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Abstract

This paper investigates the generalization properties of two-layer neural
networks in high-dimensions, i.e. when the number of samples n, features d,
and neurons h tend to infinity at the same rate. Specifically, we derive the
exact population risk of the unregularized least squares regression problem
with two-layer neural networks when either the first or the second layer is
trained using a gradient flow under different initialization setups. When only
the second layer coefficients are optimized, we recover the double descent
phenomenon: a cusp in the population risk appears at h ≈ n and further
overparameterization decreases the risk. In contrast, when the first layer
weights are optimized, we highlight how different scales initialization lead to
different inductive bias, and show that the resulting risk is independent of
overparameterization. Our theoretical and experimental results suggest that
previously studied model setups that provably give rise to double descent
phenomenon might not translate to two-layer neural networks.

1 Introduction

In modern neural networks, the number of parameters can easily exceed the number of
training samples, yet in many circumstances, there is little sign of overfitting even in the
absence of explicit regularization (Zhang et al., 2016). This phenomenon is usually explained
by the interplay between the model architecture and the optimization method. Existing
works have analyzed the implicit regularization of gradient descent (Gunasekar et al., 2018;
Ji and Telgarsky, 2018), and provided generalization guarantees (Arora et al., 2018; Bartlett
et al., 2017; Dziugaite and Roy, 2017) that align with the empirical observations.

Recently, a series of works highlighted the implicit regularization of interpolators in the
overparameterized regime (Belkin et al., 2018; Spigler et al., 2018; Geiger et al., 2018; Advani
and Saxe, 2017). Specifically, a second decrease in the population risk is observed when
the model is further overparameterized beyond the interpolation limit, i.e. when the model
achieves zero training error. This phenomenon is known as double descent, and can be
precisely quantified for certain linear models (Hastie et al., 2019; Mei and Montanari, 2019;
Belkin et al., 2019; Bartlett et al., 2019). Among the recent works, Hastie et al. (2019) and
Mei and Montanari (2019) explicitly derived the population risk of linear regression and
random features regression models in high dimensions using tools from random matrix.

However, there is still a gap between the practical benefit of overparameterization and the
recently proved double descent, which is rigorously established under models that exhibits
the same structure: the trained model solves a linear inverse problem, and the “cusp” in
the risk arises from the instability of the inverse at the interpolation threshold. Moreover,
given a dataset or fixed n, d, the number of parameters in the linear regression model is also
fixed, i.e. the level of overparameterization cannot be altered. It is therefore unclear if the
trend persists in the optimization of more complex models, for instance in two-layer neural
networks where overparameterization can be controlled simply by adding more neurons.

In this work, we analyze the generalization properties of two-layer neural networks in the
unregularized least squares regression setting and examine the presence/absence of double
descent phenomenon. We consider the asymptotic limit where the number of samples n, input
features d, and neurons h tend to infinity at the same rate, under which overparameterization
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corresponds to increasing the limit of h/n (network "width"). This regime is particularly
interesting because even though n→∞, the empirical risk is not equivalent to the population
risk. In addition, the joint scaling of n, d, h is parallel to the practical choice of model
architectures, where it is common to train a larger network when the number of samples and
features are larger. Following Hastie et al. (2019), we assume Gaussian data and noisy linear
observations, and analytically derive the population risk of the solution of gradient flow on
either the first or the second layer parameters when the flow is initialized close to zero.
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Figure 1: Illustration of the
double descent risk curve in two-
layer linear networks (SNR= 16).
Brighter color indicates larger
γ1 = d/n. Double descent is ob-
served when the second layer co-
efficients are optimized (main fig-
ure), but not when the first layer
weights are optimized (subfigure).

Our findings can be summarized as follows (see Figure 1):

• When only the second layer is optimized, we derive
the risk in its bias-variance decomposition and
demonstrate the double descent risk curve.
• When the first layer is optimized, we compare two
solutions of gradient flow from different scales of
initialization, which we term as vanishing and non-
vanishing initialization, and show in both cases the
risk is independent to overparameterization.
• For the vanishing initialization, we prove that the

risk of the gradient flow solution is asymptotically
close to that of a rank-1 model. For non-vanishing
initialization, we show that the gradient flow solu-
tion is well-approximated by a kernel model and
derive the population risk.

1.1 Related Works

Global Convergence of Two-layer Networks. A plethora of recent works have explored
the global convergence of shallow neural networks. Mei et al. (2018; 2019); Chizat and Bach
(2018a); Rotskoff and Vanden-Eijnden (2018); Sirignano and Spiliopoulos (2018) studied
the mean-field limit where the number of neurons h → ∞ and the second layer scaled by
1/h, and established correspondence between the main-particle limit of gradient descent and
partial differential equations or Wasserstein gradient flow. On the other hand, Jacot et al.
(2018); Du et al. (2018); Arora et al. (2019a); Oymak and Soltanolkotabi (2019); Cao and
Gu (2019); Allen-Zhu et al. (2018b); Song and Yang (2019) considered a different scaling and
showed that gradient descent converges to global minimizer at a linear rate; key to these
results is that in the overparameterization limit, training is asymptotically equivalent to
kernel regression with respect to a specific kernel termed the tangent kernel.

Active vs. Lazy Training. Following Chizat and Bach (2018b), we refer to the two
aforementioned scalings as the active and lazy (kernel) regime. It has been observed that
different regimes lead to contrasting inductive biases. Williams et al. (2019); Woodworth et al.
(2019); Li et al. (2017) showed that for certain two-layer network or overparameterized linear
model, the scale of initialization controls the implicit regularization of gradient descent. In
the student-teacher setup, Tian (2017); Zhong et al. (2017), Ghorbani et al. (2019b;a) showed
that kernel models in high dimensions perform no better than low-degree polynomials on the
input or two-layer neural network. Suzuki (2018); Allen-Zhu and Li (2019); Yehudai and
Shamir (2019) demonstrated that neural network outperforms linear estimators (including
kernel methods) in learning various target functions. The difference between fixed bases and
adaptive bases mirrors the difference in optimizing the first or second layer in our setup.

Generalization of Overparameterized Models. It is often observed that overparame-
terization does not lead to overfitting (Neyshabur et al., 2014). In the lazy regime, general-
ization guarantees can be derived from the distance traveled by the parameters (Neyshabur
et al., 2018; Nagarajan and Kolter, 2019), which may decrease as the model capacity in-
creases (Arora et al., 2019b; Li and Liang, 2018; Allen-Zhu et al., 2018a; Oymak et al., 2019).
Compared to these generalization bounds that require significant overparameterization, our
result relies on stronger data assumptions, but consequently we obtain the exact population
risk. Beyond the kernel regime, Advani and Saxe (2017) and Goldt et al. (2019) analyzed
the generalization dynamics of overparameterized networks in the student-teacher setup.
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Double Descent. The term double descent refers to the phenomenon that the population
risk of an empirical risk minimizer manifests a "cusp" at the interpolation threshold, and
further overparameterization decreases the risk (Belkin et al., 2018; Geiger et al., 2018;
Spigler et al., 2018; Advani and Saxe, 2017). This phenomenon can be rigorously proved for
certain simple models (Hastie et al., 2019; Belkin et al., 2019; Muthukumar et al., 2019).
Our work is inspired by Hastie et al. (2019) which uses random matrix theory to derive the
asymptotic risk for linear and random feature models. Concurrent to our work, Mei and
Montanari (2019) focused on the random features model and derived its population risk
for which double descent occurs both in bias and variance. This aligns with our results on
optimizing only the second layer in Section 4 although we do not derive the bias component
explicitly. Compared to Hastie et al. (2019); Mei and Montanari (2019), the focus of this
work is to highlight the different generalization property of models obtained from optimizing
different layers of the network and from different initialization.

Random Matrix Theory. High-dimensional models, including kernel methods and neural
networks, can be analyzed by studying the properties of random matrices. For instance,
El Karoui et al. (2010); Cheng and Singer (2013); Fan and Montanari (2019) studied
the spectral properties of kernel matrix via Taylor series or Hermite polynomials on the
nonlinearity, which in turn explains the generalization of high-dimensional kernel ridgeless
interpolators (Liang and Rakhlin, 2018). In addition, similar tools have been used to study
two-layer neural networks (Louart et al., 2018; Pennington and Worah, 2017) and related
quantities such as the Fisher matrix (Karakida et al., 2018; Pennington and Worah, 2018).

