
Under review as a conference paper at ICLR 2020

THE FUNCTION OF CONTEXTUAL ILLUSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many visual illusions are contextual by nature. In the orientation-tilt illusion, the
perceived orientation of a central grating is repulsed from or attracted towards
the orientation of a surrounding grating. An open question in vision science is
whether such illusions reflect basic limitations of the visual system, or if they
correspond to corner cases of neural computations that are efficient in everyday
settings. Here we develop deep recurrent network architectures that approximate
neural circuits linked to contextual illusions (Mély et al., 2018). We show that
these architectures, which we refer to as γ-Nets, are more sample efficient for
learning contour detection than the state of the art, and exhibit an orientation-tilt
illusion consistent with human data. Correcting this illusion significantly reduces
γ-Net performance by driving it to prefer low-level edges over high-level object
boundary contours. Overall, our study suggests that contextual illusions are a
byproduct of neural circuits that help biological visual systems achieve robust
and efficient perception, and that incorporating such circuits in artificial neural
networks can improve computer vision.

1 INTRODUCTION

An open debate since the inception of vision science concerns why we experience visual illusions.
Consider the class of “contextual” illusions, for which the perceived qualities of an image region, such
as its orientation or color, are systematically altered by its surrounding. A well-studied contextual
illusion is the orientation-tilt illusion depicted in Fig. 1a, where the perception of a central grating
is influenced by a grating of a different orientation in the surround (O’Toole & Wenderoth, 1977).
When the two orientations are similar, the central grating appears tilted slightly away from the
surround (repulsion; Fig. 1a, top). When the two orientations are dissimilar, the central grating
appears tilted slightly towards the surround (attraction; Fig. 1a, bottom). Does the contextual bias of
the orientation-tilt illusion reflect a bug or a feature of neural computations?

Over the past 50 years, there has been a number of neural circuit mechanisms proposed to explain
individual contextual illusions (reviewed in Mély et al., 2018). Recently, Mély et al. (2018) theorized
a unified cortical circuit, constrained by physiology of primate visual cortex (V1), that explains
contextual illusions across visual domains – from the orientation-tilt illusion to color induction.
Illusions arise in this circuit from recurrent interactions between neurons that tile retinotopic visual
space, leading to complex contextual (center/surround) effects. For the orientation-tilt illusion,
separate neural populations encoding the surround grating’s orientation can suppress or facilitate
neural population encodings of the central grating’s orientation. Asymmetric competition between
these two modes of interaction causes surround repulsion to predominate when the center and
surround are similar, and surround attraction to predominate when they are dissimilar.

The neural circuit of Mély et al. (2018) explains how contextual illusions might emerge, but it
does not explain why. One possibility is that contextual illusions like the orientation-tilt illusion are
“bugs”: vestiges of evolution or a by-product of biological constraints on the neural hardware. Another
possibility is that contextual illusions are “features”: the corollary of efficient neural routines for scene
segmentation (Keemink & van Rossum, 2016; Mély et al., 2018). Here, we provide computational
evidence for the latter possibility and demonstrate that the orientation-tilt illusion reflects neural
strategies optimized for segmentation.

Contributions We introduce the γ-Net , a trainable and hierarchical implementation of the neural
circuit of Mély et al. (2018). We demonstrate that the γ-Net (i) is more sample efficient than state-

1

Under review as a conference paper at ICLR 2020

Figure 1: The orientation tilt-illusion (O’Toole & Wenderoth, 1977) is a contextual illusion
where a central grating’s perceived orientation is influenced by a surround grating’s orienta-
tion. (a) When a central grating has a similar orientation to its surround, it is judged as tilting away
(repulsed) from the surround. When the two gratings have dissimilar orientations, the central grating
is judged as tilting towards (attracted) the surround. (b) We extend the recurrent circuit proposed
by Mély et al. (2018) to explain this and other contextual illusions into a hierarchical model that
can simulate horizontal (within a layer) and top-down (between layers) interactions between units.
Triangles depict units at different spatial positions and encoding different features. Arrows describe
the direction of interactions between units. A unit of interest (outlined triangle) is influenced by
instantaneous bottom-up (orange), recurrent top-down (red) and horizontal (green) connections. (c)
A deep network schematic of the diagram in (b), which forms the basis of the γ-Net introduced
here. Horizontal and top-down connections are implemented with feedback gated recurrent units
(fGRUs). Image encodings sweep through these blocks on every timestep, from bottom-up (left path)
to top-down (right path), and predictions are read out from the fGRU closest to image resolution on
the final timestep. This motif can be stacked (e.g., extending to `+ 1).

of-the-art convolutional architectures on two separate contour detection tasks, and (ii) exhibits an
orientation-tilt illusion after it is optimized for contour detection, which we show emerges from its
preference for high-level object-boundary contours over low-level edges.

2 RELATED WORK

Modeling the visual system Convolutional neural networks (CNNs) are often considered the de
facto “standard model” of vision. CNNs and their extensions represent the state of the art for most
computer vision applications with performance approaching – and sometimes exceeding – human
observers on certain visual recognition tasks (He et al., 2016; Lee et al., 2017; Phillips et al., 2018).
CNNs also provide the best fit to rapid neural responses in the visual cortex (see Kriegeskorte 2015;
Yamins & DiCarlo 2016 for reviews). Nevertheless, multiple lines of evidence suggest that biological
vision is still far more robust and versatile than CNNs (see Serre, 2019, for a recent review). CNNs
suffer from occlusions and clutter (Fyall et al., 2017; Rosenfeld et al., 2018; Tang et al., 2018). They
are also sample inefficient at learning visual relations (Kim et al., 2018) and solving simple grouping
tasks (Linsley et al., 2018b). State-of-the-art CNNs require massive datasets to reach their impressive
accuracy (Lake et al., 2015) and their ability to generalize beyond training data also appears to be
somewhat more limited than originally anticipated (Geirhos et al., 2018; Recht et al., 2018).

It is well established that cortical feedback contributes to the robustness of biological vision (Hochstein
& Ahissar, 2002; Wyatte et al., 2014; Kafaligonul et al., 2015). Feedforward projections in the
visual system are almost always matched by feedback projections (Felleman & Van Essen, 1991),
and feedback has been implicated in visual “routines” that cannot be implemented through purely

2

Under review as a conference paper at ICLR 2020

feedforward vision, such as incremental grouping or filling-in (O’Reilly et al., 2013; Roelfsema,
2006). There is a also a growing body of work that is demonstrating the potential of recurrent neural
networks (RNNs) to account for neuroscience data (Fyall et al., 2017; Klink et al., 2017; Siegel et al.,
2015; Tang et al., 2018; Nayebi et al., 2018; Kar et al., 2019; Kietzmann et al., 2019).

Feedback for computer vision In contrast to CNNs, which build processing depth through a
cascade of filtering and pooling stages, RNNs learn to dynamically process stimuli by re-using
filtering operations over “timesteps” of recurrence. RNNs were originally developed to process
temporal sequences (e.g., Mozer 1992), but their benefits have also been demonstrated even for
the processing of static images. Notable efforts include multi-dimensional RNNs (Graves et al.,
2007), which treat images as pixel sequences, and convolutional-RNNs, which learn spatial kernels
to compute RNN activities. There are now many successful applications of RNNs in computer vision,
including object recognition and super-resolution tasks (Liang & Hu, 2015; Kim et al., 2016).

In the current work, we are motivated by the horizontal gated recurrent unit (hGRU, Linsley et al.
2018a), which approximates the recurrent neural circuit model of (Mély et al., 2018) for explaining
contextual illusions. The hGRU was designed to learn a difficult synthetic incremental grouping
task, and a single layer of the hGRU learned long-range spatial dependencies that CNNs with orders-
of-magnitude more weights could not. The hGRU relaxed some of the biological constraints from
the original circuit model – including the assumption of non-negativity, which guaranteed separate
and competing processing stages for suppression vs. facilitation. In our extension of the hGRU we
re-introduce these constraints, which are in principle necessary for explaining contextual illusions,
and extend it into a hierarchical formulation that can model horizontal connections (between units
within a layer) and top-down connections (from units in a higher layer to units in a lower layer), to
compete with state-of-the-art hierarchical models for contour detection in naturalistic images.

