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ABSTRACT

Large-scale benchmark datasets have been among the major driving forces in AI,
supporting training of models and measuring their progress. The key assumption
is that these benchmarks are realistic approximations of the target tasks in the
real world. However, while machine performance on these benchmarks advances
rapidly — often surpassing human performance — it still struggles on the target
tasks in the wild. This raises an important question: whether the surreal high
performance on existing benchmarks are inflated due to spurious biases in them,
and if so, how we can effectively revise these benchmarks to better simulate more
realistic problem distributions in the real world.
In this paper, we posit that while the real world problems consist of a great deal of
long-tail problems, existing benchmarks are overly populated with a great deal of
similar (thus non-tail) problems, which in turn, leads to a major overestimation of
true AI performance. To address this challenge, we present a novel framework of
Adversarial Filters to investigate model-based reduction of dataset biases. We dis-
cuss that the optimum bias reduction via AFOPTIMUM is intractable, thus propose
AFLITE, an iterative greedy algorithm that adversarially filters out data points to
identify a reduced dataset with more realistic problem distributions and consider-
ably less spurious biases.
AFLITE is lightweight and can in principle be applied to any task and dataset.
We apply it to popular benchmarks that are practically solved — ImageNet and
Natural Language Inference (SNLI, MNLI, QNLI) — and present filtered counter-
parts as new challenge datasets where the model performance drops considerably
(e.g., from 84% to 24% for ImageNet and from 92% to 62% for SNLI), while
human performance remains high. An extensive suite of analysis demonstrates
that AFLITE effectively reduces measurable dataset biases in both the synthetic
and real datasets. Finally, we introduce new measures of dataset biases based on
K-nearest-neighbors to help guide future research on dataset developments and
bias reduction.

1 INTRODUCTION

Large-scale neural networks have achieved superhuman performance across many popular AI bench-
marks, for tasks as diverse as image recognition (ImageNet; Russakovsky et al. (2015)), natural lan-
guage inference (SNLI; Bowman et al. (2015)), and question answering (SQuAD; Rajpurkar et al.
(2016)). Yet these deep models struggle when taken out of these dataset environments and evaluated
on adversarial data or problems in the wild (Eykholt et al., 2018; Jia & Liang, 2017). This raises a
key question: Does high model performance on today’s benchmark datasets indicate the underlying
task is solved, or do those datasets overestimate the true capabilities of current AI systems?

Answering this question is key because benchmarks serve important roles in the community. Not
only do they direct progress on core tasks, they also make it easier to tackle the lofty target tasks such
as image recognition in the wild through a more practically-scoped dataset such as ImageNet. How-
ever, the closed-world assumption of most existing datasets is subject to significant bias (Torralba
& Efros, 2011). Much of the data that is easy to obtain and label isn’t necessarily representative of
the task we seek to measure. Thus, if left unchecked, artifacts from data collection (Fouhey et al.,
2018) or human labeling (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018; Geva et al.,
2019) can significantly inflate model performance. Though there exist task- and dataset-specific ap-
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Figure 1: Random ImageNet images for two labels – Monarch Butterfly and Chickadee – that were
either selected (left) as adversarial by our AFLITE algorithm, or excluded (right). The heatmap
shows pairwise cosine similarity between EfficientNet-B7 features (Tan & Le, 2019). The AFLITE
images show significantly greater diversity – such as the cocoon of a butterfly, or the non-canonical
chickadee poses – that is in turn reflected by the cosine similarity. This diversity suggests that the
AFLITE examples more directly measure progress on the true task of image classification, versus
fitting to dataset bias.

proaches for addressing these biases (Goyal et al., 2017; Geirhos et al., 2018), the complex artifacts
that emerge from large-scale dataset creation are challenging to exhaustively identify and remove.

In this paper, we present AFLITE – a computationally efficient dataset reduction algorithm, aimed
at systematically reducing spurioius artifacts in a dataset. AFLITE is general and can be applied to
any task and dataset. Our approach leverages a high capacity model to learn dataset specific biases
on a small subset, then uses it to identify and filter artifact-prone instances in the remainder of the
dataset to yield a final dataset that is possibly closer to the intended task.

