ψ)�∇θiL(θi)

)
|ν=0. (4)

Remark 3. GECCO uses a context vector ν to generate the corrections. This enables us to lower
the computational complexity even further. One can also expect the gradient field to comply with a
low-dimensional structure (as a result of smoothness of the gradient updates). As such, enforcing
the context vector to be low-dimensional may implicitly contribute to capturing the geometry of the
gradient field.

Algorithm 1 provides details on how the parameters of the GECCO Ψ and the main network θ
should be updated. This algorithm is chiefly designed for classification and regression tasks. For the
reinforcement learning, the form of GECCO is provided in Appendix D.

Algorithm 1 Train GECCO

1: Require: θ, Ψ, α, p(τ)
2: θ, Ψ← Random initialization
3: while not done do
4: Sample τ1 . . . τB from p(T)
5: for b in {1, ..., B} do
6: θ0 ← θ
7: Dtrnτ ,Dtstτ from Tb
8: for i in {0, ...,K − 1} do
9: Reset ν

10: Compute ∇θiL(θi)
11: Compute ν′ using Eq. 4
12: θi+1 ← θi − αgkτ (Ψ,ν′)∇θiL(θi)

13: end for
14: end for
15: θ ← OptimizerStep(Dtstτ , θK)
16: Ψ← OptimizerStep(Dtstτ ,Ψ)
17: end while

Remark 4. In contrast to (M)T-Nets (Lee & Choi, 2018) and natural neural networks (Desjardins
et al., 2015) that insert additional layers for gradient projection, GECCO directly produces the
prediction for a preconditioning matrix on the gradients. The main benefit in a meta-learning setup
is that we avoid altering the main network to perform adaptation.
Remark 5. In practice and to lower the computational complexity, one can make use of a set of
m distinct GECCO cells Ψ = {ψ1 . . . ψm}, each acting on and optimizing a layer of the network
(see Fig. 2 for a conceptual diagram). A GECCO cell can be attached to any structure of neural
networks including fully-connected and convolutional layers. This design requires no changes to
the main networks and brings more flexibility such that the corrections are applied only to selected
layers. A detail description on how to implement to both structures is provided in Appendix A.

4 EXPERIMENTS

4.1 CLASSIFICATION

Multi-shot classification. The Omniglot dataset (Lake et al., 2015) contains 1623 characters from
50 different alphabets. This experiment follows the setting in (Flennerhag et al., 2019) where there
are multi-shot and multi-tasks to evaluate the capacity of learning rapidly. The splits are 40 alphabets

5

Under review as a conference paper at ICLR 2020

!!

!"

ℎ"

#′

Attention

Softmax("!)

ℎ!
Attention

Softmax("")

∇&ℒ(,*,&
+(Ψ)

∇ℒ/0

123! 12

423!

…

……
GECCO

cell

Forward

Backward

Main
networks

42

GECCO Cell

GECCO Architecture

…
125!

425!

#
1

2

3

Gradients Flow

∇ℒ/067 ∇ℒ/087

Forward

Backward

Outer
Product

"($23!) "($2) "($25!)

Layer
i-1

Layer
i

Layer
i+1

⊙ ⊙ ⊙

Figure 3: Every layer is equipped with a GECCO cell to correct incoming gradients from the main
networks.

Conv-4 ResNet-34
62

64

66

68

70

72

74

76
MAML 5-steps
MAML 10-steps
MAML 20-steps
MAML 30-steps
GECCO

5-way 5-shot

A
cc

u
ra

cy
 %

5 10 15 20
62

64

66

68

70

72

74

76

78

80

A
cc

u
ra

cy
 %

Shot

Backbone: Conv-4

(a)
Conv-4 ResNet-34

62

64

66

68

70

72

74

76
MAML 5-steps
MAML 10-steps
MAML 20-steps
MAML 30-steps
GECCO

5-way 5-shot

A
cc

u
ra

cy
 %

Conv-4 ResNet-34
45

47

49

51

53

55

57

A
cc

u
ra

cy
 %

5-way 1-shot

(b)
Conv-4 ResNet-34

62

64

66

68

70

72

74

76
MAML 5-steps
MAML 10-steps
MAML 20-steps
MAML 30-steps
GECCO

5-way 5-shot

A
cc

u
ra

cy
 %

Conv-4 ResNet-34
45

47

49

51

53

55

57

A
cc

u
ra

cy
 %

5-way 1-shot

(c)