3 METHODS

A neural circuit model for contextual illusions We begin by introducing the dynamical neural
circuit of Mély et al. (2018), which explains contextual illusions by simulating interactions between
cortical hypercolumns tiling the visual field. In the model, hypercolumns are indexed by their 2D
coordinate (x, y) and feature channels k. Units in hypercolumns encode idealized responses for a
visual domain (e.g., idealized neural responses from the orientation domain were used to simulate the
orientation-tilt illusion). Dynamics of a single unit at xyk obey the following equations (we bold
activity tensors to distinguish them from learned kernels and parameters):

ηḢ
(S)
xyk + ε2H

(S)
xyk =

[
ξZxyk − (αH

(F)
xyk + µ)C

(S)
xyk

]
+

Stage 1: Recurrent suppression of Z

τḢ
(F)
xyk + σ2H

(F)
xyk =

[
νC

(F)
xyk

]
+
, # Stage 2: Recurrent facilitation of H(S)

where

C
(S)
xyk = (WS ∗H(F))xyk # Compute suppression interactions

C
(F)
xyk = (WF ∗H(S))xyk. # Compute facilitation interactions

Circuit activities consist of a feedforward drive, recurrent suppression, and recurrent facilitation,
respectively denoted as Z,H(S),H(F) ∈ RX×Y×K (X is width, Y is height of the tensor, and K
is its feature channels). The circuit takes its “feedforward encodings” Z from hypercolumns (e.g.,
orientation encodings from hypercolumn units), and introduces recurrent suppressive and facilitatory
interactions between units, C(S),C(F) ∈ RX×Y×K. These interactions are implemented with separate
kernels for suppression and facilitation, WS ,WF ∈ RE×E×K×K, where E is the spatial extent of
connections on a single timestep (constrained by primate physiology∗). Because these interactions
∗Mély et al. (2018) use different connectivity patterns for short vs. long-range suppression and facilitation.

Following the derivation of Linsley et al. (2018a), we simplify notation by summarizing these connections as
separate kernels for suppression vs. facilitation.

3

Under review as a conference paper at ICLR 2020

are implemented through convolutions, they serially spread over timesteps of processing to connect
units positioned at different spatial locations. The circuit outputs H(F) after reaching steady state.

The key assumption of the circuit for asymmetric suppression vs. facilitation is implemented with
separate stages for computing suppression vs. facilitation. Hidden states H(S) and H(F) are updated
with suppression vs. facilitation interactions, respectively. Suppression, but not facilitation, is
applied directly to the recurrent output of the circuit. Thus, given a fixed amount of suppression and
facilitation, suppression increases alongside unit activities, whereas excitation remains constant.

Circuit integration, suppression, and facilitation are controlled by hand-tuned parameters. Linear and
multiplicative suppression (i.e., shunting inhibition) are controlled by scalars µ and α, feedforward
drive is modulated by the scalar ξ, and linear facilitation is controlled by the scalar ν. Circuit time
constants are scalars denoted by η, ε, τ and σ. All activities are non-negative and both stages are
linearly rectified (ReLU) [·]+ = max(·, 0).

Feedback gated recurrent units Linsley et al. (2018a) developed a version of this circuit for
computer vision applications, called the hGRU, which they trained with gradient descent to fit its
connectivity and parameters to image datasets (unlike the original circuit, for which these param-
eters were tuned by hand). The hGRU replaced time constants with dynamic gates, converted the
suppressive recurrent state H(S) into an instantaneous activity, and introduced a term for quadratic
facilitation. These changes were made to improve performance on a synthetic contour task, and for
their purposes, it was not important to maintain constraints for contextual illusions or building a
hierarchical model (they used single-layer models).

We extend the hGRU formulation in two key ways. First, we enforce non-negativity. The circuit of
Mély et al. (2018) explains contextual illusions like the orientation-tilt illusion because suppression
is applied to feedforward encodings Z before facilitation, and the strength of surround suppression
but not surround facilitation is modulated by the magnitude of the circuit output. The non-negativity
constraints we introduce into the fGRU are necessary to guarantee separate stages of suppression
followed by facilitation that can implement asymmetric contextual interactions. Second, we extend
the circuit into a feature processing hierarchy, and develop separate configurations for implementing
horizontal connections between units within a layer of a network, and top-down connections between
units in different layers of a network. We call our module the feedback gated recurrent unit (fGRU).
The following equations describe the evolution of fGRU recurrent units in H ∈ RX×Y×K, which are
influenced by the non-negative feedforward encodings Z ∈ RX×Y×K (e.g., a convolutional layer’s
response to a stimulus) over discrete timesteps, denoted by ·[t]:

Stage 1:

GS = sigmoid(US ∗H[t− 1]) # Compute channel-wise selection

CS = WS ∗ (H[t− 1]�GS) # Compute suppression interactions

S =

[
Z−

[
(αH[t− 1] + µ) CS

]
+

]
+

, # Suppression of Z

Stage 2:

GF = sigmoid(UF ∗ S) # Compute channel-wise recurrent updates

CF = WF ∗ S # Compute facilitation interactions

H̃ =
[
ν(CF + S) + ω(CF ∗ S)

]
+

Facilitation of S

H[t] = (1−GF)�H[t− 1] + GF � H̃. # Update recurrent state

Like the original circuit, the fGRU has separate stages for suppression (S) and facilitation (H). In
the first stage, the feedforward encodings Z are suppressed by non-negative interactions between
units in H[t− 1] (an fGRU hidden state from the previous timestep). Suppressive interactions are
computed with the kernel WS ∈ RE×E×K×K, where E describes the spatial extent of horizontal
connections on a single timestep (see Appendix A for details on how this is set in γ-Nets). This

4

Under review as a conference paper at ICLR 2020

kernel is convolved with a gated version of the persistent hidden state H[t − 1]. The gate activity
GS is computed by applying a sigmoid nonlinearity to a convolution of the kernel US ∈ R1×1×K×K

with H[t− 1], which transforms its activity into the range [0, 1]. Linear and multiplicative forms of
suppression are controlled by the parameters µ, α ∈ RK, respectively.

In the second stage, linear and multiplicative facilitation is applied to the instantaneous activity S.
The kernels WF ∈ RE×E×K×K controls facilitation interactions. Additive and multiplicative forms
of facilitation are scaled by the parameters ν, ω ∈ RK, respectively. A gate activity is also computed
during this stage to update the persistent recurrent activity H. The gate activity GF is computed by
applying a sigmoid to a convolution of the kernel UF ∈ R1×1×K×K with S. This gate updates H[t]

by interpolating H[t− 1] with the candidate activity H̃. After every timestep of processing, H[t] is
taken as the fGRU output activity. As detailed in the following section, the fGRU output hidden state
is either passed to the next convolutional layer (Fig. 1c, fGRU(`),−→ conv(`+1)), or used to compute
top-down connections (Fig. 1c, fGRU(`+1),−→ fGRU(`)).

The fGRU can learn connections between units either within a layer or between layers (Fig. 1b).
These two configurations stem from changing the activities used for a fGRU’s feedforward encodings
and recurrent hidden state. “Horizontal connections” between units within a layer are learned by
setting the feedforward encodings Z to the activity of a preceding convolutional layer, and setting
the hidden state H to a persistent activity initialized as zeros (Fig. 1c, conv(`) −→fGRU(`)). “Top-
down connections” between layers are learned by setting fGRU feedforward encodings Z to the
persistent hidden state H(`) of a fGRU at layer ` in a hierarchical model, and the hidden state H to
the persistent activity H(`+1) of an fGRU at a layer one level up in the model hierarchy (Fig. 1c,
fGRU(`+1) −→fGRU(`)). The functional interpretation of the top-down fGRU is that it first suppresses
activity in the lower layer using the higher layer’s recurrent horizontal activities, then, and then
applies a kernel to the residue for facilitation, which allows for computations like interpolation,
sharpening, or “filling in”. Note that an fGRU for top-down connections does not have a persistent
state (it mixes high and low-level persistent states), but an fGRU for horizontal connections does.