We first evaluate the effectiveness of our method on synthetic data and show that AFLITE lowers the
performance of models relying on annotation artifacts while preserving the performance of models
whose representation captures the underlying tasks. In addition, while AFLITE aims to retain the
more challenging, confusing instances, our experiments show that it can successfully remove biased
instances that are adversarial to the correct representation of the data.

Finally, we apply the method to several benchmark datasets across various tasks and domains. In
language understanding, we apply AFLITE to the SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) datasets for natural language inference, and to QNLI (Wang et al., 2018) for question
answering. We show a 30% absolute gap in performance in the current state-of-art methods before
and after AFLITE. In computer vision, AFLITE reduces the performance of image classification
neural methods on ImageNet (Russakovsky et al., 2015), showing a 49% absolute gap.

2 DATASET REDUCTION FOR REPRESENTATION-BIAS MINIMIZATION

In this section, we introduce AFLITE, a general approach for reducing the scope of bias in datasets.
Large datasets run the risk of prioritizing performance on the data-rich head of the disribution, where
examples are plentiful, and discounting the tail. Our goal is to minimize the ability of a model to
exploit biases in the head of the distribution, while preserving the inherent complexity of the tail.

Let Φ represent a feature representation, defined over a datasetD = (X,Y ). With AFLITE, we seek
a subset S ⊂ D of size |S| ≥ n that is maximally resilient to the features uncovered by Φ. For any
identically-distributed train-test split of D, the features extracted by Φ should not generalize to the
held-out set. Our approach allows for any choice of feature representation.

Formalization More formally, let M denote a family of classification models (e.g., logistic re-
gression, SVM, or a particular neural architecture) that can be trained on subsets S of D = (X,Y )
using features Φ(X). We define the representation bias of Φ in S w.r.tM, denotedR(Φ, S,M), as
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the best possible out-of-sample classification accuracy achievable by models inM when predicting
the true labels Y using features Φ(X). For a given target reduced dataset size of at least n, the goal
is to find a subset S ⊂ D, |S| ≥ n that minimizes this representation bias in S w.r.t.M:

min
S⊂D, |S|≥n

R(Φ, S,M) (1)

Eq. (1) corresponds to the optimum bias reduction, referred to as AFOPTIMUM. R(Φ, S,M) can
be formulated as the expected classification accuracy resulting from the following process. Let
q : 2S → [0, 1] be a probability distribution over subsets T = (XT , Y T ) of D. The process is to
randomly choose a subset T with probability q(T ), train a bias estimator MT ∈ M on D \ T , and
evaluate its classification accuracy fMT

(Φ(XT ), Y T ) on T . Note that the resulting classification
accuracy on T itself is a random variable, since the training set D \ T is random. We define the
expected value of this classification accuracy to be the representation bias:

R(Φ, S,M) , ET∼q
[
fMT

(Φ(XT ), Y T )
]

(2)

While this expression formalizes the intended objective function, it involves a large summation
over subsets T ⊂ S just to compute the representation bias present in a single set S. It does not
suggest a practical way to compute the minimization in Eq. (1) without further considering each
of the exponentially many subsets S ⊂ D individually – thus an optimal solution for Equation (2)
is intractable. To get around this difficulty, we reformulate the representation bias in S as a sum
factored over the |S| individual instances i ∈ S. This will allow us to efficiently decide whether or
not to include i in the targeted, reduced subset we are constructing.

The idea is to aggregate the contribution of each i towards the representation bias expression across
all random choices of the training set D \ T . We call this the predictability score p(i) for i: on
average, how reliably can the label yi be predicted using features Φ(xi) when a model fromM is
trained on a randomly chosen training set D \ T not containing i. The higher the value of p(i), the
easier it is to correctly classify the instance (xi, yi) using model familyM. This is the signal we
will use to decide whether to include i in the reduced subset S we are constructing.