2 Preliminaries: Two-layer Neural Network

Consider the following bias-free two-layer neural network f : Rd → R with h hidden units

f(x) =

h∑
i=1

aiφ(〈x,wi〉), (1)

where x ∈ Rd is the input, wi ∈ Rd is the weights corresponding to neuron i, ai ∈ R is the
i-th coefficient of the second layer, and φ : R→ R is a Lipschitz continuous activation function
with bounded Gaussian moments, i.e. E[φ(z)k] <∞, ∀k ∈ Z+ for z ∼ N (0, 1). For concise
notation, we write W = [w1, ...wh] ∈ Rd×h for the weight matrix, a = [a1, ...ah] ∈ Rh for the
coefficient vector, X = [x1, ...xn] ∈ Rd×n for the data matrix, y ∈ Rn for the corresponding
vector of labels, and ΦX = φ(X>W ) ∈ Rn×h for the feature matrix at the first layer. We
omit arguments of f when they are clear from the context.

We consider a student-teacher setup, in which data is generated by a teacher model F :
Rd → R with additive noise, and the student model aims to minimize the squared loss:

(xi, εi)
i.i.d.∼ Px × Pε, yi = F (xi) + εi, L(X; f) =

1

2n

n∑
i=1

(yi − f(xi))
2
, (2)

where E[xi] = 0, Cov(xi) = Σ, E[εi] = 0, Var(εi) = σ2. We are interested in the population
risk R(f) = EPx [(F (x)− f(x))2]. Our analysis will be made in the following regime:

n, d, h→∞; d/n→ γ1, h/n→ γ2; γ1, γ2 ∈ (0,∞),

in which overparameterization corresponds to increasing γ2. Thus the characteristics of
double descent considered in this work are: 1) large population risk as γ2 → 1; 2) decrease in
the risk for γ2 > 1. While the empirical risk can be minimized in various ways, we analyze
the gradient flow solution, in which we update either the first layer W or the second layer a:

dW (t) = −∇WL(X; f) dt or da(t) = −∇aL(X; f) dt, (3)

from small initialization. The rest of the paper is organized as follows. In Section 3, we start
with a simple example of two-layer linear network as warm-up. In Section 4, we consider
optimizing the second layer (flow over a) of a non-linear two-layer neural network under
fixed Gaussian first layer, which is a random feature model. Section 5 considers optimizing
the first layer (flow over W ) of such network under fixed Rademacher second layer. We defer
all proofs and details on experiments to appendix.
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3 Warm-up: Linear network

We begin with the simple model with φ(x) = x, i.e. ΦX = X>W . We remark that although
the model is linear, the solution obtained by gradient flow on the two-layer model can be
different than that from directly solving the linear regression problem on input features.

Training the Second Layer. Following Hastie et al. (2019), we fix the first layer pa-
rameters to be randomly drawn from a unit Gaussian and optimize the coefficients a by
minimizing ‖ΦXa− y‖22. Following lemma characterizes the solution of the gradient flow.
Lemma 1 (Least squares solution). Given data matrix X, response vector y and model
f(x) = 〈φ(x>W ),a〉 with fixed first layer coefficients W , gradient flow on the second-layer
coefficients a converges to â = (ΦX)†y, where † stands for the Moore-Penrose inverse.

We make two assumptions on the data and the teacher model to simplify the computation.
(A1) Gaussian Features: xi∼N (0, Id); (A2) Linear Teacher: F (x)=〈x,β〉, ‖β‖=r.

Denote the linear student network as f(x) = 〈x, β̂〉, where β̂ = W â and â is the least-square
solution defined by Lemma 1. We write the population risk in its bias-variance decomposition.

R = Ex∼Px [‖β̂ − β‖2Σ|X,W ] = ‖E[β̂|X,W ]− β‖22︸ ︷︷ ︸
B=bias

+ tr
(

Cov(β̂|X,W )
)

︸ ︷︷ ︸
V=variance

, (4)

where ‖x‖2Σ = x>Σx. We compute the bias and the variance separately to obtain the risk.

Theorem 2. Given (A1)(A2) and let wi
i.i.d.∼ N (0, Id), at n, d, h→∞ we have

R(γ1<1) →


γ1 − γ2

γ1g2
r2 +

γ2

g2
σ2, γ2 < γ1,

γ1

g1
σ2, γ2 > γ1,

R(γ1>1) →


γ1 − γ2

γ1g2
r2 +

γ2

g2
σ2, γ2 < 1,

γ2g1

γ1g2
r2 +

g1 + g2

g1g2
σ2, γ2 > 1.

(5)

where d/n→ γ1, h/n→ γ2, g1 = |γ1 − 1|, and g2 = |γ2 − 1|.

We observe that when d > n (i.e. γ1 > 1), we obtain the double descent risk curve, i.e.,
the population risk achieves its maximum at γ2 → 1 and further overparameterization
(γ2 > 1) reduces both the bias and the variance. Conversely when n > d and h > d
(i.e. γ1 < min(1, γ2)), the population risk becomes constant and equals to that of the
minimum-norm solution β̂min = X†y on the input features.

Training the First Layer. When the first layer of a linear network is optimized via
gradient flow and the second layer is fixed, the following holds for zero-initialization of W .
Proposition 3. Given W (0) = 0 and fixed ainit 6= 0, at any time t > 0 of the gradient
flow on W , W (t) is rank-1. Further, β̂ = Ŵa converges to the least squares solution of
y = X>β̂, the population risk of which is given in (Hastie et al., 2019, Thm. 1 & 3)) as

R(γ1<1) →
γ1

1− γ1
σ2; R(γ1>1) →

γ1 − 1

γ1
r2 +

1

γ1 − 1
σ2. (6)

In this case, increasing γ2 does not influence the population risk. In addition, since the
model is equivalent to the minimum-norm solution on the input β̂min, training the first layer
always results in smaller or equal population risk compared to training the second layer.

In this simple scenario for two-layer linear networks, double descent is observed only when
the second layer is optimized, which reduces the objective to least squares regression on the
intermediate features. On the other hand, training the first layer from zero-initialization
always yields the same solution that is independent to overparameterization. One natural
question to ask is: does this phenomenon generalize to nonlinear two-layer neural networks?
The following sections answer this question in the affirmative under certain conditions.
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Figure 2: Population risk of two-layer neural networks with optimized second layer under (A1)(A2).
Brighter color indicates larger γ1. (a) risk of linear network with r2/σ2 = 16 and γ1 < 1. (γ1 > 1 is
shown in Figure 1) (b) variance of ReLU network. Black line corresponds to γ1 → ∞ predicted by
Corollary 5. (c) bias of ReLU network. Black line corresponds to γ1 → ∞ for linear network, which
is empirically an upper-bound. Note that as γ2 → 1 both the bias and variance becomes unbounded.

4 Nonlinear Model: Optimizing the Second Layer

In this section, we analyze the case when the second layer a is learned under fixed W and a
nonlinear activation function φ. We first observe that by Lemma 1, the gradient flow finds
the solution â = Φ†Xy. We again consider the following bias-variance decomposition.

R = Ex∼Px

[∥∥φ(x>W )â− F (x)
∥∥2

2

∣∣X,W] (7)

= Ex

[∥∥E[φ(x>W )â
∣∣X,W ]− F (x)

∥∥2

2

]
︸ ︷︷ ︸

B=bias

+Ex

[∥∥φ(x>W )â− E[φ(x>W )â]
∥∥2

2

∣∣X,W]︸ ︷︷ ︸
V=variance

.

We highlight that the variance term does not depend on the teacher model.