γ-Net Our main objective is to test how a model with the capacity for contextual illusions performs
on natural image analysis. We do this by incorporating fGRUs into leading feedforward architectures
for contour detection tasks, augmenting their “bottom-up” processing with modules for learning
horizontal and top-down connections (Fig. 1c). We refer to the resulting hierarchical models as
γ-Nets, because information flows in a loop that resembles a γ: on every timestep, image encodings
make a full bottom-up to top-down cycle through the architecture, and dense predictions are read-out
from the lowest-level recurrent layer of the network (thus, information flows in at the top of the
hierarchy, loops through the network, and flows out at the top of the hierarchy). In our experiments we
convert leading architectures for two separate contour detection problems into γ-Nets: A VGG16 for
BSDS500 (He et al., 2019), and a U-Net for detection of cell membranes in serial electron microscopy
images (Lee et al., 2017).

4 CONTOUR DETECTION EXPERIMENTS

Overview We evaluated γ-Net performance on two contour detection tasks: object contour detection
in natural images (BSDS500 dataset; Martin et al., 2004)) and cell membrane detection in serial
electron microscopy (SEM) images of mouse cortex (Kasthuri et al., 2015) and mouse retina (Ding
et al., 2016). Different γ-Net configurations were used on each task, with each building on the leading
architecture for their respective datasets. All γ-Nets use 8-timesteps of recurrence and instance
normalization (the latter of which to minimize the vanishing gradient problem typical of RNNs;
Ulyanov et al., 2016; Cooijmans et al., 2017, see Appendix A for details). The γ-Nets were trained
with Tensorflow and NVIDIA Titan RTX GPUs using single-image batches and the Adam optimizer
(Kingma & Ba, 2014, dataset-specific learning rates are detailed below). Models were trained with
early stopping. Training was stopped if the validation loss did not drop for 50 straight epochs, and
the weights with the best validation-set performance were used for test.

Model evaluation We evaluated models in two ways. First, we validated them against state-of-the-
art models for each contour dataset using standard benchmarks. As discussed below, we verified
that our implementations of these state-of-the-art models matched published performance. Second,

5

Under review as a conference paper at ICLR 2020

we tested sample-efficiency after training on subsets of the contour datasets without augmentations.
Measuring sample-efficiency compares the inductive biases of different architectures, and is critical
for understanding how the capacity for exhibiting contextual illusions influences performance. Model
“wall time” (i.e., how long training took) is outside the scope of the current work, as it is a function of
hardware/software optimizations and does not necessarily reflect the relative advantages of different
inductive biases. Model performance is evaluated as F1 ODS after post-processing (Martin et al.,
2001; 2004), as is standard for contour detection tasks.

4.1 OBJECT CONTOUR DETECTION IN NATURAL IMAGES

Dataset We trained models for object contour detection on the BSDS500 dataset. The dataset
contains object-contour annotations for 500 natural images, which are split into train (200), validation
(100), and test (200) sets.

Architecture details The leading approach to BSDS500 is the Bi-Directional Cascade Network
(BDCN, He et al. 2019), which places multi-layer readout modules at every processing block in a
ILSVRC12-pretrained VGG16, and optimizes a loss that balances contributions from each of these
readouts to achieve better scale tolerance in final prediction. All leading deep learning approaches to
BSDS500 begin with a VGG16 pretrained on ILSVRC12 object recognition (He et al., 2019).

Our γ-Net for BSDS500 begins with the same ILSVRC12-pretrained VGG16. fGRUs were introduced
for learning horizontal (conv2_2, conv3_3, conv4_3, conv5_3) and top-down connections (conv5_3−→
conv4_3, conv4_3−→ conv3_3, and conv3_3−→ conv2_2). To pass top-down activities between layers,
higher-level activities were resized to match lower-level ones, then passed through two layers of 1× 1
convolutions with linear rectification, which registered feature representations from higher-to-lower
layers. The γ-Net was trained with learning rates of 3e−4 on its randomly initialized fGRU weights
and 1e−5 on its VGG-initialized weights.

In contrast to the BDCN (and other recent approaches to BSDS) with multiple read-outs and en-
gineered loss functions, we take γ-Net predictions as a linear transformation of the lowest fGRU
layer in its feature hierarchy, and optimize the model with binary cross entropy between per-pixel
predictions and labels (following the method of Xie & Tu, 2017)). This approach works because the
γ-Net executes bottom-up to top-down processing sweeps on every timestep. The ability to segment
object contours means that the model uses feedback to merge low- and high-level image feature
representations at the bottom of its feature hierarchy, resembling classic “V1 scratchpad” hypotheses
for computation in visual cortex (Gilbert & Sigman, 2007; Lee & Mumford, 2003). We compared
γ-Nets with a BDCN implementation released by the authors, which was trained using the routine
described in (He et al., 2019)†.

Results We validated the γ-Net against the BDCN after training on a full and augmented BSDS
training set (Xie & Tu, 2017). The γ-Net performed similarly in F1 ODS (0.802) as the BDCN
(0.806) and humans (0.803), and outperformed all other approaches to BSDS (Fig. 2a; Deng et al.
2018; Xie & Tu 2017; Hallman & Fowlkes 2015; Kokkinos 2015; Wang et al. 2019; Liu et al. 2019).

Our hypothesis is that contextual illusions reflect routines for efficient scene analysis, and that
the capacity for exhibiting such illusions improves model sample efficiency. Consistent with this
hypothesis, the γ-Net was up to an order-of-magnitude more efficient than the BDCN. A γ-Net trained
on 5% of BSDS performs on par with a BDCN trained on 10% of the BSDS, and a γ-Net trained on
10% of the BSDS performs on par with a BDCN trained on 100% of BSDS. Unlike the BDCN, the
γ-Net trained on 100% of BSDS outperformed the state of the art for non-deep learning based models
(Hallman & Fowlkes, 2015), and nearly matched the performance of the popular HED trained with
augmentations (Xie & Tu, 2017). We also compared the γ-Net to versions of the models with lesions
that tested the importance of its (i) horizontal connections, (ii) top-down connections, (iii) timesteps
of processing, and (iv) weight sharing over timesteps of processing. The full γ-Net outperformed
each of these lesioned versions on every subset of BSDS500 (Fig. S4).

†We replicated published results with this implementation. In our experiments, we train the BDCN with
the same regularization, batch size, and optimizer as He et al. (2019). For sample efficiency experiments, we
searched through multiple learning rates and found that it had no affect on performance on these small BSDS500
datasets (Fig. S3).

6

Under review as a conference paper at ICLR 2020

Figure 2: Object contour detection in BSDS500 images. (a) The γ-Net is on par with humans and
the state-of-the-art for contour detection (BDCN; He et al. 2019) when trained on the entire training
dataset with augmentations. In this regime, it also outperforms the published F1 ODS of all other
approaches to BSDS500 (LPCB: Deng et al. 2018, RCF: Liu et al. 2019, CED: Wang et al. 2019, DB:
Kokkinos 2015, HED: Xie & Tu 2017, and OEF: Hallman & Fowlkes 2015). The γ-Net outperforms
the BDCN when trained on 5%, 10%, or 100% of the dataset. Performance is reported as F1 ODS
(Martin et al., 2001). (b) BDCN and γ-Net predictions after training on the different proportions of
BSDS500 images. (c) The evolution of γ-Net predictions across timesteps of processing. Predictions
from a γ-Net trained on 100% of BSDS are depicted: its initially coarse detections are refined over
processing timesteps to select figural object contours.