With some abuse of notation, for i ∈ D, let q(i) ,
∑

T3i q(T ) denote the marginal probability of
choosing a subset T that contains i. The ratio q(T )

q(i) is then the probability of T conditioned on it
containing i. Let fMT

(Φ(xi), yi) be the classification accuracy of MT on i. The reformulation of
representation bias in terms of predictability scores of individual instances works as follows:

As opposed to having to specifically identify the possible sources of biases, we enable unsupervised
data bias reduction by relying on state-of-the-art methods to uncover undesirable annotation arti-
facts. Nevertheless, instead of being adversarial to a particular model or architecture, we assume
that the input features are fixed for a given dataset, therefore being adversarial to a given represen-
tation. While these features are not semantically indicative of the target label at the instance level,
the motivation behind the representation-bias minimization is to limit how indicative these features
are collectively, at the dataset level. Finally, this definition of bias is tied to a family of models that
can exploit the feature representation Φ. While the next subsection provides a general definition,
we focus on simple, linear classifiers that readily exploit the input features by estimating the direct
impact of each feature on the target label.

While this expression formalizes the intended objective function, it involves a large summation over
subsets T ⊂ S just to compute the representation bias present in a single set S. It does not suggest
a practical way to compute the minimization in Eq. (1) without further considering each of the
exponentially many subsets S ⊂ D individually. To get around this difficulty, we reformulate the
representation bias in S as a sum factored over the |S| individual instances i ∈ S. This will allow us
to efficiently decide whether or not to include i in the targeted, reduced subset we are constructing.

The idea is to aggregate the contribution of each i towards the representation bias expression across
all random choices of the training set D \ T . We call this the predictability score p(i) for i: on
average, how reliably can the label yi be predicted using features Φ(xi) when a model fromM is
trained on a randomly chosen training set D \ T not containing i. The higher the value of p(i), the
easier it is to correctly classify the instance (xi, yi) using model familyM. This is the signal we
will use to decide whether to include i in the reduced subset S we are constructing.
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With some abuse of notation, for i ∈ D, let q(i) ,
∑

T3i q(T ) denote the marginal probability of
choosing a subset T that contains i. The ratio q(T )

q(i) is then the probability of T conditioned on it
containing i. Let fMT

(Φ(xi), yi) be the classification accuracy of MT on i. The reformulation of
representation bias in terms of predictability scores of individual instances works as follows:

ET∼q

[
fMT (Φ(XT ), Y T )

]
=
∑
T⊂S

q(T ) · 1

|T |
∑
i∈T

fMT (Φ(xi), yi)

=
∑
T⊂S

∑
i∈T

q(T ) · fMT (Φ(xi), yi)

|T |

=
∑
i∈S

∑
T⊂S
T3i

q(T ) · fMT (Φ(xi), yi)

|T |

=
∑
i∈S

q(i)
∑
T⊂S
T3i

q(T )

q(i)

fMT (Φ(xi), yi)

|T |

=
∑
i∈S

q(i)ET⊂S, T3i

[
fMT (Φ(xi), yi)

|T |

]
=
∑
i∈S

p(i)

where p(i) is the predictability score of i defined as:

p(i) , q(i)ET⊂S, T3i

[
fMT

(Φ(xi), yi)

|T |

]
(3)

While the method works for any probability distribution q, for simplicity of exposition, we restrict
q to be the uniform distribution over all subsets T ⊂ S of a fixed size. This makes both |T | and
q(i) fixed constants; in particular, q(i) =

(|S|−1
|T |−1

)
/
(|S|
|T |
)

= |T |
|S| . This reduces the predictability score

expression of Eq. (3) to the simplified variant p̃(i):

p̃(i) ,
1

|S|
ET⊂S, T3i [fMT

(Φ(xi), yi)] (4)

Putting the pieces together, we have a factored reformulation of the representation bias in Eq. (2):

R(Φ, S,M) =
∑
i∈S

p̃(i) (5)

Armed with this factored representation, we return to the task of identifying an S ⊂ D, |S| ≥ n that
minimizes the representation bias. We use the simplified predictability scores (henceforth simply
referred to as predictability scores) as a heuristic metric to decide which i ∈ D to include in S. We
consider three approaches that iteratively filter out the most predictable instances fromD to arrive at
S. In all cases, we use a fixed training set size |S \ T | = t < n. Further, since a larger filtered set is
generally desirable, we terminate the filtering process early (i.e., while |S| > n) if the predictability
score for every i falls below a pre-specified early stopping threshold τ ∈ [0, 1].