Theorem 4. Given (A1) and wi
i.i.d.∼ N (0, Id), when n, d, h→∞, we have

V =


σ2 γ2

1− γ2
, γ2 < 1,

σ2 lim
ξ→0
−
[
γ2

∂

∂x
m1(ξ, c1x, c2x)

∣∣∣
x=0

+
∂

∂x
m2(ξ, c1x, c2x)

∣∣∣
x=0

+
γ2 − 1

ξ2

]
γ2 > 1.

in which m1(ξ, ρ, τ), m2(ξ, ρ, τ) is the unique solution in {|m1|, |m2| < 1/=ξ} of

m−1
1 =−ξ−ρ−γ−1

1 γ2τ
2m1−c1m2+

τ2γ−1
1 γ2m

2
1(c2m2−τ)−2τc2m1m2+c22m1m

2
2

m1(c2m2−τ)−γ1γ
−1
2

, (8)

m−1
2 =−ξ−rγ2m1+

γ2c2m
2
1(c2m2− τ)

m1(c2m2−τ)−γ1γ
−1
2

, (9)

where variables ξ, ρ, τ satisfies =ξ > 0 or ξ < 0, ρ > τ > 0, and constants c1, c2 defined as,

c1 = E[φ(z)2]− E[φ(z)]2, c2 = E[zφ(z)]2, (10)

for z ∼ N (0, 1) and =ξ denoting the imaginary part of ξ.
Remark. If φ is absolutely continuous with bounded Var[φ(z)] and φ′, then c1 ≥ c2 and the
equality holds iff φ is linear (Cacoullos et al., 1982).
Corollary 5. If we let γ1 →∞, the variance is equal to the lowest value of the variance of
the linear model V(γ1→∞) = σ2min{γ2, 1}/|1− γ2|.

The proof of Theorem 4 follows from similar techniques used in Cheng and Singer (2013);
Hastie et al. (2019); but with two modifications: (i) we handle unnormalized and uncentered
activation functions; (ii) we compute the variance of the entire model rather than that of the
second layer coefficients. The above theorem holds irrespective of the underlying teacher
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model, and is consistent with the double descent risk curve as it suggests that for all γ1,
variance of the random feature model peaks at h = n then drops as γ2 further increases. Note
that as γ1 →∞, a linear and nonlinear network would have the same asymptotic variance.

Since double descent is observed in the variance term, we do not derive the bias for all γ1, γ2.
Instead, we show that for linear teacher, the bias also becomes unbounded as γ2 → 1.

Proposition 6. Given (A1)(A2) and wi
i.i.d.∼ N (0, Id), then B → ∞ as γ2 → 1. Further-

more, B is finite when γ2 > 1.

Thus we have shown that a “cusp” in the population risk appears at h = n, which aligns
with the double descent phenomenon. We empirically found that as γ1 →∞ the nonlinear
model also shares the same asymptotic bias with the linear model, as shown in Figure 2. We
note that (Mei and Montanari, 2019, Thm. 1 & 3) analytically solved the risk of random
feature model for a larger class of target functions than ours and confirmed that double
descent appears in both the bias and the variance term.

5 Nonlinear Model: Optimizing the First Layer

Having observed the double descent phenomenon in optimizing the second layer, in the
sequel we consider a two-layer neural network with fixed second layer coefficients satisfying
ai ∼ Unif{−1/

√
h, 1
√
h}, and the first layer W is trained using the gradient flow given as

∂W (t)

∂t
= −∂L(X;W )

∂W
=

1

n

n∑
i=1

[
yi − a>φ(W>xi)

]
xi[φ

′(x>i W ) ◦ a], (11)

which potentially has different stationary solutions with no explicit form, depending on
the initialization. We denote the solution of this flow at time t started from designated
initialization by W init(t), its stationary solution by Ŵ , and the corresponding network by f̂ .
Remark. Although we let n→∞, this dynamics does not corresponds to the population
gradient flow considered in Tian (2017). For instance when x ∼ N (0, I/d), the spectrum of
the data covariance is Marčenko–Pastur, whereas the population covariance is identity.

We consider two different initialization settings:
Vanishing: wVan

i (0) ∼ N (0, I/dh1+ε); Non-vanishing: wNV
i (0) ∼ N (0, I/d).

Note that neither of the two initializations correspond to the “mean-field” regime (e.g. an-
alyzed in Mei et al. (2018)) due to the 1/

√
h second layer. In other words, as h increases,

the distance traveled by each parameter decreases under both initializations. The difference,
however, is the “relative” amount the parameters traveled compared to their initialized mag-
nitude, which leads to solutions with contrasting properties. As we will see, under (A1)(A2)
and vanishing initialization we have ‖W (0)−Ŵ‖F / ‖W (0)‖F � 1, i.e. the contribution of
initialization vanishes at the end of training, whereas for non-vanishing initialization the
inequality is in the opposite direction, i.e. Ŵ resembles the initialization W (0).

5.1 Vanishing Initialization

As d, h→∞, the vanishing initialization becomes arbitrarily close to zero-initialization. We
thus expect the gradient flow under vanishing initialization to "resemble" that of starting
from exactly zero if the flow converges sufficiently fast and the gradient being Lipschitz. The
Lipschitz condition (Lemma 13) can be established under the following assumption.

(A3) Smooth Activation: φ ∈ C2; ∇φ is Lipschitz.

We thus have the following characterization of the population risk:
Theorem 7. Given (A1-3) and φ′(0) 6= 0. Let T = log log h and define f̂ = fvan(T ), then
as n, d, h→∞ we have

R(f̂)→ max

{
0,
γ1 − 1

γ1

}
r2 +

min{γ1, 1}
|1− γ1|

σ2. (12)

6



Under review as a conference paper at ICLR 2020

The expression above is the same as the risk of the least squares solution on input β̂ = X†y;
therefore the risk is independent to overparameterization (increasing γ2). The intuition is
that when the weights are initialized sufficiently small and travel infinitesimally, then the
activation can be linearized around 0 and thus the model is equivalent to a two-layer linear
network. Note that this result does not apply to the non-smooth ReLU activation. Instead,
in Appendix D we heuristically show that under the additional assumption that the data is
symmetric, the risk of ReLU network can also be derived and is independent to γ2.

5.2 Non-vanishing Initialization

When initialization is sufficiently large, the amount each parameter travels to minimize the
empirical risk becomes asymptotically negligible compared to initialization. In this case we
establish under (A1-3) that (11) is asymptotically equivalent to the kernel gradient flow
on the tangent kernel : k(x,y) = 〈∇W initf(x),∇W initf(y)〉. The solution to the linearized
dynamics as the following closed-form:

vec(W ∗) ≈ vec(W init) + ∆; ∆ = J†(y − f init(X)); J[i,j] = ∇vec(W init)jf
init(xi), (13)

where J ∈ Rn×(d×h) is the Jacobian matrix w.r.t. to the model parameters. One may
naturally expect the double descent phenomenon to appear in this kernel solution, as ∆
exhibits the form of a least squares solution. However, we show that this is not the case
under the same assumptions in Section 4; in fact, the risk is also independent to γ2.

One obstacle in computing the risk of the kernel model is the potentially non-zero f init(X).
We thus adopt the "doubling-trick" from (Chizat and Bach, 2018b) to ensure f init(·) = 0, i.e.
we assume the following on the initialization:

(A3) Symmetric Initialization: ∀i ∈ [1, h],∃!j ∈ [1, h] s.t. aiwinit
i = −ajwinit

j .

Theorem 8. Given (A1-2) and let n, d, h→∞,

R(f̂)→

(
γ1 − 1

2γ1
+

γ1(γ1 + γ1m+m− 2) + 1

2γ1

√
γ1(γ1 +m(γ1(m+ 2) + 2)− 2) + 1

)
r2

+

(
γ1 + γ1m+ 1

4
√
γ1(γ1 +m(γ1(m+ 2) + 2)− 2) + 1

− 1

4

)
σ2, (14)

where m = b21/b
2
0, b20 = EN (0,1)[φ

′(x)]2, and b21 = EN (0,1)[φ
′(x)2]− b20.

Note that the population risk is again independent to γ2, and thus double descent does not
appear for this initialization. The reason that the risk does not become unbounded is that in
the asymptotic limit the pseudo-inverse (JJ>)† is stable due to the nonlinearity and dh� n.
For non-symmetric (i.i.d.) initialization we also observe that the risk is independent to γ2,
but the bias is no longer upper-bounded by the null risk, as shown in Figure 7.

5.3 Comparing the Two Initializations.

Figure 3 demonstrates the agreement between theoretical prediction and experimental results.
Observe that in both cases the risk is independent to overparameterization (γ2), yet the two
models have contrasting properties:

Corollary 9. For any γ1 ∈ (0,∞) and activation φ, B(f̂Van) ≤ B(f̂NV) ≤ 1. On the other
hand for all m > 0, V (f̂NV) ∈ O(1), whereas V (f̂Van) can be arbitrarily large as γ1 → 1.
Remark. m ≥ 0 for all smooth activations φ, and the equality holds if φ is linear.