We examined recurrent feedback strategies learned by γ-Net for object contour by visualizing its
performance on every timestep of processing. This was done by passing its activity at a timestep
through the final linear readout layer. The γ-Net iteratively refines its initially coarse contour
predictions. For example, the top row of Fig. 2c shows that the γ-Net selectively enhance the
boundaries around the runner’s bodies while suppressing the feature activities created by the crowd.
In the next row of predictions, salient zebra stripes are gradually suppressed in favor of body contours.

4.2 CELL MEMBRANE DETECTION

Datasets Deriving a connectome of the brain by mapping the connections between neurons is an
important step towards understanding the algorithms that they implement (Briggman & Bock, 2012).
CNNs can automate this task by detecting neuron membranes in every pixel/voxel of high-resolution
serial electron microscope (SEM) images. Challenges like SNEMI3D (Kasthuri et al., 2015), which
contains annotated SEM images of mouse cortex, have helped drive progress towards automation.
Here, we test models on membrane detection in SNEMI3D and a separate SEM dataset of mouse
retina (“Ding” from Ding et al. 2016). We split both datasets into training (80 images for SNEMI3D
and 307 images for Ding) and test sets (20 images for SNEMI3D and 77 images for Ding). Next, we
generated versions of each training dataset with 100%, 10%, or 5% of the images, as well as versions
of the full datasets augmented with random left-right and up-down flips (A+100%).

Architecture details The current state-of-the-art on SNEMI3D is a variant of the popular U-Net
architecture (Ronneberger et al., 2015), which uses a different depth, different number of feature maps

7

Under review as a conference paper at ICLR 2020

Figure 3: Membrane prediction in serial electron microscopy (SEM) images of neural tissue.
(a) The γ-Net outperforms a state-of-the-art U-Net (Lee et al., 2017) for membrane detection when
trained on SEM image datasets of mouse visual cortex and retina tissue. Performance is F1 ODS
(Martin et al., 2001). (b) Network predictions after training on different proportions of each dataset.
(c) The evolution of γ-Net predictions across timesteps of processing after training on 100% of the
datasets. γ-Net learns to iteratively suppress contours belonging to internal cell features, such as
organelles, which should not be annotated as contours for the purpose of neural tissue reconstruction.

at every layer, and introduces additional operations such as residual connections (Lee et al., 2017). We
developed a γ-Net for cell membrane segmentation that contains recurrent connections implemented
by fGRUs. The U-Net of Lee et al. (2017) contains four encoder blocks (convolution, pooling and
subsampling) and four decoder blocks (transpose convolution and convolution). The γ-Net replaces
the convolutional residual layers within each of these blocks with a single layer of convolutions
followed by an fGRU (as in the high level diagram of Fig. 1c, Conv(`),−→ fGRU(`)). In the encoder
pathway, fGRUs store horizontal interactions between spatially neighboring units of the preceding
convolutional layer in their hidden states. In the decoder pathway, fGRUs learn top-down connections
that connect recurrent units from higher-feature processing layers to lower-feature processing ones,
modifying encoder fGRU recurrent states.

Like in Lee et al. (2017), this γ-Net uses spatial pooling in its encoder pathway, and transpose
convolution in its decoder pathway to upsample pooled activities and enable top-down interactions
between layers of the hierarchy. The model’s final prediction is linearly read-out from the first fGRU
layer, which maintains a feature representation of the same height and width as the input image.
These γ-Net were trained from a random initialization with a learning rate of 1e−2 to minimize
class-balanced per-pixel binary cross-entropy. We verified our implementation of the U-Net from
Lee et al. (2017) by demonstrating ”superhuman” segmentation performance in cell segmentation on
SNEMI3D (Appendix B).

Results The γ-Net and U-Net of Lee et al. (2017) performed similarly when trained on full aug-
mented versions of both the SNEMI3D and Ding datasets (Fig. 3a A+100%). However, γ-Nets were
consistently more sample efficient than U-Nets on every reduced dataset condition (Fig. 3b).

We visualized the recurrent membrane detection strategies of γ-Nets trained on 100% of both datasets.
Membrane predictions were obtained by passing neural activity at every timestep through the final

8

Under review as a conference paper at ICLR 2020

Figure 4: Optimizing for contour detection produces an orientation-tilt illusion in the γ-Net .
The orientation-tilt illusion (O’Toole & Wenderoth, 1977) describes how perception of the center
grating’s orientation is repulsed from the surround when the two are in similar orientations (e.g., ≈
30◦), and attracted to the surround when the two are in dissimilar (but not orthogonal) orientations
(e.g., ≈ 60◦). We test for the orientation-tilt illusion in models trained on BSDS500 contour detection.
Model weights were fixed and new layers were trained to decode the orientation of grating stimuli of
a single orientation. These models were tested on grating stimuli in which surround orientations were
systematically varied w.r.t. the center (exemplars depicted in the left panel). The γ-Net but not the
BDCN had an orientation-tilt illusion. Gray curves depict a fourth-order polynomial fit.

linear readout. The γ-Net prediction timecourse indicates that it learns a complex visual strategy for
membrane detection: it gathers a coarse “gist” of membranes in the first timestep of processing, and
iteratively refines these predictions by enhancing cell boundaries and clearing out spurious contours
of elements like cell organelles (Fig. 3c).

5 ARE ILLUSIONS FEATURES OR BUGS?

Orientation-tilt illusion Like the neural circuit of Mély et al. (2018), fGRU modules allow units to
asymmetrically suppress and facilitate each other. This potentially gives γ-Nets (which contain fGRU
modules) the capacity to exhibit similar contextual illusions as humans. Here, we tested whether a
γ-Net trained on contour detection in natural images exhibits an orientation-tilt illusion.

We trained orientation decoders on the outputs of models trained on the full BSDS500 dataset. These
decoders were trained on 100K grating images, in which the center and surround orientations were
the same (Fig. S2a). These images were sampled from all orientations and spatial frequencies. The
decoders had two 1×1 convolution layers and an intervening linear rectification to map model output
into the sine and cosine of grating orientation. Both the γ-Net and BDCN achieved nearly perfect
performance on a held-out validation set of gratings.

We tested these models on a set of 1K grating stimuli generated with different center-surround
grating orientations (following the method of O’Toole & Wenderoth 1977, Fig. S2b), and recorded
model predictions for the center pixel in these images (detailed in Appendix C). Surprisingly, γ-
Net encodings of these test images exhibited a similar tilt illusion as found in human perceptual
data (Fig. 4b), with repulsion when the central and surround gratings had similar orientations, and
attraction when these gratings were dissimilar. This illusory phenomenon cannot be explained by
accidental factors such as aliasing between the center and the surround, which would predict the
opposite pattern, indicating that the illusion emerges from the model’s strategy for contour detection.
In contrast, the BDCN which only relies on feedforward processing to detect contours did not exhibit
the effect (Fig. 4b). We also tested for the orientation-tilt illusion in lesioned γ-Nets , but found that
both repulsion and attraction regimes are only present when the full model is intact (Fig. S4).

9

Under review as a conference paper at ICLR 2020

(a) (b)

Domain-transfer control F1 ODS

Ill
us

io
n-

co
rr

ec
te

d
F1

 O
D

S

Im
ag

e
La

be
l

Δ

Illusion-corrected
ɣ-Net

Finetuned on:

Domain-transfer
control ɣ-Net Feature preferred by:

Figure 5: Contour detection performance of the γ-Net depends on an orientation-tilt illusion.
(a) F1 ODS scores on BSDS500 test images (200 total) from γ-Nets after correcting an orientation-
tilt illusion (“illusion-corrected”) or not (“domain-transfer control”). The domain-transfer control
γ-Net was trained to decode the orientation of single-grating stimuli (blue), and the illusion-corrected
γ-Net was trained to decode the orientation of the central grating in illusory grating stimuli (red).
Readouts for decoding orientation were fixed, and γ-Net weights were allowed to change during
training. Per-image F1 ODS was significantly greater for The domain-transfer control γ-Net than the
illusion-correction γ-Net . (b) The illusion-corrected γ-Net was biased towards low-level contours,
whereas the domain-transfer control γ-Net was biased towards contours on object boundaries.