The three approaches are as follows. (A) A simple greedy approach starts with the full set S = D,
identifies an i ∈ S with the highest predictability score, removes it from S, and repeats up to |D|−n
times. (B) A greedy slicing approach identifies the instances with the k highest predictability scores,
removes all of them from S, and repeats the process up to b |D|−nk c times. (C) A slice sampling
approach where, instead of greedily choosing the top k instances, it randomly samples k instances
with probabilities proportional to their predictability scores.1 In this paper, we use the greedy slicing
approach in our experiments and refer to it as AFLITE. While the optimum bias reduction via
AFOPTIMUM is intractable, its light-weight version, AFLITE, is applicable in practice.

1All of these approaches can be improved further by considering not only the predictability score of the
top-k instances i but also (via retraining without these instances) how their removal would influence the pre-
dictability scores of other instances in the next step. We found our computationally lighter approaches to work
well even without the additional overhead of such lookahead.
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Algorithm 1: AFLITE

Input: dataset D = (X,Y ), pre-computed representation Φ(X), model familyM, target dataset size n,
number of random partitions m, training set size t < n, slice size k ≤ n, early-stopping threshold τ

Output: reduced dataset S
1 S = D
2 while |S| > n do

// Filtering phase
3 forall i ∈ S do
4 Initialize a multi-set of out-of-sample predictions E(i) = ∅
5 for iteration j : 1..m do
6 Randomly partition S into (Tj , S \ Tj) s.t. |S \ Tj | = t
7 Train a classifier L ∈M on {(Φ(x), y) | (x, y) ∈ S \ Tj} (L is typically a linear classifier)
8 forall i = (x, y) ∈ Tj do
9 Add the prediction L(Φ(x)) to E(i)

10 forall i = (x, y) ∈ S do
11 Compute the predictability score p̃(i) = |{ŷ ∈ E(i) s.t. ŷ = y}| / |E(i)|
12 Select up to k instances S′ in S with the highest predictability scores subject to p̃(i) ≥ τ
13 S = S \ S′
14 if |S′| < k then
15 break
16 return S

The slice sampling approach can be efficiently implemented using what is known as the Gumbel
method or Gumbel trick (Gumbel & Lieblein, 1954; Maddison et al., 2014), which uses random
perturbations to turn sampling into a simpler problem of optimization. This has recently found suc-
cess in several probabilistic inference applications (Kim et al., 2016; Jang et al., 2016; Maddison
et al., 2016; Balog et al., 2017; Kool et al., 2019). Starting with the log-predictability scores log p̃(i)
for various i, the idea is to perturb them by adding an independent random noise γi drawn from the
standard Gumbel distribution. Interestingly, the maximizer i∗ of γi+log p̃(i) turns out to be an exact
sample drawn from the (unnormalized) distribution defined by p̃. Note that i∗ is a random variable
since the γi are drawn at random. This result can be generalized (Vieira, 2014) for slice sampling:
the k highest values of Gumbel-perturbed log-predictability scores correspond to sampling, without
replacement, k items from the probability distribution defined by p̃. The Gumbel method is typically
applied to exponentially large combinatorial spaces, where it is challenging to scale up. In our set-
ting, however, the overhead is minimal since the cost of drawing a random γi is negligible compared
to computing p̃(i).