Figure 4: The performance of MAML with 5, 10, 20, and 30 steps in the inner-loop and GECCO
with various shots (a) and deeper networks (b), (c). GECCO only applies 1-step to achieve superior
performances for various shots and backbones.

for training and the rest are for evaluation. Here, we compare the performance and the rate of
convergence on the Omniglot dataset (Lake et al., 2015) with 20-way, 100 samples per batch, and 25
tasks in total. There are two evaluations in this setting: the learning capability and the performance
on the evaluation set. These empirical results show that our method needs a less number of steps to
achieve low training loss compared to LEAP (Flennerhag et al., 2019), Reptile (Nichol et al., 2018),
and FOMAML (Finn et al., 2017) as shown in Fig. 6. For more details, see Appendix A.

Few-shot classification. We evaluate GECCO on the few-shot classification benchmark with the
mini-ImageNet dataset by Ravi & Larochelle (2017). The mini-ImageNet is the subset of the Im-
ageNet dataset (Krizhevsky et al., 2012) with 64, 16, and 20 classes for training, validation, and
testing, respectively. We follow a common protocol for 5-way 5-shot and 1-shot with 600 tasks for
testing. The image size is downsampled to 84× 84. All training is performed with episodic training
without any augmentation. We evaluate on two convolutional neural network (CNN) backbones: 4-
convolutional layers (Conv-4) with the same structure as in (Snell et al., 2017; Finn et al., 2017) and
WideResNet 28-10 (WRN-28-10) (Zagoruyko & Komodakis, 2016) as stated in (Qiao et al., 2018;
Rusu et al., 2019). For WRN-28-10, we follow the strategy to use pre-trained networks as mentioned
in (Qiao et al., 2018; Rusu et al., 2019) then GECCO is trained with episodic training. We use these
two backbones and training protocols to fairly compare the performance to existing meta-learning
methods. In our implementation, GECCO cells are applied only on the last two convolutional layers
of the main networks. The model parameters of the main networks and GECCO are optimized with
an Adam optimizer (Kingma & Ba, 2015) and the learning rate is set to 10−3. The learning rate
is cut to half for every 10K episodes. The size of ν and α are 300 and 0.1, respectively for all
experiments on the mini-ImageNet.

6

Under review as a conference paper at ICLR 2020

Model Backbone 1-shot 5-shot
Meta-Learner LSTM (Ravi & Larochelle, 2017) Conv-4 43.44± 0.77 60.60± 0.71

MAML (64)# (Finn et al., 2017) Conv-4 47.89± 1.20 64.59± 0.88
Reptile (Nichol et al., 2018) Conv-4 49.97± 0.32 65.99± 0.58
Meta-SGD ((Li et al., 2017) Conv-4 50.50± 1.90 64.00± 0.90

R2-D2 (Bertinetto et al., 2019) Conv-4 48.70± 0.60 65.50± 0.60
MT-Nets (Lee & Choi, 2018) Conv-4 51.70± 1.84 −

CAVIA (512) (Zintgraf et al., 2019) Conv-4 51.82± 0.65 65.85± 0.55
GECCO (64 / 1-step) Conv-4 53.20± 0.86 69.17± 0.69

Qiao et al. (Qiao et al., 2018) WRN-28-10 59.60± 0.41 73.74± 0.19
LEO (Rusu et al., 2019) (fine-tuning) WRN-28-10 61.76± 0.08 77.59± 0.12

GECCO (no fine-tuning / 1-step) WRN-28-10 62.58± 0.45 78.16± 0.33

Table 1: Comparison with existing methods for few-shot classification with various backbones.
The reported results are evaluated for 5-way with 1 and 5 shot classification on the mini-ImageNet
dataset. # is our reimplementation.

On this benchmark, GECCO can outerperform existing few-shot methods on various backbones:
Conv-4 and WRN-28-10 as presented in Table 1. Using Conv-4, GECCO only needs 1-step and 64
filters per layer to outperform CAVIA that employs 5-steps and 512 filters by around 1.4% and 3.3%
for 5-way 1-shot and 5-shot, respectively. Furthermore, GECCO with WRN-28-10 can also perform
better than the works by Qiao et al. (2018) and Rusu et al. (2019). GECCO needs only 1-step in
the inner-loop compared to other meta-learning methods that need more than 1-step to achieve good
performances.