Correcting the orientation-tilt illusion What strategies does the orientation-tilt illusion reflect?
We tested this question by measuring performance on BSDS500 while we corrected the orientation-tilt
illusion of a γ-Net . A γ-Net that displayed the orientation-tilt illusion was trained to decode the
central grating orientation of tilt-illusion stimuli (Fig. 5a, “illusion-corrected” in red). Importantly,
γ-Net weights were optimized during training, but the orientation decoder was not. Thus, improving
performance for decoding the orientation of these illusory stimuli comes at the expense of changing
γ-Net weights that were responsible for its orientation-tilt illusion. As a control, another γ-Net was
trained with the same routine to decode the orientation of full-image gratings, for which there is no
illusion (Fig. 5a, “domain-transfer control” in blue; see Fig. S5 for training performance of both
models). Both models were tested on the BSDS500 test set.

Correcting the orientation-tilt illusion of a γ-Net significantly hurts its object contour detection
performance (Fig. 5a; 1-sample T-test of the per-image ODS F1 difference between models,
T (199) = 13.570, p < 0.001). The illusion reflects γ-Net strategies for selecting object-boundaries
rather than low-level contours (Fig. 5b; Fig. S6 for more examples).

6 CONCLUSION

Why do we experience visual illusions? Our experiments indicate that one representative contex-
tual illusion, the orientation-tilt illusion, is a consequence of neural strategies for efficient scene
segmentation. We directly tested the “function” of this contextual illusion with the γ-Net : a dense
prediction model with recurrent modules inspired by neural circuits found in the visual cortex. The
γ-Net exhibited an orientation-tilt illusion which biased it towards hihg-level object-boundary con-
tours over low-level edges. On separate contour detection tasks, the γ-Net performed on par with
state-of-the-art models when trained in typical “big data” regimes, but was far more efficient than
these models when trained on sample-limited versions of the same datasets.

More generally, our work demonstrates novel synergy between artificial vision and vision neuro-
science: we demonstrated that circuit-level insights from biology can improve the sample efficiency
of deep learning models. The neural circuit that inspired the fGRU module explained biological
illusions in color, motion, and depth processing (Mély et al., 2018), and we suspect that γ-Nets will
have similar success in learning sample-efficient strategies – and exhibiting contextual illusions – in
these domains. We will release our code upon publication to support a broader understanding of the
relationship between visual illusions and neural routines for robust and efficient perception.

10

Under review as a conference paper at ICLR 2020

REFERENCES

K. L. Briggman and D. D. Bock. Volume electron microscopy for neuronal circuit reconstruction.
Curr. Opin. Neurobiol., 22(1):154–161, February 2012.

T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville. Recurrent batch normalization.
In International Conference on Learning Representations, 2017.

R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu. Learning to predict crisp boundaries. In Computer
Vision – ECCV 2018, pp. 570–586. Springer International Publishing, 2018.

H. Ding, R. G. Smith, A. Poleg-Polsky, J. S. Diamond, and K. L. Briggman. Species-specific wiring
for direction selectivity in the mammalian retina. Nature, 535(7610):105–110, July 2016.

D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral
cortex. Cereb. Cortex, 1(1):1–47, 1991.

A. M. Fyall, Y. El-Shamayleh, H. Choi, E. Shea-Brown, and A. Pasupathy. Dynamic representation
of partially occluded objects in primate prefrontal and visual cortex. Elife, 6, September 2017.

R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A. Wichmann. Generalisation
in humans and deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp. 7549–7561. Curran Associates, Inc., 2018.

C. D. Gilbert and M. Sigman. Brain states: top-down influences in sensory processing. Neuron, 54
(5):677–696, June 2007.

A. Graves, S. Fernández, and J. Schmidhuber. Multi-dimensional recurrent neural networks. In
Artificial Neural Networks – ICANN 2007, pp. 549–558. Springer Berlin Heidelberg, 2007.

R. H. Hahnloser, R. Sarpeshkar, M. a. Mahowald, R. J. Douglas, and H. S. Seung. Digital selection
and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947–951,
June 2000.

S. Hallman and C. C. Fowlkes. Oriented edge forests for boundary detection. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1732–1740, June 2015.

J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang. Bi-Directional cascade network for perceptual edge
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3828–3837, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

J. C. Heck and F. M. Salem. Simplified minimal gated unit variations for recurrent neural networks.
In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp.
1593–1596, August 2017.

S. Hochstein and M. Ahissar. View from the top: Hierarchies and reverse hierarchies in the visual
system. Neuron, 36(5):791–804, 2002.

M. Januszewski and V. Jain. Segmentation-Enhanced CycleGAN. February 2019.

H. Kafaligonul, B. G. Breitmeyer, and H. Öğmen. Feedforward and feedback processes in vision.
Front. Psychol., 6:279, March 2015.

K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo. Evidence that recurrent circuits are
critical to the ventral stream’s execution of core object recognition behavior. Nat. Neurosci., April
2019.

N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello, S. Knowles-Barley,
D. Lee, A. Vázquez-Reina, V. Kaynig, T. R. Jones, M. Roberts, J. L. Morgan, J. C. Tapia, H. S.
Seung, W. G. Roncal, J. T. Vogelstein, R. Burns, D. L. Sussman, C. E. Priebe, H. Pfister, and J. W.
Lichtman. Saturated reconstruction of a volume of neocortex. Cell, 162(3):648–661, July 2015.

11

Under review as a conference paper at ICLR 2020

S. W. Keemink and M. C. W. van Rossum. A unified account of tilt illusions, association fields, and
contour detection based on elastica. Vision research, 126:164–173, September 2016.

T. C. Kietzmann, C. J. Spoerer, L. Sorensen, and others. Recurrence required to capture the dynamic
computations of the human ventral visual stream. arXiv preprint arXiv, 2019.

J. K. Kim, M. Ricci, and T. Serre. Not-So-CLEVR: learning same–different relations strains
feedforward neural networks. Interface Focus theme issue on “Understanding images in biological
and computer vision”, 2018.

J. Kim, J. K. Lee, and K. M. Lee. Deeply-Recursive convolutional network for image Super-
Resolution. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1637–1645. IEEE, June 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

P. C. Klink, B. Dagnino, M.-A. Gariel-Mathis, and P. R. Roelfsema. Distinct feedforward and feedback
effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation.
Neuron, June 2017.

I. Kokkinos. Pushing the boundaries of boundary detection using deep learning. arXiv preprint
arXiv:1511.07386, 2015.

N. Kriegeskorte. Deep neural networks: A new framework for modeling biological vision and brain
information processing. Annu Rev Vis Sci, 1:417–446, November 2015.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338, December 2015.

K. Lee, J. Zung, P. Li, V. Jain, and H. Sebastian Seung. Superhuman accuracy on the SNEMI3D
connectomics challenge. In Neural Information Processing Systems, 2017.

T. S. Lee and D. Mumford. Hierarchical bayesian inference in the visual cortex. Journal of the
Optical Society of America. A, Optics, image science, and vision, 20(7):1434–1448, July 2003.

M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3367–3375. IEEE Computer
Society, June 2015.

D. Linsley, J. K. Kim, V. Veerabadran, C. Windolf, and T. Serre. Learning long-range spatial
dependencies with horizontal gated recurrent units. In Neural Information Processing Systems
(NIPS), 2018a.

D. Linsley, J. Kim, V. Veerabadran, C. Windolf, and T. Serre. Learning long-range spatial dependen-
cies with horizontal gated recurrent units. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp. 152–164. Curran Associates, Inc., 2018b.