Implementation Algorithm 1 provides an implementation of AFLITE. The algorithm takes as
input a dataset D = (X,Y ), a representation Φ(X) we are interested in minimizing the bias in,
a model family M (e.g., linear classifiers), a target dataset size n, size m of the support of the
expectation in Eq. (4), training set size t for the classifiers, size k of each slice, and an early-
stopping filtering threshold τ . Importantly, for efficiency, Φ(X) is provided to AFLITE in the form
of pre-computed embeddings for all of X . We follow the iterative filtering approach, starting with
S = D and iteratively removing some instances with the highest predictability scores using the
greedy slicing strategy.

At each filtering phase, we train models (linear classifiers in our implementation) on m different
random partitions of the data, and collect their predictions on their corresponding test set. For each
instance i, we compute its predictability score as the ratio of the number of times its label yi is
predicted correctly, over the total number of predictions for it. We rank the instances according to
their predictability score and use the greedy slicing strategy of removing the top-k instances whose
score is not less than the early-stopping threshold τ . We repeat this process until fewer than k
instances pass the τ threshold in a filtering phase or fewer than n instances remain.

3 EXPERIMENTAL ANALYSIS

We evaluate AFLITE across various domains (synthetic, natural language processing, computer vi-
sion), different tasks in a given domain (language inference and question answering in NLP), differ-
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ent datasets for a given task (SNLI and MNLI in natural language inference), and different repre-
sentations for a given dataset (pre-computed embeddings from ESIM+GLoVe, BERT, RoBERTa for
the SNLI dataset).

3.1 SYNTHETIC EXPERIMENTS

We demonstrate the utility of AFLITE in a synthetic data setting. Our dataset consists of two-
dimensional data, arranged in concentric circles, at four different levels of separation, as shown in
the Figure 2. As is evident, a linear function might not be adequate for separating the two classes; it
requires a more complex non-linear model such as an SVM with an RBF kernel. 2

We add class-specific artificially constructed features (artifacts) sampled from two different Gaus-
sian distributions. These features are only added to 75% of the data in each class, while for the
rest of the data, we insert random (noise) features. These artifacts make the task solvable through a
linear function. Furthermore, for the first dataset, with the largest separation, we flipped the labels
of some examples with artifacts, making the data slightly adversarial even to the RBF. Both models
can clearly leverage the artifacts, and demonstrate improved performance over a baseline without
artifacts.

Once we apply AFLITE, as expected, the number of examples with artifacts is reduced considerably,
making the task hard once again for the linear model, but still solvable for the non-linear one. The
filtered dataset is shown in the bottom half of Fig. 2, and the captions indicate the performance of a
linear and an SVM model. For the first dataset, we see that AFLITE removes most of those examples
with flipped labels.

Figure 2: Four sample datasets with artifacts as input to AFLITE (top). Blue and orange indicate
two different classes. Only the original two dimensions are shown, not the artifacts. For the leftmost
dataset with the highest separation, we flip some labels at random, so even an RBF kernel cannot
achieve perfect performance. AFLITE makes the data more challenging for the models (bottom).

3.2 NLP EXPERIMENTS

We evaluate AFLITE on two NLP tasks, namely NLI and question answer sentence selection. We
use two popular NLI large-scale datasets – SNLI (Bowman et al., 2015) and MNLI (Wang et al.,
2018). For the answer sentence selection task, we use QNLI which is a transformed version of the
SQuAD question answering dataset (Rajpurkar et al., 2016) converted to binary classification where
systems determine whether a sentence contains the answer to a question.

2We use standard implementations from scikit-learn: https://scikit-learn.org/stable/.
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Model D D92k D(ΦESIM+GLoVe) D(ΦBERT) D(ΦRoBERTa)

ESIM+ELMo (Peters et al., 2018) 88.7 86.0 61.5 54.2 51.9
BERT (Devlin et al., 2019) 91.3 87.6 74.7 61.8 57.0
RoBERTa (Liu et al., 2019) 92.6 88.3 78.9 71.4 62.6

Max-PPMI baseline 54.5 52.0 41.1 41.5 41.9
BERT-HypOnly 71.5 70.1 52.3 46.4 48.4
RoBERTa-HypOnly 72.0 70.4 53.6 49.5 48.5

Human performance 88.1 88.1 82.3 80.3 77.8
Training set size 550k 92k 138k 109k 92k

Table 1: Dev accuracy (%) on the original SNLI dataset D and the datasets obtained through vari-
ous representation-bias minimization. The -HypOnly baselines correspond to models trained on the
instances restricted to their hypotheses.