Intuitively, small initialization enables the model "evolve" more during optimization and
align with the data or the target function. This potentially results in a lower bias, at the
expense of overfitting more to the noise (high variance). In contrast, with sufficiently large
initialization the final model becomes close to the initialized model, and thus we may expect
it to be less "aligned" to the teacher (high bias) but is more stable (lower variance).
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Figure 3: Bias and variance of two-layer SoftPlus network with optimized first layer under Gaussian
data and linear teacher. Individual dotted lines correspond to different γ2 (from 0.2 to 2) which
is independent to the risk. The bias and variance for vanishing initialization and non-vanishing
initialization is well-aligned with Theorem 7 and Theorem 8, respectively.

In illustrate the difference in inductive bias, we plot the trajectory of neurons in Appendix A
Figure 5. Observe that for vanishing initialization the neurons stay close to one another
throughout the trajectory, which results in a low-rank weight matrix, as predicted by
Theorem 7. In contrast, for non-vanishing initialization the neurons stay close to initialization
(therefore full-rank), which validates the kernel approximation. Last but not least, although
our theorems are for linear teacher model, we empirically observe that when the target
function is also a two-layer network, the population risk follows the same trend, i.e. double
descent occurs when only the second layer is optimized, as shown in Figure 6.

6 Discussion and Future Works

We derived the exact population risk of two-layer neural networks in learning a linear target
function over Gaussian data with additive noise in high dimensions (n, d, h tend to infinity
at the same rate), and showed that optimizing the first or the second layer via gradient flow
results solutions with contrasting properties. Specifically, the double descent phenomenon
is present when the second layer coefficients are optimized, but not when the first layer
weights are optimized under certain initializations. In addition, we highlight that the scale
of initialization also leads to different inductive bias when optimizing the first layer.

Note that our analysis only applies to the unregularized least squares objective, and it has
been shown that explicit regularization (such as L2) provably stabilizes the singularity at
γ2 → 1 Mei and Montanari (2019); Hastie et al. (2019). We further remark that our findings
do not directly contradict the experimental double descent phenomenon, nor the practical
benefit of overparameterization. In particular, the interpolation limit could occur at γ2 → 0
which is beyond the regime we consider. For instance, in two-layer neural networks trained
on MNIST, the "cusp" was empirically found at h = O(n/d) Belkin et al. (2018). Thus what
we conclude is that in our studied asymptotic limit, the mechanism that provably gives rise
to double descent from previous works Hastie et al. (2019); Belkin et al. (2019) might not
translate to optimizing two-layer neural networks.

To simplify the computation, we rely on a set of assumptions similar to those appeared in
Hastie et al. (2019), some of which we believe can be relaxed in future work. For instance,
the Gaussian data assumption can be generalized to the standard model with given mean
and covariance, and the teacher model may be relaxed to a more general class of functions.
Importantly, the scales of initialization studied in Section 5 are by no means exhaustive, and
it remains a challenging problem to characterize the stationary points of the mean-field PDE
(1/h scaling) under empirical risk. Another interesting direction would be to understand the
inductive bias of discretization (stepsize of gradient descent).
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A Additional Figures and Plots
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Figure 4: Population risk of two-layer linear network with fixed random 1st layer with
SNR=25/16 under Gaussian input and linear teacher. Brighter color indicates larger γ1.
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Figure 5: (a)(b) trajectory of neurons from initialization (dark blue) to optimum (orange) on the
first two dimensions (two-layer SoftPlus student and linear teacher; SNR= 1/4). For vanishing
initialization the neurons stay close to one another throughout the trajectory, whereas for non-
vanishing initialization the neurons stay close to initialization. (c) singular value distribution (scaled
by

√
h) of W ∗ under Gaussian data and linear teacher. Vanishing initialization results in a skewed

spectrum, whereas non-vanishing initialization leads to much slower singular value decay, and the
distribution is identical to that of the linearized model, which agrees with the NTK approximation.
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Figure 6: Population risk (scaled by 1/d) of two-layer ReLU network trained to fit a two-layer
ReLU teacher model under Gaussian input and γ2 = 1. Brighter color corresponds to larger γ1.
Similar to the linear teacher case, double descent is observed when the second layer is optimized (a)
but not when the first layer is optimized (b).
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(a) SoftPlus activation.
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Figure 7: Population risk of (a)SoftPlus and (b) sigmoid two-layer network with optimized first
layer under Gaussian data and linear teacher. Individual dotted lines correspond to different γ2
(from 0.2 to 2). While the population risk under symmetric initialization (A3) is given by Theorem 8,
the risk under i.i.d. initialization is also independent to overparameterization (γ2), but is not always
upper-bounded by the null risk r2.

Summary of the Presence / Absence of Double Descent

Singularity in 2nd Layer Trained (RF) Vanishing Init. Non-vanishing Init.
Bias γ1: No; γ2: Yes γ1: No; γ2: No γ1: No; γ2: No

Variance γ1: No; γ2: Yes γ1: Yes; γ2: No γ1: No; γ2: No
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B Background

B.1 Rotational Invariance

The rotational invariance of Gaussian distribution is crucial in our analysis throughout this
paper. The intuition is that for a random Gaussian matrix X and any fixed unitary matrix
U , the distribution of X and UX is the same.
Lemma 10 (Rotational Invariance). Denote A(X) ∈ Rd×d a matrix function of X ∈ Rd×n.
Then if U , A(UX) = UA(X)UT for all unitary U, then

EX [βTA(X)β] =
1

d
βTβEX [tr (A(X))]. (15)

for any fixed nonzero β ∈ Rd and random matrix X with each entry i.i.d. Xij ∼ N (0, σ2).

Proof. Choose a set of Unitary matrices {Ui}di=1 such that Uiβ = ‖β‖ ei, where ei is the
i-th canonical vector in Rd. Then since UiX ∼ X, we have

E[βTA(X)β] =
1

d

d∑
i=1

E[βTA(UiX)β] =
‖β‖2

d

d∑
i=1

eTi E[A(X)]ei =
βTβ

d
E[tr (A(X))]. (16)

�

Notice that Equation (15) also holds for matrix function A(X) that satisfies A(XU) =
UA(X)UT , and moreover, such rotational invariance can be extended to matrix function
A that takes multiple matrices as input. For example, if for any unitary U , f(UX,UW ) =
Uf(X,W )UT (with valid dimension of U,W,X), then Equation 15 still holds in the following
form:

E[βTA(X,W )β] =
1

d
βTβE[tr (A(X,W ))]. (17)

B.2 Marčenko–Pastur Law

For a real symmetric random matrix A ∈ Rp×p, define its empirical spectral density as

µA(dλ) =
1

p

p∑
i=1

δλi(Ap)(dλ),

where δa(x) = δ(x − a) is the Dirac delta function. When A is Wishart matrix, i.e. A =
X>X/n and X ∈ Rn×p is random Gaussian matrix with each entry i.i.d. Xij ∼ N (0, 1).
Marčenko and Pastur (1967) showed that as n, p→∞ and p/n = γ ∈ (0,∞), the empirical
spectral density µWp

(dλ) converges to a limiting density µMP(γ)(λ) almost surely:

µMP(γ)(dλ) = [1− γ−1]+δ0(dλ) +
1

2πγλ

√
((1 +

√
γ)2 − λ)(λ− (1−√γ)2)dλ. (18)

We say µMP(γ) is the density of the Marčenko–Pastur distribution with support S = [(1−√
γ)2, (1 +

√
γ)2] (for γ ≥ 1) or S = {0} ∪ [(1−√γ)2, (1 +

√
γ)2] (for 0 < γ < 1). Note that

this implies that the smallest non-zero eigenvalue of A is bounded away from 0 asymptotically.

The explicit form of MP distribution allows us to investigate the asymptotic properties
of random matrices. Generally speaking, due to the almost sure convergence of empirical
spectrum density and the Pormanteau theorem, one can translate any bounded continuous
function on the empirical spectral density to one on the MP distribution, i.e. almost surely∫

fdµW (dλ)→
∫
fdµMP (dλ). (19)

When γ < 1, we have the following trace concentration on the inverse Wishart matrix:

tr

(
1

p
W−1
p

)
=

1

p

p∑
i=1

1

λi(Wp)
=

∫
S

1

λ
µWp

(dλ)→
∫
S

1

λ
µMP(γ)(dλ) =

1

1− γ
. (20)

We remark that instability of the trace of the invert Wishart matrix as γ → 1 plays an
important role in the double descent phenomenon.
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C Proof of Main Results

C.1 Proof of Lemma 1

Given features X ∈ Rd×n, labels y ∈ Rd and model parameters θ, the gradient flow of θ on
the squared loss

∥∥y −X>θ∥∥2

2
can be written as

∂θ(t)

∂t
=

1

n
X(y −X>θ(t)). (21)

Thus with initialization θ0, the solution of this ODE at time t can be written in explicit form

θ(t) = exp(− t
n
XX>)θ0 + (XX>)†(I − exp(− t

n
XX>))Xy. (22)

Taking t→∞ yields the desired result. �

C.2 Proof of Theorem 2

We compute the bias and variance for different cases of γ1, γ2. We first discuss the case
where the random feature ΦX is not full rank (Case I). Otherwise when ΦX is full rank, we
discuss whether it is full column rank (Case II) or full row rank (Case III).