D. Linsley, D. Shiebler, S. Eberhardt, and T. Serre. Learning what and where to attend with humans
in the loop. In International Conference on Learning Representations, 2019.

Y. Liu, M.-M. Cheng, X. Hu, J.-W. Bian, L. Zhang, X. Bai, and J. Tang. Richer convolutional
features for edge detection. IEEE transactions on pattern analysis and machine intelligence, 41(8):
1939–1946, August 2019.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pp. 416–423 vol.2, July 2001.

D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local
brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell., 26(5):530–549, May
2004.

12

Under review as a conference paper at ICLR 2020

D. A. Mély, D. Linsley, and T. Serre. Complementary surrounds explain diverse contextual phenomena
across visual modalities. Psychol. Rev., 2018.

M. C. Mozer. Induction of multiscale temporal structure. In J. E. Moody, S. J. Hanson, and R. P.
Lippmann (eds.), Advances in Neural Information Processing Systems 4, pp. 275–282. Morgan-
Kaufmann, 1992.

A. Nayebi, D. Bear, J. Kubilius, K. Kar, S. Ganguli, D. Sussillo, J. J. DiCarlo, and D. L. Yamins.
Task-Driven convolutional recurrent models of the visual system. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31, pp. 5295–5306. Curran Associates, Inc., 2018.

A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In
Computer Vision – ECCV 2016, pp. 483–499. Springer International Publishing, 2016.

J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. B. Chklovskii. Machine learning of hierarchical
clustering to segment 2D and 3D images. PLoS One, 8(8):e71715, August 2013.

R. C. O’Reilly, D. Wyatte, S. Herd, B. Mingus, and D. J. Jilk. Recurrent processing during object
recognition. Front. Psychol., 4(April):1–14, 2013.

B. O’Toole and P. Wenderoth. The tilt illusion: repulsion and attraction effects in the oblique meridian.
Vision Res., 17(3):367–374, 1977.

P. J. Phillips, A. N. Yates, Y. Hu, C. A. Hahn, E. Noyes, K. Jackson, J. G. Cavazos, G. Jeckeln,
R. Ranjan, S. Sankaranarayanan, J.-C. Chen, C. D. Castillo, R. Chellappa, D. White, and A. J.
O’Toole. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition
algorithms. Proc. Natl. Acad. Sci. U. S. A., 115(24):6171–6176, June 2018.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do CIFAR-10 classifiers generalize to CIFAR-10?
June 2018.

P. R. Roelfsema. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci., 29:203–227,
January 2006.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pp. 234–241. Springer International Publishing, 2015.

A. Rosenfeld, R. Zemel, and J. K. Tsotsos. The elephant in the room. August 2018.

T. Serre. Deep learning: The good, the bad, and the ugly. Annu Rev Vis Sci, 5:399–426, September
2019.

M. Siegel, T. J. Buschman, and E. K. Miller. Cortical information flow during flexible sensorimotor
decisions. Science, 348(6241):1352–1355, June 2015.

C. Tallec and Y. Ollivier. Can recurrent neural networks warp time? In International Conference on
Learning Representations, 2018.

H. Tang, M. Schrimpf, W. Lotter, C. Moerman, A. Paredes, J. Ortega Caro, W. Hardesty, D. Cox, and
G. Kreiman. Recurrent computations for visual pattern completion. Proc. Natl. Acad. Sci. U. S. A.,
115(35):8835–8840, August 2018.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing ingredient for fast
stylization. July 2016.

E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal. On orthogonality and learning recurrent networks
with long term dependencies. January 2017.

Y. Wang, X. Zhao, Y. Li, and K. Huang. Deep crisp boundaries: From boundaries to Higher-Level
tasks. IEEE transactions on image processing: a publication of the IEEE Signal Processing
Society, 28(3):1285–1298, March 2019.

13

Under review as a conference paper at ICLR 2020

D. Wyatte, D. J. Jilk, and R. C. O’Reilly. Early recurrent feedback facilitates visual object recognition
under challenging conditions. Front. Psychol., 5:674, July 2014.

S. Xie and Z. Tu. Holistically-Nested edge detection. International journal of computer vision, 125
(1-3):3–18, December 2017.

D. L. K. Yamins and J. J. DiCarlo. Using goal-driven deep learning models to understand sensory
cortex. Nat. Neurosci., 19(3):356–365, February 2016.

14

Under review as a conference paper at ICLR 2020

A γ-NET

Connectomics The current standard for computer vision applications in connectomics is to train
and test on separate partitions of the same tissue volume (Januszewski & Jain, 2019). This makes it
difficult to develop new model architectures without overfitting to any particular dataset. For this
reason, we first tuned our connectomics γ-Net and its hyperparameters on a synthetic dataset of cell
images (data not shown).

In our experiments on synthetic data, we noted monotonically improved performance with increasing
timesteps, which motivated our choice of building these models with as many timesteps as could fit
into GPU memory without sacrificing (we carried this concept over to the design of our γ-Nets for
BSDS). Thus, we settled on 8 timesteps for the γ-Nets . We also compared our use of fGRU modules
to learn recurrent connection vs. the classic LSTM and GRU recurrent modules, and found that
the γ-Net was far more effective on small datasets, which we take as evidence that its recurrent
application of suppression separately from facilitation is a better inductive bias for learning contour
tasks (see Hahnloser et al. 2000 for a theoretical discussion on how these operations can amount to a
digital selection of task-relevant features through inhibition, followed by an analog amplification of
the residuals through excitation).

We found that γ-Net cell membrane detection was improved when every bottom-up unit (from a
typical convolution) was given a hidden state. Like with gated recurrent architectures, these gates
enable gradients to effectively skip timesteps of processing where they pathologically decay. We do
this by converting every convolutional layer (except the first and last) into a “minimal gated unit”
(Heck & Salem 2017). This conversion introduced two additional kernels to each convolutional layer,
UF ,WH ∈ R1×1×K×K, where the former was responsible for selecting channels from a persistent
activity H ∈ RX×Y×K for processing on a given timestep and updating the persistent activity. The
latter kernel transformed a modulated version of the hidden state H. This transformed hidden state
was combined with a vanilla convolutional feedforward encoding, Z ∈ RX×Y×K (see Eq A for the
treatment). Weights in these layers were initialized with orthogonal random initializations, which
help training recurrent networks (Vorontsov et al., 2017).

F = σ(Z +WF ∗H[t− 1] + bF)

H[t] = F�H[t− 1] + (1− F)� ELU(Z +WH ∗ (F�H[t− 1]) + bH)
(1)

fGRU Here we describe additional details of the fGRU. fGRU kernels for computing suppressive
and facilitative interactions have symmetric weights between channels, similar to the original circuit
of Mély et al. (2018). This means that the weight Wx0+∆x,y0+∆y,k1,k2 is equal to the weight
Wx0+∆x,y0+∆y,k2,k1

, where x0 and y0 denote kernel center. This constraint means that there are
nearly half as many learnable connections as a normal convolutional kernel. In our experiments, this
constraint improved performance.