SNLI Each instance in the SNLI dataset consists of a premise-hypothesis pair that belongs to one
out of three possible categories (entailment, contradiction, or neutral) based on the relationship
between the premise and the hypothesis.

For SNLI, we experiment with three different feature representations derived from strong baseline
models: ΦBERT and ΦRoBERTa which are based on BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), large-scale pretrained masked language models, plus ΦESIM+GLoVe which uses the ESIM
model (Chen et al., 2016) with GLoVe word embeddings (Pennington et al., 2014). In all cases,
feature representation Φ is trained on a random sample of 10% of the original training instances,
and feature representations are extracted from the final layer before the output layer. These features
are pre-computed for all remaining instances while we discard the instances (10% of training) used
for training the embeddings in the subsequent steps of our algorithm. Additionally, to measure
the ability of a weaker adversary to filter biases only learned by a stronger model, we evaluate the
filtered datasets (for SNLI) with three different models: (i) ESIM with ELMo embeddings (Peters
et al., 2018), (ii) BERT-large, and (iii) RoBERTa-large models.

Table 1 shows the results for SNLI. In all cases, applying AFLITE substantially reduces overall
model accuracy, with typical drops of 15-35% depending on the models used for learning the feature
representations and those used for evaluation of the filtered dataset. In general, performance is
lowest when using the strongest model (RoBERTa) for learning feature representations. Results also
highlight the ability of weaker adversaries to produce datasets that are still challenging for much
stronger models with a drop of 13.7% for RoBERTa using ΦESIM+GLoVe as feature representation.
We also include a model that uses Pointwise Mutual Information (PMI) between words in a given
instance and the target label as a feature. The baseline captures the extent to which datasets exhibit
word-association artifacts. While this baseline is relatively weaker than other models, we still show
that its performance reduce from 54.5% on D to 41.9% on the D(φRoBERTa) dataset.

It might seem unsurprising that reducing the size of the training set results in lower performance.
To control for the confounding factor of the dataset size, we create another filtered dataset D92k,
sampled randomly from D such that its size is approximately equal to the size of D(φRoBERTa)
dataset. All models achieve nearly the same performance as their performance on the full dataset –
even when trained on just one-fifth the original dataset size. This result further points to the fact that
current benchmark datasets contain significant redundancy within its instances.

We also report the k-nearest neighbors distances between examples in the train and heldout data in
Table 3. We consider distances for examples within each class, as well as examples across classes.
The distances are computed using cosine similarity between pooled features from BERT-based
model (features for the [CLS] token, indicating a sentence-pair feature) trained on the original SNLI
dataset. Distances are measured between samples from the heldout data, and their nearest neighbors
in the training data, before and after filtering. Distances generally increase after filtering, indicating
that AFLITE promotes selecting a diverse set of examples from the dataset. The only exception to
the rule is the neutral class, where distances to other classes decrease – this is not surprising since the
neutral class is known to be associated with the least number of artifacts (Gururangan et al., 2018).
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MNLI QNLI

Model D D(ΦRoBERTa) D D(ΦRoBERTa)

BERT (Devlin et al., 2019) 86.6 55.8 92.0 63.5
RoBERTa (Liu et al., 2019) 90.3 66.2 93.7 77.7

BERT-PartialInput 59.7 43.2 62.6 56.6
RoBERTa-PartialInput 60.3 44.4 63.9 59.4

Table 2: Dev accuracy (%) on the original MNLI-matched and QNLI datasets and the datasets
obtained through ΦRoBERTa-representation-bias minimization. The -PartialInput baselines correspond
to models trained on partial, incomplete input, namely the Hypotheses for MNLI instances and the
Answers for QNLI instances.