Number of steps. We also investigate on deeper networks using ResNet (He et al., 2016) and
higher number of shots to observe the relationship between the number of step and the performance.
Here, we reimplement MAML and use the first-order method because the memory load for second-
order method is enormous for very deep networks. Note that, the number of step is applied for
both training and testing stages for a 5-way classification. Training for Conv-4 and ResNet-34
is performed over 50K and 100K episodes, respectively. For ResNet-34, data augmentation and
image size of 224 × 224 are applied following the settings in (Chen et al., 2019). Fig 4 shows that
MAML (Finn et al., 2017) needs more steps to achieve better performances for higher shots and
deeper networks.

For deeper networks, we can observe that the performance gap for 5-steps and 30-steps (the highest
accuracy) in Conv-4 (64 filters) is 2.5% but the performance gap reaches 4% on ResNet-34. In
deeper networks, GECCO outperforms MAML by ∼6.5% and ∼2.5% for 5-way 1-shot and 5-shot,
respectively. For higher shots, MAML with more additional steps also shows the improvement. In
5-shot, the performance gap is about 2.5% between 5-steps and 30-steps but the performance gap
increases up to 4% in 20-shot. Furthermore, GECCO can outperform MAML 30-steps by 2% in
the 20-shot classification. We conjecture that GECCO can achieve a good performance in 1-step
for both cases because the corrections scale the gradients to reach a minimum rapidly and impose a
regularization implicitly.

4.2 REGRESSION

Image completion. Meta-learning is a general algorithm that can also be applied for regression
tasks. The task for image regression in this experiment is adopted from (Garnelo et al., 2018) using
the CelebA dataset (Liu et al., 2015). The task is to complete the whole image pixels given only
some pixels of images (random and ordered). The inputs are pixel locations and the models have to
perform regression to approximate pixel values with 10, 100, and 1000 provided pixels. The results
in Table 2 show that GECCO has lower errors for image regression tasks. We use the same setup
as stated in (Zintgraf et al., 2019) with five 128 hidden layers and a 128-dimensional input vector
for Ψ. For this regression task, GECCO applies to only one fully-connected layer (before the last
layer). Note that, our results are only 1-step while CAVIA (Zintgraf et al., 2019) and MAML (Finn
et al., 2017) use 5 gradient steps to train from provided pixels.

7

Under review as a conference paper at ICLR 2020

Model
Random Pixels Ordered Pixels

10 100 1000 10 100 1000
Cond. Neural Process (Garnelo et al. (2018)) 0.039 0.016 0.009 0.057 0.047 0.021

MAML (Finn et al. (2017)) 0.040 0.017 0.006 0.055 0.047 0.007
CAVIA (Zintgraf et al. (2019)) 0.037 0.014 0.006 0.053 0.047 0.006

GECCO (1-step) 0.034 0.012 0.005 0.048 0.043 0.005

Table 2: Error rate for image completion tasks on 10, 100, and 1000 pixels on the CelebA dataset.

0 1 2 3Steps

-40

-30

-20

-10

(a) 2D Navigation

0 1 2 3Steps

0

200

400

600

(b) Half-Cheetah Dir

0 1 2 3Steps

-140

-120

-100

-80

GECCO

CAVIA

MAML

(c) Half-Cheetah Vel

Figure 5: Reinforcement learning results on 2D navigation, half-cheetah direction, and velocity.

4.3 REINFORCEMENT LEARNING

2D Navigation. In this experiment, we evaluate GECCO on 2D-Navigation tasks from Finn et al.
(2017). Every task contains a randomly chosen goal position where an agent has to move to this
position. The goal of this task is to adapt the policy of an agent quickly such that it can maximize the
(negative) rewards from the given tasks. The goals of this navigation are within the range [−0.5, 0.5]
and the actions are clipped within [−0.1, 0.1]. In total, 20 trajectories are used for one gradient
update. We use the same networks as in (Zintgraf et al., 2019) with two-layer networks, 100 hidden
units, and a ReLU activation function. In 1-step, GECCO can achieve rewards around −8 while
CAVIA and MAML are far below −15.

Locomotion. We evaluate our method with half-cheetah locomotion tasks from the MuJoCo sim-
ulator (Todorov et al., 2012). The tasks consist of predicting the direction and the velocity. The
velocity ranges between 0.0 and 2.0. Each rollout length is 200 and 20 rollouts are used per gradient
step during training. GECCO reaches rewards around 590 with only 1-step but CAVIA and MAML
obtain rewards below 550 for half-cheetah direction tasks. Furthermore, GECCO reaches around
−80 for half-cheetah velocity tasks with 1-step but CAVIA and MAML only reach around −90 and
−100, respectively.