15

Under review as a conference paper at ICLR 2020

BSDS (20M parameters) γ-Net
Layer Operation Output shape

conv-1-down conv 3 × 3 / 1 320 × 480 × 64
conv 3 × 3 / 1 320 × 480 × 64

maxpool 2 × 2 / 2 160 × 240 × 64
conv-2-down conv 3 × 3 / 1 160 × 240 × 128

conv 3 × 3 / 1 160 × 240 × 128
fGRU-horizontal 3 × 3 / 1 160 × 240 × 128

maxpool 2 × 2 / 2 80 × 120 × 128
conv-3-down conv 3 × 3 / 1 80 × 120 × 256

conv 3 × 3 / 1 80 × 120 × 256
conv 3 × 3 / 1 80 × 120 × 256

fGRU-horizontal 3 × 3 / 1 80 × 120 × 256
maxpool 2 × 2 / 2 40 × 60 × 256

conv-4-down conv 3 × 3 / 1 40 × 60 × 512
conv 3 × 3 / 1 40 × 60 × 512
conv 3 × 3 / 1 40 × 60 × 512

fGRU-horizontal 3 × 3 / 1 40 × 60 × 512
maxpool 2 × 2 / 2 20 × 30 × 512

conv-5-down conv 3 × 3 / 1 20 × 30 × 512
conv 3 × 3 / 1 20 × 30 × 512
conv 3 × 3 / 1 20 × 30 × 512

fGRU-horizontal 3 × 3 / 1 20 × 30 × 512
conv-4-up instance-norm 20 × 30 × 512

bilinear-resize 40 × 60 × 512
conv 1 × 1 / 1 40 × 60 × 8
conv 1 × 1 / 1 40 × 60 × 512

fGRU-top-down 1 × 1 / 1 40 × 60 × 512
conv-3-up instance-norm 40 × 60 × 512

bilinear-resize 80 × 120 × 512
conv 1 × 1 / 1 80 × 120 × 16
conv 1 × 1 / 1 80 × 120 × 256

fGRU-top-down 1 × 1 / 1 80 × 120 × 256
conv-2-up instance-norm 80 × 120 × 256

bilinear-resize 160 × 240 × 256
conv 1 × 1 / 1 160 × 240 × 64
conv 1 × 1 / 1 160 × 240 × 128

fGRU-top-down 1 × 1 / 1 160 × 240 × 128
Readout instance-norm 160 × 240 × 128

bilinear-resize 320 × 480 × 128
conv 1 × 1 / 1 320 × 480 × 1

Table S1: γ-Net architecture for contour detection in BSDS natural images. Down refers to down-
sampling layers; up refers to up-sampling layers, and readout maps model activities into per-pixel
decisions. Kernels are described as kernel-height× kernel-width / stride size. All convolutional layers
except for the Readout use non-linearities. All non-linearities in this network are linear rectifications.
Model predictions come from the fGRU hidden state for conv-2-down, which are resized to match
the input image resolution and passed to the linear per-pixel readout.

16

Under review as a conference paper at ICLR 2020

Connectomics γ-Net (450K parameters)
Layer Operation Output shape

conv-1-down conv 3 × 3 / 1 384 × 384 × 24
conv 3 × 3 / 1 384 × 384 × 24

fGRU-horizontal 9 × 9 / 1 384 × 384 × 24
maxpool 2 × 2 / 2 192 × 192 × 24

conv-2-down conv 3 × 3 / 1 192 × 192 × 28
fGRU-horizontal 7 × 7 / 1 192 × 192 × 28

maxpool 2 × 2 / 2 96 × 96 × 28
conv-3-down conv 3 × 3 / 1 96 × 96 × 36

fGRU-horizontal 5 × 5 / 1 96 × 96 × 36
maxpool 2 × 2 / 2 48 × 48 × 36

conv-4-down conv 3 × 3 / 1 48 × 48 × 48
fGRU-horizontal 3 × 3 / 1 48 × 48 × 48

maxpool 2 × 2 / 2 24 × 24 × 48
conv-5-down conv 3 × 3 / 1 24 × 24 × 64

fGRU-horizontal 1 × 1 / 1 24 × 24 × 64
conv-4-up transpose-conv 4 × 4 / 2 48 × 48 × 48

conv 3 × 3 / 1 48 × 48 × 48
instance-norm 48 × 48 × 48

fGRU-top-down 1 × 1 / 1 48 × 48 × 48
conv-3-up transpose-conv 4 × 4 / 2 96 × 96 × 36

conv 3 × 3 / 1 96 × 96 × 36
instance-norm 96 × 96 × 36

fGRU-top-down 1 × 1 / 1 96 × 96 × 36
conv-2-up transpose-conv 4 × 4 / 2 192 × 192 × 28

conv 3 × 3 / 1 192 × 192 × 28
instance-norm 192 × 192 × 28

fGRU-top-down 1 × 1 / 1 192 × 192 × 28
conv-1-up transpose-conv 4 × 4 / 2 384 × 384 × 24

conv 3 × 3 / 1 384 × 384 × 24
instance-norm 384 × 384 × 24

fGRU-top-down 1 × 1 / 1 384 × 384 × 24
Readout instance-norm 384 × 384 × 24

conv 5 × 5 / 1 384 × 384 × 24

Table S2: γ-Net architecture for cell membrane detection in SEM images. Down refers to down-
sampling layers; up refers to up-sampling layers, and readout maps model activities into per-pixel
decisions. Kernels are described as kernel-height × kernel-width / stride size. All fGRU non-
linearities are linear rectifications, and all convolutional non-linearities are exponential linear units
(ELU), as in (Lee et al., 2017). All convolutional layers except for the Readout use non-linearities.
Model predictions come from the fGRU hidden state for conv-1-down, which are passed to the linear
readout.

17

Under review as a conference paper at ICLR 2020

While optimizing γ-Nets on synthetic cell image datasets, we found that a small modification of the
fGRU input gate offered a modest improvement in performance. We realized that the input gate in
the fGRU is conceptually similar to recently developed models for feedforward self-attention in deep
neural networks. Specifically, the global-and-local attention modules of (Linsley et al., 2019), in
which a non-linear transformation of a layer’s activity is used to modulate the original activity. Here,
we took inspiration from global-and-local attention, and introduced an additional gate into the fGRU,
resulting in the following modification of the main equations.

Stage 1:

AS = UA ∗H[t− 1] # Compute channel-wise selection

MS = UM ∗H[t− 1] # Compute spatial selection

GS = sigmoid(IN (AS �MS∗)) # Compute suppression gate

CS = IN (WS ∗ (H[t− 1]�GS)) # Compute suppression interactions

S =

[
Z−

[
(αH[t− 1] + µ) CS

]
+

]
+

, # Additive and multiplicative suppression of Z

Stage 2:

GF = sigmoid(IN (UF ∗ S)) # Compute channel-wise recurrent updates

CF = IN (WF ∗ S) # Compute facilitation interactions

H̃ =
[
ν(CF + S) + ω(CF ∗ S)

]
+

Additive and multiplicative facilitation of S

H[t] = (1−GF)�H[t− 1] + GF � H̃ # Update recurrent state

where IN (r; δ, ν) = ν + δ � r− Ê[r]√
V̂ar[r] + η

.

This yields the global input gate activity AS ∈ RX×Y×K and the local input gate activity MS∗ ∈
RX×Y×1, which are computed as filter responses between the previous hidden state H[t− 1] and the
global gate kernel UA ∈ R1×1×K×K and the local gate kernel UM ∈ R3×3×K×1. Note that the latter
filter is learning a mapping into 1 dimension and is therefore first tiled into K dimensions, yielding
MS∗, before elementwise multiplication with AS . All results in the main text use this implementation.

Following the lead of (Linsley et al., 2018a), we incorporated normalizations into the fGRU. Let
r ∈ Rd denote the vector of layer activations that will be normalized. We chose instance normal-
ization (Ulyanov et al., 2016) since it is independent of batch size, which was 1 for γ-Nets in our
experiments. Instance normalization introduces two k-dimensional learned parameters, δ, ν ∈ Rd,
which control the scale and bias of normalized activities, and are are shared across timesteps of
processing. In contrast, means and variances are computed on every timestep, since fGRU activities
are not i.i.d. across timesteps. Elementwise multiplication is denoted by � and η is a regularization
hyperparameter.