Before AFLITE After AFLITE

Top1 Top5 Top10 Top50 Top1 Top5 Top10 Top50

Entailment 0.29 1.32 2.45 9.5 0.32 1.42 2.64 9.98
Neutral 0.40 1.89 3.68 16.83 0.42 1.97 3.80 16.66
Contradiction 0.49 2.41 4.77 23.09 0.52 2.49 4.84 22.10

Entailment vs others 0.32 1.48 2.87 12.98 0.34 1.53 2.92 12.31
Neutral vs others 0.43 2.05 3.99 18.42 0.41 1.94 3.72 16.41
Contradiction vs others 0.49 2.38 4.70 22.61 0.53 2.51 4.87 22.38

Table 3: KNN-distances by class, before and after applying (RoBERTa-filtered) AFLITE to SNLI.

MNLI and QNLI Following the same procedure described above, we apply AFLITE on the MNLI
and QNLI datasets. Since RoBERTa resulted in the largest drops in performance across the board
in SNLI, we only experiment with RoBERTa as adversary for MNLI and QNLI. While RoBERTa
achieves over 90% on both original datasets, its performance drops to 66.2% for MNLI and to 77.7%
for QNLI on the reduced datasets. Similarly, partial input baseline performance also decreases
substantially on both dataset compared to their performance on the original dataset. Table 2 shows
these results. We show that AFLITE consistently result in reduced accuracy on the filtered datasets
across multiple NLP benchmark datasets, even after controlling for the size of the training set.

3.3 IMAGENET EXPERIMENTS

We evaluate AFLITE on image classification through ImageNet (ILSVRC2012) classification. On
ImageNet, we use the state-of-the-art EfficientNet-B7 model as our core feature extractor Φ (Tan &
Le, 2019). The EfficientNet model is learned from scratch on a fixed 20% sample of the ImageNet
training set, using AutoAugment data augmentation (Cubuk et al., 2019). We then use the 2560-
dimensional features extracted by EfficientNet-B7 as then underlying representation for AFLITE to
use to filter the remaining dataset.

In Table 4, we evaluate the robustness of the filtered dataset by considering ImageNet accuracy
across the EfficientNet and ResNet model families (He et al., 2016). When lowering the size of
the training set – down to 20% of the original, we find a large drop in performance. The Efficient-
Net models seem to suffer less – from 84% to 73% on EfficientNet-B7 versus 80.6% to 56.5% on
ResNet-152. However, the biggest performance drop comes from training and evaluating on the
AFLITE-filtered dataset: the top performer is still EfficientNet-B7, but its accuracy drops to 24.5%
top-1. This is despite controlling for dataset size, as well as discrepancy between the training and
validation sets.

Overall, these results suggest that image classification – even within a subset of the closed world
of ImageNet – is far from solved. These results echo other findings that suggest that common
biases that naturally occur in web-scale image data, such as towards canonical poses (Alcorn et al.,
2019) or towards texture rather than shape (Geirhos et al., 2018), are problems for ImageNet-trained
classifiers. Indeed, the randomly-selected ImageNet images in Figure 1 suggest that the AFLITE
algorithm learns to identify subsets of the data that are particularly challenging.
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100% Train, Original Val 20% Train, Original Val AFLITE

Model Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

EfficientNet-B0 76.3 93.2 58.5 81.2 18.1 48.1
EfficientNet-B2 79.8 94.9 60.9 82.8 20.7 53.1
EfficientNet-B4 82.6 96.3 64.4 85.8 23.3 58.8
EfficientNet-B7 84.4 97.1 73.8 90.8 24.5 60.6

ResNet-34 78.4 94.4 51.8 74.3 11.1 30.2
ResNet-50 79.2 94.7 53.2 75.5 12.2 30.2
ResNet-101 80.1 95.4 55.6 77.5 12.3 32.1
ResNet-152 80.6 95.5 56.5 78.2 13.2 33.8

Table 4: Experimental results on ImageNet. We compare between three settings: the original
dataset’s train-test splits, using 20% of the training set but evaluating on the validation set, and
using the AFLITE produced training and validation sets. AFLITE produces a training dataset that
is also 20% of the training set size, making it a fair comparison in terms of dataset examples. The
results show a significant drop in Top-1 and Top-5 accuracy: the Top-1 accuracy goes down by
roughly 40 percentage points per model in this new training and evaluation setting.