In all reinforcement learning tasks, it is shown in Fig. 5 that GECCO needs a fewer update to achieve
better rewards. This shows that our method is also beneficial for non-differentiable and dynamic
environments. Further details in these experiments are provided in Appendix D.

4.4 HOW ROBUST IS GECCO TO NOISY GRADIENTS?

Several methods e.g., CAVIA (Zintgraf et al., 2019), and T-Net (Lee & Choi, 2018) use a modulation
to the parameters or an additional layer as a transformation. These methods receives the gradients
directly from the main networks. However, we show empirically that these approaches have a sig-
nificant drawback when corrupted gradients exist. To evaluate the robustness of the method, we
conduct experiments where true gradients ∇L(θ) is corrupted by additive Gaussian noise η in the
inner-loop. It is empirically shown in Fig. 7 that a direct task adaptation approach to the model
parameters fails miserably when additive noise exists on the gradients. Our method only degrades
about 10% but T-Net, CAVIA, and MAML drop by 30% and 40% for 5-way 1-shot and 5-shot, re-
spectively. These results (see Appendix A) prove that GECCO is more robust and reduces the effect
of noise.

8

Under review as a conference paper at ICLR 2020

5 CONCLUSIONS

In conclusion, this work presents a meta-learner via gradient component corrections so-called
GECCO. The method has general adaptations to address a wide range of problems including classi-
fication, regression, and reinforcement learning. Empirical results show that GECCO is competitive
against other existing meta-learners. Furthermore, GECCO is designed to be modular for every
layer in deep neural networks, thus, it can be utilized for more interesting applications that require
no structural changes to the main networks.

In practice, the usability of gradient corrections is to alleviate the problems of learning rate, gradient
step, and noise. Our method is robust towards corrupted gradients while other existing methods have
a low tolerance. Another benefit is that gradient corrections can accelerate the learning process of
the model. As a result, GECCO can learn deeper networks and more shots with less number of steps
compared to MAML.

From a formal standpoint, our future work will be investigating and analysing GECCO properties in
the light of conformal divergences (Nock et al., 2016). Indeed, Eq. 2 can be seen as the gradient of a
loss integrating a geometric structure as defined in (Amari, 2012; 2013; Zhang, 2004), which would
make the gradient correction equivalently tuning the loss to the task at hand. This is an interesting
avenue for future research.

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Shun-ichi Amari. New developments of information geometry (17): Tsallis q-entropy, escort ge-
ometry, conformal geometry. In Mathematical Sciences (suurikagaku), number 592, pp. 73–82.
Science Company, October 2012. in japanese.

Shun-ichi Amari. New developments of information geometry (26): Information geometry of con-
vex programming and game theory. In Mathematical Sciences (suurikagaku), number 605, pp.
65–74. Science Company, November 2013. in japanese.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in neural information processing systems, 2016.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In International
Conference on Learning Representations (ICLR), 2019.

Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pp. 424–433, 2019.

Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. In International Conference on Learning Representations, 2019.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International Conference on Learning Representations, 2019.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando de Freitas. Learning to learn without gradient descent by gradient
descent. In Proceedings of the International Conference on Machine Learning, 2017.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, et al. Natural neural networks. In Ad-
vances in Neural Information Processing Systems, pp. 2071–2079, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning(ICML), 2017.

Sebastian Flennerhag, Pablo Garcia Moreno, Neil Lawrence, and Andreas Damianou. Transferring
knowledge across learning processes. In International Conference on Learning Representations,
2019.

9

Under review as a conference paper at ICLR 2020

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. In International Conference on Learning Representa-
tions, 2018.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learning
Representations, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Inter-
national Conference on Machine Learning, pp. 1627–1635, 2017.

Diederik P. Kingma and Jimmy L. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations(ICLR), 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems(NIPS), 2012.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. In International Conference on Machine Learning, pp. 2933–2942, 2018.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 2554–2563. JMLR. org, 2017.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Richard Nock, Frank Nielsen, and Shun-ichi Amari. On conformal divergences and their population
minimizers. IEEE Trans. Information Theory, 62(1):527–538, 2016.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L. Yuille. Few-shot image recognition by predicting
parameters from activations. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Advances in Neural Information Processing Systems, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations(ICLR), 2017.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference
on Learning Representations, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-
ing, pp. 1842–1850, 2016.

10

Under review as a conference paper at ICLR 2020

Jake Snell, Kevin Swersky, and Zemel Richard. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems(NIPS), 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Advances in Neural Information Processing Systems(NIPS),
2016.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference on Learning Representations, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference (BMVC), pp. 87.1–87.12, 2016.