Case I: W>X is not full rank, i.e. γ1 < 1, γ2 > γ1. In this case rank (ΦX) = d <
min(n, h), and thus by taking the Moore-Penrose inverse we obtain

β̂ = W (X>W )†y = (XX>)−1Xy. (23)

It is clear that the mean and variance is identical to the underparameterized regime in Hastie
et al. (2019), i.e. when n, d, h→∞,

B → 0, (24)

V → γ1

1− γ1
σ2. (25)

Case II: W>X has full column rank, i.e. γ2 < 1, γ1 > γ2. Since rank (ΦX) = h, the
minimum-norm solution is

β̂ = β̂ = W (W>XX>W )−1W>Xy. (26)

Denote W = UΣV > the singular value decomposition of W . We perform the following block
decomposition on X,Σ:

Σ =

[
Σ0

0

]
, X =

[
X0

X1

]
, (27)

where Σ0 ∈ Rh×h, X0 ∈ Rh×n, X1 ∈ R(d−h)×n. Note that X0, X1 are independent. By a
concentration of measure argument (e.g. Tao (2012); Hastie et al. (2019)) one can show that
the quantity below tightly concentrates at its expectation. For the variance we have

V = tr
(
W
(
W>XX>W

)−1
W>X>σ2XW

(
(W>XX>W

)−1
W>

)
= σ2tr

(
W>W

(
W>XX>W

)−1
)

= σ2tr
(

Σ>Σ
(
Σ>U>XX>UΣ

)−1
)

∼ σ2tr
(

Σ>Σ
(
Σ>XX>Σ

)−1
)

= σ2tr
(
(X0X

>
0 )−1

)
,

→ σ2 γ2

1− γ2
, (28)
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where the last equality follows from Appendix B.2. Similarly for the bias term we have

B =
∥∥∥W (W>XX>W )−1W>XX>β − β

∥∥∥2

2

= β>
(
W (W>XX>W )−1W>XX> − Id

)>(
W (W>XX>W )−1W>XX> − Id

)
β

(i)
=
r2

d
tr

((
W (W>XX>W )−1W>XX> − Id

)>(
W (W>XX>W )−1W>XX> − Id

))
=
r2

d
tr

((
UΣV >(V Σ>U>XX>UΣV >)−1V Σ>U>XX> − Id

)>(
· · ·
))

=
r2

d
tr

((
UΣ(Σ>XX>Σ)−1Σ>XX>U> − UU>

)>(
· · ·
))

=
r2

d
tr

((
Σ(Σ>XX>Σ)−1Σ>XX> − Id

)>(
· · ·
))

, (29)

where symmetric arguments are omitted as (·), and (i) follows from the rotational invariance
argument used in Hastie et al. (2019) and introduced in Lemma 10.

By block decomposition (27),

Σ
(
Σ>XX>Σ

)−1
Σ>XX> − Id =

[
0 (X0X

>
0 )−1X0X

>
1

0 −Id−h

]
. (30)

Therefore

B =
r2

d
tr

((
Σ(Σ>XX>Σ)−1Σ>XX> − Id

)>(
Σ(Σ>XX>Σ)−1Σ>XX> − Id

))
=
r2

d

(
tr
(
(X0X

>
0 )−1X0X

>
1 X1X

>
0 (X0X

>
0 )−1

)
+ (d− h)

)
→ r2

d

(
(d− h)h

n− h− 1
+ d− h

)
→ γ1 − γ2

γ1(1− γ2)
r2. (31)

Thus we have obtained that as n, d, h→∞

B → γ1 − γ2

γ1(1− γ2)
r2. (32)

Case III: W>X has full row rank, i.e. γ1 > 1, γ2 > 1. Similarly, rank (ΦX) = n and
we have the following solution:

β̂ = WW>X(X>WW>X)−1y, (33)

Simplifying the variance:

V = tr
(
WW>X

(
X>WW>X

)−1
σ2
(
X>WW>X

)−1
X>WW>

)
= σ2tr

(
WW>UΣV >

(
V Σ>U>WW>UΣV >

)−2
V Σ>U>WW>

)
∼ σ2tr

(
WW>Σ

(
Σ>WW>Σ

)−2
Σ>WW>

)
. (34)

where the SVD decomposition of X = UΣV > and the rotational invariance argument is used
here. Using the same block decomposition trick:

Σ =

[
Σ0

0

]
, W =

[
W0

W1

]
, (35)
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where Σ0 ∈ Rn×n,W0 ∈ Rn×h,W1 ∈ R(d−n)×h, and W0,W1 independent.

V = σ2tr
(
WW>Σ(Σ>WW>Σ)−2Σ>WW>

)
= σ2tr

([
W0W

>
0 Σ0(Σ>0 W0W

>
0 Σ0)−2Σ0W0W

>
0 · · ·

· · · W1W
>
0 Σ0(Σ>0 W0W

>
0 Σ0)−2Σ0W0W

>
1

])
= σ2

(
tr
(
Σ−T0 Σ−1

0

)
+ tr

(
W1W

>
0

(
W0W

>
0

)−1
Σ−T0 Σ−1

0

(
W0W

>
0

)−1
W0W

>
1

))
= σ2tr

((
X>X

)−1
)

+ σ2tr
(
W>1 W1W

>
0

(
W0W

>
0

)−1 (
Σ>0 Σ0

)−1 (
W0W

>
0

)−1
W0

)
. (36)

Hence

V → σ2 1

γ1 − 1
+ σ2(d− n)EW,XV tr

((
W0W

>
0

)−1 (
Σ>0 Σ0

)−1
)

→ σ2

(
1

γ1 − 1
+

1

γ2 − 1

)
. (37)

We omit the derivation of bias, which can be done in similar fashion. Combining the three
cases yields theorem 2. �

C.3 Proof of Proposition 3

Given the MSE loss, one can easily derive the dynamics of W with fixed second layer a w.r.t
the loss:

∂W (t)

∂t
= −X

n
(y −X>W (t)a)a>. (38)

Note that the update of W can be written as a linear combination of a. Since W (0) = 0, we
can write W (t) = ŵ(t)a> for some ŵ. The corresponding flow on ŵ is

∂ŵ(t)

∂t
= −X

n
(y −X>ŵ(t) ‖a‖22), (39)

which gives the following solution

ŵ∗ =
1

‖a‖22
X†y ⇒ β̂ = W ∗a = X†y. (40)

Thus the gradient flow solution on training the first layer is the same as the minimum-norm
solution on the input features. �

C.4 Proof of Theorem 4

Following the bias-variance decomposition (7),

V = Ex,ε

[
‖a>φ(W>x)− Eεa>φ(W>x)‖22

]
= σ2Ex

[∥∥∥[φ(W>X)
]†
φ(W>x)

∥∥∥2

2

]
= σ2Ex

[
φ(x>W )

[
φ(X>W )

]†[
φ(W>X)

]†
φ(W>x)

]
= σ2Ex

[
tr
([
φ(X>W )

]†[
φ(W>X)

]†
φ(W>x)φ(x>W )

) ]
= σ2tr

([
φ(X>W )

]†[
φ(W>X)

]†Ex

[
φ(W>x)φ(W>x)>

])
= σ2tr

([
φ(X>W )

]†[
φ(W>X)

]†
KW

)
, (41)

where we define the expected non-linear Gram matrix KW ∈ Rh×h as

KW = Ex

[
φ(W>x)φ(W>x)>

]
. (42)
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and for each entry of KW

KW [i,j] = Ex

[
φ(w>i x)φ(w>j x)

]
. (43)

Random matrix in the form of covariance matrix of nonlinear features has been the object
studied in many works Hastie et al. (2019); Mei and Montanari (2019); Liao and Couillet
(2018); Louart et al. (2018); Pennington and Worah (2017). We note that our setup for the
variance term is similar to that for nonlinear features in Hastie et al. (2019) with modifications
mentioned below.