4 RELATED WORK

Our proposed framework for artifact reduction is related to the adversarial filtering (AF) algorithm in
Zellers et al. (2018), yet distinct in two key ways: our approach is (i) much more broadly applicable
(by not requiring over generation of data instances), and (ii) considerably more lightweight (by not
requiring re-training a model at each iteration of AF). Variants of this AF approach have recently
been used to create other datasets such as HellaSwag (Zellers et al., 2019) and ANLI (Bhagavatula
et al., 2019) by iteratively perturbing dataset instances until a target model cannot fit the resulting
dataset. While effective, these approaches run into three main pitfalls. First, dataset curators need to
explicitly devise a strategy of collecting or generating perturbations of a given instance. Second, the
approach runs the risk of distributional bias where a discriminator can learn to distinguish between
machine generated instances and human-generated ones. Finally it requires re-training a model at
each iteration, which is computationally expensive especially when using a large model such as
BERT (Devlin et al., 2019) as the adversary. In contrast, AFLITE focuses on addressing dataset
biases from existing datasets instead of adversarially perturbing instances. AFLITE was earlier
proposed by Sakaguchi et al. (2019) to create the Winogrande dataset. This paper presents more
thorough experiments, theoretical justification and results from generalizing the proposed approach
to multiple popular NLP and Vision datasets.

AFLITE is also inspired by Gururangan et al. (2018), who study lexical biased prevalent in the SNLI
dataset (Bowman et al., 2015) and use point-wise mutual information (PMI) between a word and an
inference class to determine the words that are highly indicative of the target label. Instead of lexical
features, we adopt a deeper representation of the instances using their pre-computed dense feature
representations. We use an ensemble of linear classifiers trained on random subsets of the data to
determine whether the dense feature representations are highly indicative of the target label. If so,
we discard the corresponding instances and proceed iteratively.

Li & Vasconcelos (2019) recently proposed REPAIR, a method to remove representation bias by
dataset resampling. While resampling is a common technique for balancing datasets, the motivation
in REPAIR is to learn a probability distribution over the dataset that favors instances that are hard
for a given representation. This approach targets how to train better, less-biased models as opposed
to creating datasets with fewer artifacts. In addition, the implementation of REPAIR relies on in-
training classification loss as opposed to out-of-sample generalization accuracy. RESOUND (Li
et al., 2018) is another method that quantifies the representation biases of datasets. It uses the
representation biases to assemble a new K-class dataset with smaller biases by sampling an existing
C-class dataset (C > K).

Arjovsky et al. (2019) argue that unstable, spurious correlations in the data would generalize poorly
to novel test environments. Thus, they propose Invariant Risk Minimization as an objective that
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promotes learning representations of the data which are stable across environments. Instead of
learning optimal classifiers, our aim is to remove instances that exhibit artifacts in a dataset.

5 CONCLUSION

We presented AFLITE – a novel iterative greedy algorithm that adversarially filters out data points
to arrive at a reduced dataset with more realistic problem distributions and considerably fewer spu-
rious biases. We apply AFLITE to four widely-used datasets, including SNLI and ImageNet, where
reported performance is extremely high – and show that state-of-the-art performance on the result-
ing filtered dataset drops by 30 points for SNLI and drops from 84.4% to 24.5% Top-1 accuracy
for ImageNet. In extensive analysis we show that AFLITE is effective on real as well as synthetic
datasets. We hope that dataset creators will employ AFLITE to identify unobservable artifacts be-
fore releasing new challenge datasets for the research community in order to have a more reliable
estimate of model performance on future AI benchmarks.
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