Jun Zhang. Divergence function, duality, and convex analysis. 16:159–195, 2004.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702,
2019.

11

Under review as a conference paper at ICLR 2020

Appendices
A ADDITIONAL RESULTS

In this section, we provide more additional results and details on the Omniglot dataset and noisy
gradients on the mini-ImageNet.

The Omniglot. This experiment is to show how fast our method can converge in multi-shot setting
by Flennerhag et al. (2019). The CNN backbone used in this experiment is 4-convolutional layers
with 64 filters as in Vinyals et al. (2016). Data augmentation is applied as described in Flennerhag
et al. (2019) with random sampling, rotation, and cropping. For GECCO, the inner-loop learning
rate (α) is set to 0.1. All of the images are downsampled to 28×28. Fig. 6 (a) shows that GECCO has
a faster convergence in comparison to other methods, namely first-order MAML (FOMAML) (Finn
et al. (2017)), Reptile (Nichol et al., 2018), and LEAP (Flennerhag et al., 2019). In 25 steps, GECCO
can outperform LEAP (Flennerhag et al., 2019) in term of training loss and test accuracy.

Noisy Gradients. Noisy gradients is performed on the mini-ImageNet dataset with 5-way 5-shot
and 1-shot. This experiment follows a few-shot classification setting as described in Section 4.
The noise is assumed Gaussian with various levels (µ = 0, σ = {0.1, 0.2, 0.3, 0.4}). As shown
in Fig. 7, GECCO has a high tolerance to noisy gradients compared to the existing meta-learning
methods. This capability occurs because GECCO performs corrections to reduce the effect of noise
on gradients.

0 50 100 150 200
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
ra

in
in

g
 L

o
ss

(a) Training loss

0 50 100 150 200
Steps

30

40

50

60

70

80

A
cc

u
ra

cy
 % GECCO

LEAP
Reptile

FOMAML

(b) Testing accuracy

Figure 6: Training loss and testing accuracy on the Omniglot dataset in multi-shot setting.

0.0 0.1 0.2 0.3 0.4
Noise level

20

30

40

50

A
cc

u
ra

cy
 %

(a) 5-way 1-shot

0.0 0.1 0.2 0.3 0.4
Noise level

20

30

40

50

60

70

A
cc

u
ra

cy
 %

GECCO
CAVIA
T-Net
MAML

(b) 5-way 5-shot

Figure 7: Performance comparison on the mini-ImageNet dataset with different noise level for 5-way
with 1 and 5 samples in every episode.

12

Under review as a conference paper at ICLR 2020

B GECCO DESIGN AND IMPLEMENTATION DETAILS

In this section, we explain in more details about our proposed method for a fully-connected (FC)
layer and a convolutional layer of the main networks.

FC-layer. In a FC-layer, there are a weight matrix (W ∈ RD1×D2) and an additional bias (b ∈
RD2). A GECCO cell (ψi) consists of several small networks to produce a weight and a bias.
A Correction term is generated from these networks (φ1 . . . φm). For instance, if there is only a
weight matrix then we need only two networks (φ1, φ2) to generate two long matrices as described
in Section 3 and their outer product becomes the corrections for the gradients. Technically speaking,
φj generates a vector and then it is reshaped to be ωj ∈ Ru and hj ∈ Ru×Dj . If a bias is also
counted then there is φ3 producing ω3 ∈ Ru and h3 ∈ Ru×D2 .

Convolutional layer. Convolutional neural networks have a weight matrix (W ∈ RD1×D2×c×c)
with c × c as a kernel size. To generate the corrections for W , we also use two networks (φ1, φ2)
as in FC-layer but we consider c for every φ yielding ωj ∈ Ru and hj ∈ R(Djc)×u. Thus, the outer
product can be reshaped to the dimension a weight matrix and a kernel size. For a bias term, the
same approach like in FC-layer is applied.

Implementation details. Every small network φj consists of two FC-layers with sizes of Rd×Dj and
RDj×(u+uDj), respectively. As shown in Fig. 8, a ReLU activation function is inserted in between
of these two layers. In all of our experiments, we use only two small networks (φ1, φ2) to generate
the gradient corrections for a weight parameter. If a bias exists then φ3 is added to a GECCO cell
(ψi). We initialize all layers in GECCO with Xavier initialization (Glorot & Bengio, 2010).