Note that in contrast to the linear network derivation in Section C.2, the Gram matrix of a
nonlinear activation function is almost surely full-rank, which is specified in the following
lemma from Pennington and Worah (2017)
Lemma 11. The least singular value of φ(W>X) is positively bounded from a nonzero
constant.

Therefore we only discuss whether Φ is full column rank (Case I) or full row rank (Case II).

Case 1. h < n. In this case (41) simplifies into

V = σ2tr

((
φ(W>X)φ(X>W )

)−1

KW

)
= lim
ξ→0−

σ2tr
((

ΦΦ> − ξI
)−1

KW

)
= lim
ξ→0−

Vξ. (44)

where the continuity of Vξ at ξ = 0− is guaranteed by Lemma 11. From Theorem 1 in Louart
et al. (2018) it follows that as n, d, h→∞

n

h

tr
(
h
(
ΦΦ> − ξI

)−1
KW

)
1 + h−1tr

(
h
(
ΦΦ> − ξI

)−1
KW

) − ξtr(h(ΦΦ> − ξI
)−1
)
→ h. (45)

Or equivalently,
nVξ/σ

2

h(1 + Vξ/σ2)
→ 1 + ξC (46)

where C = tr
(
(ΦΦ> − ξI)−1

)
is bounded also due to Lemma 11. By taking the limit ξ → 0,

V = σ2 γ2

1− γ2
. (47)

Case 2. h > n. Techniques used in the current proof are largely borrowed from Cheng
and Singer (2013); Hastie et al. (2019), but with one modification: our non-linearity function
does not have zero-expectation under Gaussian distribution, i.e. Ex∼N (0,1)[φ(x)] = 0, which
complicates the analysis since the off-diagonal entries of the activation Gram matrix is no
longer zero-centered. For simplicity we mainly adhere to the notations in Hastie et al. (2019)
and rescale wi ∼ N (0d, Id/d).

We briefly summarizes the procedure for deriving V . Instead of calculating the variance
directly, we analyze a modified quantity Vξ and then take ξ → 0, which can be connected to
the trace of the resolvent of matrix Ã defined in (59); this translates the calculation of Vξ
into the calculation of the Stieltjes transform of Ã (60), (65), (67).

C.5 Deriving variance V for h > n

Step 1. An equivalent expression for variance using Stieltjes transform For
notational simplicity we omit the magnitude of noise σ:

V = tr

(
φ(W>X)

(
φ(X>W )φ(W>X)

)−2

φ(X>W )KW

)
. (48)
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and due to the same continuity argument as in Case 1 we have

V = tr

(
φ(W>X)

(
φ(X>W )φ(W>X)

)−2

φ(X>W )KW

)
= lim
ξ→0

1

n

[
tr
(
S(S>S − ξIn)−2S>KW

) ]
= lim
ξ→0

Vξ. (49)

where S = φ(W>X)/
√
n, ξ ∈ C and =ξ > 0 or ξ < 0.

We decompose the normalized feature matrix S = φ(W>X)/
√
n as

S = UΣV >, (50)

where Σ = diagh×n(φ1, · · · , φn) ∈ Rh×n is a tall diagonal matrix, and U = [u1, · · · ,uh] ∈
Rh×h is the set of orthogonal eigenvectors of SS> = φ(W>X)φ(X>W )/n, and V ∈ Rn×n is
the set of orthogonal eigenvectors of S>S = φ(X>W )φ(W>X)/n. Now the variance can be
written as

Vξ =
1

n
tr
(
UΣ(Σ>Σ + ξIn)−2ΣU>KW

)
. (51)

We define K̃W as

K̃W = rIh + s1h1
>
h + tQ, (52)

where Q ∈ Rh×h with Qij = w>i wj for off-diagonal terms and 0 for diagonal terms, and
r = E[φ(x)2]−E[φ(x)]2, s = E[φ(x)]2, t = E[xϕ(x)]2 are constants of the non-linear activation
φ. By the same argument as in Lemma 13 of Hastie et al. (2019) one can show that when
n, d, h→∞

Vξ =
1

n

[
tr
(
UΣ(Σ>Σ + ξIn)−2ΣU>KW

) ]
→ 1

n

[
tr
(
UΣ(Σ>Σ + ξIn)−2ΣU>K̃W

) ]
. (53)

Writing the trace explicitly (denote eigenvalues λi = φ2
i , and φn+1 = · · · = φh = 0), we have

Vξ →
1

n
tr
(
UΣ(Σ>Σ + ξIn)−2ΣU>K̃W

)
= γ2

1

h

h∑
i=1

λi
(λi + ξ)2

u>i K̃Wui. (54)

Since the positive support of spectrum λ is lower bounded by a constant by Lemma 11 and
the density at 0 is 1− n/h = 1− γ−1

2 , we have

Vξ → γ2
1

h
lim

h,d,n→∞

h∑
i=1

λi
(λi + ξ)2

u>i K̃Wui (55)

= γ2

∫
λ

(λ+ ξ)2
µ∞(dλ) = γ2

∫
λ>ρ

λ

(λ+ ξ)2
µ+
∞(dλ), (56)

where we define µn(x) and its positive part as

µn(x) =
1

h

h∑
i=1

δλi(x)u>i K̃Wui, µ+
n (x) =

1

h

n∑
i=1

δλi(x)u>i K̃Wui. (57)

Hence we have

V = lim
ξ→0

Vξ = lim
ξ→0

γ2

∫
λ>ρ

λ

(λ+ ξ)2
µ+
∞(dλ) = γ2

∫
λ>ρ

1

λ
µ+
∞(dλ). (58)
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We define the following matrix Ãn(ρ, ς, τ) ∈ RN×N where N = n+ h:

Ãn(ρ, ς, τ) =

[
ρIh + ς1h1

>
h + τQ S

S> 0n

]
. (59)

And denote the Stieltjes transform of Ãn as

m̃n(ξ, ρ, ς, τ) =
1

n
tr
(

(Ãn(ρ, ς, τ)− ξIN )−1
)
. (60)

Then following the definition of K̃W one can show that

m̃n(ξ, rx, sx, tx) =
1

n
tr

([
K̃Wx− ξIh S

S> −In

]−1
)
, (61)

and matrix derivative gives

− ∂

∂x
m̃n(ξ, rx, sx, tx)

∣∣∣
x=0

=
1

n
tr

([
−ξIh S
S> −In

]−1 [
K̃W 0

0 0

] [
−ξIh S
S> −In

]−1
)

=
1

n
tr

([
−ξIh S
S> −In

]−2 [
K̃W 0

0 0

])

=
1

n
tr

([
ξ2Ih + SS> 0

0 In + S>S

]−1 [
K̃W 0

0 0

])

=
1

n
tr
(

(ξ2Ih + SS>)−1K̃W

)
=

1

n
tr
(
U(ΣΣ> + ξ2Ih)−1U>K̃W

)
=

1

n

h∑
i=1

1

λ+ ξ2
u>i K̃Wui. (62)

Denote the limit
m̃(ξ, ρ, ς, τ) = lim

n,h,d→∞
m̃n(ξ, ρ, ς, τ) (63)

we have

− ∂

∂x
m̃(ξ, rx, sx, tx)

∣∣∣
x=0

= lim
h,d,n→∞

1

n

h∑
i=1

1

λ+ ξ2
u>i K̃Wui

= γ2

∫
λ≥0

1

λ+ ξ2
µ∞(dλ)

= γ2

∫
λ=0

1

λ+ ξ2
(1− γ−1

2 )δ0(λ)dλ+ γ2

∫
λ>ρ

1

λ+ ξ2
µ+
∞(dλ)

=
γ2 − 1

ξ2
+ γ2

∫
λ>ρ

1

λ+ ξ2
µ+
∞(dλ). (64)

For simplicity we define the following function on ξ:

q(ξ) = − ∂

∂x
m̃(ξ, rx, sx, tx)

∣∣∣
x=0

, (65)

and denote

q+(ξ) = q(ξ)− γ2 − 1

ξ2
= γ2

∫
λ>ρ

1

λ+ ξ2
µ+
∞(dλ). (66)

Comparing (58) and (66) yields the following equivalence:
V = lim

ξ→0
q+(ξ). (67)
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Step 2. Calculating q(ξ) and mn(ξ, ρ, ς, τ) This subsection aims to calculate m̃(ξ, ρ, ς, τ)
and q(ξ) = −m̃′x(ξ, rx, sx, tx)|x=0, from which the variance can be computed from
(60)(65)(67).