Learnable gates, such as those in the fGRU, are helpful for training RNNs. But there are other
heuristics that are also important for optimizing performance. We use several of these with γ-Nets,
such as Chronos initialization of fGRU gate biases (Tallec & Ollivier, 2018) and random orthogonal
initialization of kernels (Vorontsov et al., 2017). We initialized the learnable scale parameter δ of
fGRU normalizations to 0.1, since values near 0 optimize the dynamic range of gradients passing
through its sigmoidal gates (Cooijmans et al., 2017). Similarly, fGRU parameters for learning
additive suppression/facilitation (µ, ν) were initialized to 0, and parameters for learning multiplicative
inhibition/excitation (α, ω) were initialized to 0.1. Finally, when implementing top-down connections,
we incorporated an extra skip connection. The activity of layer ` was added to the fGRU-computed
top-down interactions between layer ` and layer `+ 1. This additional skip connection improved the
stability of training.

18

Under review as a conference paper at ICLR 2020

Name Tissue Imaging Resolution Voxels (X/Y/Z/Volumes)
SNEMI3D Mouse cortex mbSEM 6× 6× 29nm 1024× 1024× 100× 1

Ding Mouse retina SBEM 13.2× 13.2× 26nm 384× 384× 384× 1

Table S3: SEM image volumes used in membrane prediction. SNEMI3D images and annotations
are publicly available (Kasthuri et al., 2015), whereas the Ding dataset is a volume from (Ding et al.,
2016) that we annotated.

B MEMBRANE PREDICTION MODELS

Our reference model for membrane prediction is the 3D U-Net of (Lee et al., 2017). We followed
their published routine for validating our implementation of their U-Net model.

Key to the approach of Lee et al. (2017) is their use of a large set of random data augmentations
applied to SEM image volumes, which simulate common noise and errors in SEM imaging. These
are (i) misalignment between consecutive z-locations in each input image volume. (ii) Partial- or
fully-missing sections of the input image volumes. (iii) Blurring of portions of the image volume.
Augmentations that simulated these types of noise, as well as random flips over the xyz-plane,
rotations by 90◦, brightness and contrast perturbations, were applied to volumes following the
settings of Lee et al. (2017). The model was trained using Adam (Kingma & Ba, 2014) and the
learning rate schedule of Lee et al. (2017), in which the optimizer step-size was halved when
validation loss stopped decreasing (up to four times). Training involved single-SEM volume batches
of 160 × 160 × 18 (X/Y/Z), normalized to [0, 1]. As in Lee et al. (2017), models were trained to
predict nearest-neighbor voxel affinities, as well as 3 other mid- to long-range voxel distances. Only
nearest neighbor affinities were used at test time.

C ORIENTATION-TILT ILLUSION IMAGE DATASET

Models were tested for a tilt illusion by first training on grating images of a single orientation, then
testing on images in which a center grating had the same/different orientation as a surround grating.
Each image in the training dataset consisted of a circular patch of oriented grating on a gray canvas of
size 500 × 500 pixels. To ensure that the decoder successfully decoded orientation information from
model activities, the training dataset incorporated a wide variety of grating stimuli with 4 randomly
sampled image parameters: r, λ, θ, and φ. r denotes the radius of the circle in which oriented grating
has been rendered, and was sampled from a uniform distribution with interval between 80 and 240
pixels; λ specifies the wavelength of the grating pattern and was sampled from a uniform distribution
with interval between 30 and 90 pixels; θ specifies the orientation of the gratings and is uniformly
sampled from all possible orientations; φ denotes the phase offset of the oriented gratings and is
also uniformly sampled from all possible values. The models’ BSDS-trained weights were fixed and
readout layers were trained to decode orientation at the center of each image (procedure described in
the main text).

This setup allowed us to tease apart the effects of the surround on the representation of orientation
in the center by introducing separate surround regions in each test image filled with gratings with
same/different orientations as the center (Fig.S2b). Each test image was generated with one additional
parameter, ∆θ which specified orientation difference of the surround gratings with respect to the
center orientation, θ, and was sampled from a uniform distribution with interval between −90 and
+90 degrees. The radius of the surround grating is denoted by r and was sampled from the same
uniform distribution we used in training dataset. Center gratings are then rendered in a circle of
radius that is one half of the surround gratings.

19

Under review as a conference paper at ICLR 2020

Figure S1: We trained the reference 3D U-Net from (Lee et al., 2017) on the SNEMI3D dataset to
validate the implementation. Segmentations here are derived by watershedding and agglomeration
with GALA (Nunez-Iglesias et al., 2013), resulting in “superhuman” ARAND (evaluated according
to the SNEMI3D standard; lower is better) of 0.04, which is below the reported human-performance
threshold of 0.06 and on par with the published result (see Table 1 in Lee et al. 2017, mean affinity
agglomeration).

20

Under review as a conference paper at ICLR 2020

Figure S2: Examples of tilt-illusion stimuli. (a) For training images, we sample over a range of size
and wavelength to generate single oriented grating patches. (b) Test images are obtained by sampling
a full range of surround orientation, while fixing all other parameters such as size and frequency of
gratings as well as the orientation of the center gratings (at 45 degrees).

Figure S3: Searching over learning rates did not rescue BSDS performance on small BSDS datasets
had no affect on performance. over learning rates did not rescue from overfitting. The left panel depicts
training and validation losses for BSDS on different sized subsets of BSDS500. (b) Performance after
training with three different learning rates on the 5% split. There is little difference in best validation
performance between the three learning rates. (c) The full training and validation loss curves for the
BDCN trained on 5% of BSDS. The model overfits immediately. The model also overfit on the other
dataset sizes, but because there was more data, this happened later in training.

21

Under review as a conference paper at ICLR 2020

Figure S4: Performance of lesioned γ-Nets on BSDS and tests for orientation-tilt illusions. The
first BSDS performance panel depicts performance of “feedforward” lesioned versions of γ-Net .
These are a γ-Net run for 1 timestep, and a γ-Net which had unique/“untied” weights on each of its
8-timesteps of processing (similar to the stacked hourglass network of Newell et al. 2016). The second
BSDS performance panel depicts “recurrent” lesioned versions of γ-Net . These are a version that can
only learn horizontal connections (no top-down fGRUs), and a version that can only learn top-down
connections (all fGRUs used 1×1 spatial kernels). Also shown are tests for the orientation-tilt illusion
in each of these models. The horizontal-only model shows a relatively apparent repulsion regime, but
does not also exhibit the attraction regime that defines the illusion.

Recurrent connections finetuned on:

Undoing an emergent tilt-illusion worsens ɣ-Net 
contour detection

Domain-transfer
Control

Illusion-corrected

Steps of training

G
ra

tin
gs

 L
2

lo
ss

F1

 O
D

S

(a) (b)

1 50 100 150 200 250 300 300
0.0

0.2

0.4

0.6
0.5

0.7

0.8

0.9

0.6

La
be

l
La

be
l

Steps of training
1 80 160 240

Figure S5: Performance of γ-Nets during experiments to correct an orientation-tilt illusion. The
illusion-corrected model was trained to have veridical representations of the central grating in
tilt-illusion stimuli. To control for potential detrimental effects of the training procedure per se,
a control model (“domain-transfer control”) was trained to decode orientations of single-grating
stimuli. (a) Training causes contour-detection performance of both models to drop. However, the
illusion-corrected model performance drops significantly more than the biased model (see main text
for hypothesis testing). The losses for both models converge towards 0 across training, indicating
that both learned to decode central-orientations of their stimuli. (b) Contour detection examples for
biased and bias-corrected models across steps of this training procedure.

22

Under review as a conference paper at ICLR 2020

(b)

Im
ag

e
La

be
l

Di
ffe

re
nc

e

Illusion-corrected
ɣ-Net

Domain-transfer
control ɣ-Net Feature preferred by:

Figure S6: Differences in contour predictions for the illusion-corrected and domain-transfer control
γ-Nets on BSDS500.

23

	Introduction
	Related work
	Methods
	Contour detection experiments
	Object contour detection in natural images
	Cell membrane detection

	Are illusions features or bugs?
	Conclusion
	-Net
	Membrane prediction models
	Orientation-tilt illusion image dataset