ReLUFC-Layer 1 FC-Layer 2

!! ∈ ℝ" × $% !& ∈ ℝ$% × (()($%)

$ ∈ ℝ"
Input Output

Figure 8: An architecture of a small network φ.

13

Under review as a conference paper at ICLR 2020

C ABLATION STUDIES

In this section, we provide ablation studies of our proposed method. The experiments are conducted
to give the study on how the number of steps and the column dimension of a long matrix (u) for
outer product operation may effect the performance.

Number of steps. We run over 5-steps in the inner-loop to check the performance of 5-way 5-shot
and 1-shot on the mini-ImageNet. It is observed from Table 3 that GECCO in 1-step can achieve
a good performance and running for some steps may vary the performance ±1% for 1-shot and 5-
shot. Thus, it implies that our method is more robust to the number of step selection in the few-shot
setting.

Step 1 2 3 4 5
5-way 5-shot 69.17± 0.7 68.80± 0.7 68.42± 0.7 68.34± 0.7 68.24± 0.7
5-way 1-shot 53.20± 0.9 52.66± 0.9 53.54± 0.9 52.87± 0.9 52.76± 0.9

Table 3: The results with various number of steps on the mini-ImageNet for 5-way 5-shot and 1-shot.

Dimensions of column matrices. This experiment is to show the selection of column dimension
u. Table 4 shows that the performance degrades when a higher number of dimensions is applied
to create gradient corrections by around 1.5% and 0.5% for 5way 5-shot and 1-shot, respectively.
Empirically, 5 column dimension yields the best results. We keep the dimension of u low to avoid a
large memory used to create a large matrix. In all of our experiments for classification, regression,
and reinforcement learning, we use u = 5.

Dim. of u 1 5 10
5-way 5-shot 68.43± 0.7 69.16± 0.6 67.62± 0.7
5-way 1-shot 53.13± 0.9 53.20± 0.9 52.53± 0.9

Table 4: The results with various column dimensions of a long matrix (u) on the mini-ImageNet.

14

Under review as a conference paper at ICLR 2020

D REINFORCEMENT LEARNING

In this section, we provide the details how to employ GECCO for reinforcement learning (RL).
We denote a state x, an action a, a task τ , a task distribution p(T), a GECCO module Ψ, and a
policy πθ. We also define for sample trajectories and evaluation for H horizon as Dtrnτ and Dtstτ ,
respectively. In RL, several trajectories N are sampled to learn the policy and evaluation is done to
other trajectories following the setting in Finn et al. (2017). The goal is to reach the best rewardsR
given actions and states. The policy is randomly initialized and the loss is defined as:

Jτi(πθ) = −Ext,at∼πθ,τi

[H∑
t=1

Ri(xt,at)
]
. (5)

Basically, the algorithm 2 has similar a similar structure to GECCO for classification and regression.
The gradient correction from GECCO (Ψ) is also applied to the gradient of policy πθ.

For all RL experiments, we run 500 meta-iterations to update the policy πθ and GECCO parameters
Ψ with α = 0.1 in the inner-loop. The dimension of ν is set to 5 and 50 for 2D Navigation and
half-cheetah, respectively. GECCO module per layer is designed as two-layer networks with 100
hidden units and a ReLU activation function in the middle of both layers.

Algorithm 2 Train GECCO for RL

1: Require: πθ, Ψ, p(T)
2: θ, Ψ← Random initialization
3: while not done do
4: Sample τ1 . . . τB from p(T)
5: for i in {1, ..., B} do
6: Reset ν
7: Sample N trajectories Dtrnτi using πθ
8: Compute ∇Jτi(πθ)
9: Compute ν′ on N sampled trajectories (rerun) using Ψ, πθ,ν

10: Update θ′ from ∇Jτi(πθ),Ψ,ν′
11: Sample trajectories Dtstτi using πθ′
12: end for
13: Update Ψ, θ using∇

∑
τi∼p(T) Jτi(πθ′),Dtstτi

14: end while

15

Under review as a conference paper at ICLR 2020

E THE CELEBA QUALITATIVE RESULTS

Test Images 10 Pixels 100 Pixels 1000 Pixels

Figure 9: Image regression results with 10 and 100 pixels.

16

	Introduction
	Related Work
	Proposed Method
	Experiments
	Classification
	Regression
	Reinforcement Learning
	How robust is GECCO to noisy gradients?

	Conclusions
	Appendices
	Additional Results
	GECCO design and implementation details
	Ablation Studies
	Reinforcement Learning
	The CELEBA Qualitative Results