We define a modified matrix An, which corresponds to subtracting the off-diagonal entries of
the upper-left block of Ãn:

An(ρ, τ) =

[
ρIh + τQ S

S> 0n

]
, (68)

where S = S̃ − a0Ip×n, i.e. Sik = φ(w>i xk) − a0 = ϕ(w>i xk), a0 = E[φ(x)]. The Stieltjes
transform of An given by

mn(ξ, ρ, τ) =
1

n
tr
(
(An(ρ, τ)− ξIN )−1

)
. (69)

The following Lemma shows that m̃n and mn have the same limit:
Lemma 12. when n→∞ and for =ξ > 0 or ξ < 0,

mn(ξ, ρ, τ)→ m̃n(ξ, ρ, ς, τ). (70)

Proof. By definition

Ãn(ρ, ς, τ)−An(ρ, τ) =

[
1h 0h
0n 1n

] [
ξ a0

a0 0

] [
1h 0h
0n 1n

]>
(71)

which is a rank-2 matrix. By theorem A.43 from Bai and Silverstein (2010), which character-
izes the effect of finite-rank perturbation on the e.s.d. of random matrices:

sup
x
|F Ãn(x)− FAn(x)| ≤ O(

1

n
), (72)

where FM is the empirical spectral distribution of M ∈ Rn×n, i.e. FM (x) =
1

n

n∑
i=1

Iλi(M)<x.

The claim follows from the Stieltjes continuity theorem in Section 2.4 in Tao (2012). �

To calculate the Stieltjes transformmn of matrix An, we take advantage of the block structure
and define the following terms:

m1,n(ξ, ρ, τ) =
1

p
tr
(

(An(ρ, τ)− ξIN )−1
[1..p,1..p]

)
, (73)

m2,n(ξ, ρ, τ) =
1

n
tr
(

(An(ρ, τ)− ξIN )−1
[p+1..p+n,p+1..p+n]

)
. (74)

It’s easy to see that

mn(ξ, ρ, τ) = γ2m1,n(ξ, ρ, τ) +m2,n(ξ, ρ, τ). (75)

In the following equations we omit the subscript n, as well as the dependency on ρ, ς, τ .
Following Hastie et al. (2019), we rewrite A = An as a [(N − 1) + 1]× [(N − 1) + 1] matrix,
i.e.

A =

[
A∗ a
a> 0

]
, (76)

where A∗ is a (N − 1)× (N − 1) matrix with last column and row of A removed:

A∗ =

[
ρIh + τQ S∗

S>∗ 0n−1

]
, (77)

and

a> = [φ(W>xn)> 0>n−1] = [s> 0>n−1]

= [φ(w>1 xn), φ(w>2 xn), · · · , φ(w>h xn), 0, · · · , 0]. (78)
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Hence by the block matrix inverse formula

(A− ξIN )−1 =

[
∗ ∗
∗ [−ξ − a>(A∗ − ξIN−1)−1a]−1

]
. (79)

We have

m2,n(ξ, ρ, τ) =
1

n
tr
(

(An(ρ, ς, τ)− ξIN )−1
[h+1,N ]

)
= Ea

[
(An(ρ, τ)− ξIN )−1

]
NN

= Ea

[(
− ξ − a>(A∗ − ξIN−1)−1a

)−1]
. (80)

We perform the orthonormal decomposition of the non-linear function ϕ (under Gaussian
density), introduced in Cheng and Singer (2013).

ϕ(x) = a1x+ ϕ⊥(x), (81)

where a1 = Ex∼N (0,1)[xϕ(x)]. Orthonormal decomposition of the function together with
the decomposition of vectors introduced below gives an asymptotic description of m2,n

expressed in (80). Specifically, for each wi(1 ≤ i ≤ h), we perform the following orthonormal
decomposition (along the direction of xn and the direction of w̃i which is perpendicular to
xn, i.e. x>n w̃i = 0):

wi = w>i xn︸ ︷︷ ︸
ηi

xn
‖xn‖

+ w̃i = ηi
xn
‖xn‖

+ w̃i. (82)

We thus have

a> = [s> 0>n−1]

=

 1√
n
ϕ(‖xn‖η1) · · · 1√

n
ϕ(‖xn‖ηh) 0 · · · 0︸ ︷︷ ︸

n−1


=

 1√
n
a1‖xn‖η1 · · · 1√

n
a1‖xn‖ηh 0 · · · 0︸ ︷︷ ︸

n−1


︸ ︷︷ ︸

a>1 =[s>1 ,0
>]

+

 1√
n
ϕ⊥(‖xn‖η1) · · · 1√

n
ϕ⊥(‖xn‖ηh) 0 · · · 0︸ ︷︷ ︸

n−1


︸ ︷︷ ︸

a>2 =[s>2 ,0
>]

. (83)

and for 1 ≤ i 6= j ≤ h, 1 ≤ k ≤ n− 1,

Qij =

(
ηi
xn
‖xn‖

+ w̃i

)>(
ηj

xn
‖xn‖

+ w̃j

)
= ηiηj + w̃>i w̃j︸ ︷︷ ︸

Q̃ij

. (84)

In addition,

Sik =
1√
n
ϕ

(
ηi
x>nxk
‖xn‖

+ w̃>i xk

)
=

1√
n
a1ηi

x>nxk
‖xn‖

+
1√
n
a1w̃

>
i xk +

1√
n
ϕ⊥

(
ηi
x>nxk
‖xn‖

+ w̃>i xk

)
=

1√
n
ϕ(w̃>i xk)︸ ︷︷ ︸
S̃ik

+
1√
n
a1ηi

x>nxk
‖xn‖︸ ︷︷ ︸

a1ηiuk

+
1√
n

[
ϕ⊥

(
ηi
x>nxk
‖xn‖

+ w̃>i xk

)
− ϕ⊥(w̃>i xk)

]
︸ ︷︷ ︸

Eik

. (85)
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Hence

A∗ =

[
ρIh + τQ S∗

S>∗ 0n−1

]
=

[
ρIh + τQ̃ S̃∗

S̃>∗ 0n−1

]
+

[
tηη> a1ηu

>

a1uη
> 0n−1

]
+

[
E0 E1

E>1 0n−1

]
=

[
ρIh + τQ̃ S̃∗

S̃>∗ 0n−1

]
︸ ︷︷ ︸

Ã∗

+

[
η 0h

0n−1 u

]
︸ ︷︷ ︸

U

[
τ a1

a1 0

]
︸ ︷︷ ︸

C

[
η 0h

0n−1 u

]>
︸ ︷︷ ︸

U>

+

[
E0 E1

E>1 0n−1

]
︸ ︷︷ ︸

E

= Ã∗ + UCU> + E. (86)

By similar argument as in (Hastie et al., 2019, B.1.2), E diminishes to 0 as n → ∞ with
respect to the Frobenius norm, therefore by the Woodbury’s identity and the expression of
m2,n in (80) we have

m2,n(ξ, ρ, τ)

= Ea

[(
− ξ − a>(A∗ − ξIN−1)−1a

)−1]
= Ea

[(
− ξ − a>(Ã∗ − ξIN−1 + UCU> + E)−1a

)−1]
→ Ea

[(
− ξ − a>(Ã∗ − ξIN−1 + UCU>)−1a

)−1]
= Ea

[(
− ξ − a>(Ã∗ − ξIN−1)−1a︸ ︷︷ ︸

u

+

a>(Ã∗ − ξIN−1)−1U︸ ︷︷ ︸
v>

(
C−1 + U>(Ã∗ − ξIN−1)−1U

)−1

︸ ︷︷ ︸
S

U(Ã∗ − ξIN−1)−1a︸ ︷︷ ︸
v

)−1]
. (87)

We bound each term u,v, S to compute m2,n. For u

Eau = Ea

[
a>(Ã∗ − ξIN−1)−1a

]
= tr

(
Es[ss>](Ã∗ − ξIN−1)−1

[1..h,1..h]

)
= b

1

n
tr
(

(Ã∗ − ξIN−1)−1
[1..h,1..h]

)
= bγ2m1,n(ξ, ρ, τ), (88)

where b = Ex∼N (0,1)[ϕ(x)2] = Ex∼N (0,1)[(φ(x) − Eφ(x))2] = r. Due to concentration of
measure we have that as n, h, d→∞

u→ Eau = rγ2m1,n(ξ, ρ, τ). (89)

And for v (note that U is dependent on a)

Eav
> = Ea

[
a>(Ã∗ − ξIN−1)−1U

]
= Ea

[
[s>,0>n−1](Ã∗ − ξIN−1)−1

[
η 0h

0n−1 u

] ]
=
[
Es[s>(Ã∗ − ξIN−1)−1

[1..h,1..h]η] 0
]

=
[

tr
(

(Ã∗ − ξIN−1)−1
[1..h,1..h]Es[ηs>]

)
︸ ︷︷ ︸

v

0
]
, (90)
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where

v = tr
(

(Ã∗ − ξIN−1)−1
[1..h,1..h]Es[ηs>]

)
= tr

(
(Ã∗ − ξIN−1)−1

[1..h,1..h]a1
p√
nd
Ih

)
= a1

√
γ2

2/γ1m1,n(ξ, ρ, τ). (91)

Hence by similar argument we have when n, d, p→∞,

v → Eav =

[
a1

√
γ2

2/γ1m1,n(ξ, ρ, τ) 0

]
. (92)

And finally for S,

EaS
−1 = Ea

[
C−1 + U>(Ã∗ − ξIN−1)−1U

]
=

[
τ a1

a1 0

]−1

+ Ea

[[
η 0h

0n−1 u

]>
(Ã∗ − ξIN−1)−1

[
η 0h

0n−1 u

]]

=

[
0 1/a1

1/a1 −τ/a2
1

]
+ Ea

[
η>(Ã∗ − ξIN−1)−1

[1..h]η 0

0 u>(Ã∗ − ξIN−1)−1
[h+1..h+n−1]u

]

=

[
0 1/a1

1/a1 −τ/a2
1

]
+ tr

(
(Ã∗ − ξIN−1)−1

[1..h]Ea[ηη>]
)

0

0 tr
(

(Ã∗ − ξIN−1)−1
[h+1..h+n−1]Ea[uu>]

) 
=

[
0 1/a1

1/a1 −τ/a2
1

]
+

[
γ2/γ1m1,n(ξ, ρ, τ) 0

0 m2,n(ξ, ρ, τ)

]
=

[
γ−1

1 γ2m1,n(ξ, ρ, τ) 1/a1

1/a1 m2,n(ξ, ρ, τ)− τ/a2

]
. (93)

And hence as n, d, h→∞,

S−1 → EaS
−1 =

[
γ−1

1 γ2m1,n(ξ, ρ, τ) 1/a1

1/a1 m2,n(ξ, ρ, τ)− τ/a2

]
. (94)

Therefore by combining (89), (92), (94),
m2,n(ξ, ρ, τ)

→ Ea

[(
− ξ − u+ v>Sv

)−1]
→
(
− ξ − u+ v>Sv

)−1

→
(
− ξ − rγ2m1,n +

(
a1

√
γ2

2/γ1m1,n

)2
[
γ−1

1 γ2m1,n(ξ, ρ, τ) 1/a1

1/a1 m2,n(ξ, ρ, τ)− τ/a2

]−1

[1,1]

)−1

=

(
−ξ − rγ2m1,n +

γ2a
2
1m

2
1,n(a2

1m2,n − τ)

m1,n(a2
1m2,n − τ)− γ1γ

−1
2

)−1

. (95)

Similarly we can calculate m1,n(ξ, ρ, τ) as
m1,n(ξ, ρ, τ)→(
−ξ − ρ− γ−1

1 γ2τ
2m1,n − rm2,n +

τ2γ−1
1 γ2m

2
1,n(a2

1m2 − τ)− 2τa2
1m1,nm2,n + a4

1m1,nm
2
2,n

m1,n(a2
1m2,n − τ)− γ1γ

−1
2

)−1

.

(96)

The proof of the uniqueness of solution by (96), (95) follows from Section B.1 of Hastie et al.
(2019) and is omitted. �
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C.6 Proof of Corollary 5

In this section we take the limit γ1 →∞ and check the correctness of Theorem 4. In this
case (8), (9) simplify to

m2 = (−ξ − rγ2m1)
−1
, (97)

m1 =
(
−ξ − ρ− γ2τ

2m1 − rm2

)−1
. (98)

Recall that
m(ξ, ρ, τ) = γ2m1(ξ, ρ, τ) +m2(ξ, ρ, τ), (99)

by taking the derivative we have

−q(ξ) =
∂

∂x
m(ξ, rx, tx)

∣∣∣
x=0

= r
∂

∂ρ
m(ξ, ρ, 0)

∣∣∣
ρ=0

+ t
∂

∂τ
m(ξ, 0, τ)

∣∣∣
τ=0

= rγ2
∂

∂ρ
m1(ξ, ρ, 0)

∣∣∣
ρ=0

+ r
∂

∂ρ
m2(ξ, ρ, 0)

∣∣∣
ρ=0

+ tγ2
∂

∂τ
m1(ξ, 0, τ)

∣∣∣
τ=0

+ t
∂

∂τ
m2(ξ, 0, τ)

∣∣∣
τ=0

.

(100)
Observe that (97), (98) constitutes a set of implicit functions. Thus differentiating the two
functions with respect to τ, ρ and then substitute by ρ = τ = 0 gives

q(ξ) =

(
r(γ2 − 1)− ξ2

)(√
(r(γ2 − 1) + ξ2)

2 − 4rγ2ξ2 + r(γ2 − 1) + ξ2

)
2ξ2

√
(r(γ2 − 1) + ξ2)

2 − 4rγ2ξ2

. (101)

Hence by (66), (67) we obtain the asymptotic variance:

V(γ1→∞) = lim
ξ→0

q+(ξ) = lim
ξ→0

(
q(ξ)− γ2 − 1

ξ2

)
=

1

γ2 − 1
. (102)

Combining the case where γ2 < 1 in Theorem 4 completes the proof. �

Remark. For φ(x) = ReLU(x), c1 = 1/2 − 1/(2π), c2 = 1/4. For φ(x) = SoftPlus(x) =
log(1 + ex), numerical integration yields c1 ≈ 0.2715, c2 = 1/4.

C.7 Proof of Corollary 6

C.7.1 Unbounded Bias when h = n

From the bias-variance (7), the bias B is derived as

B =
r2

d
tr (Q1 +Q2 + Id) , (103)

where
Q1 = X[φ(W>X)]†KW [φ(X>W )]†X>, (104)

Q2 = X[φ(W>X)]†W>. (105)
When h = n, due to the nonlinearity of φ, we have φ(W>X) is full rank a.s., and hence
[φ(X>W )]† = [φ(X>W )]−1. We have the following bound for Q1

1

d
tr (Q1) =

1

d
tr
(
X[φ(W>X)]†KW [φ(X>W )]†X>

)
=

1

d
tr
(
KW [φ(X>W )]−1X>X[φ(W>X)]−1

)
≥ 1

d
λmin(KW )tr

(
[φ(X>W )]−1X>X[φ(W>X)]−1

)
=
λmin(KW )

d
tr
([
φ(W>X)φ(X>W )

]−1
X>X

)
=
λmin(KW )

n
tr

(
(SS>)−1 · 1

d
X>X

)
(106)
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Since W and X/
√
d are Rd×n = Rd×p follows the same distribution where each entry i.i.d.

N (0, 1/d), we exchange W and X/
√
d and get

1

dλmin(KW )
tr (Q1) ≥ 1

n
tr

(
(SS>)−1 · 1

d
X>X

)
∼ 1

n
tr
((
S>S

)−1 ·W>W
)

=
1

n
tr
((
S>S

)−1 · (I +Q)
)

= lim
ξ→0
− ∂

∂x
m̃n(ξ, x, 0, x)→∞, (107)

where in Section C.5 we have showed (107) is unbounded when n→∞. Moreover, by (52)
and Weyl’s theorem we have λmin(KW ) = O(1), and thus d−1tr (Q1) is unbounded.

For d−1tr (Q2), we have
1

d
tr (Q2) =

1

d
tr
(
W>X[φ(W>X)]−1

)
≤ 1

d
λmax(φ(W>X)−1)tr

(
W>X

)
=

1

d
λ−1

min(φ(W>X))tr
(
W>X

)
= O(1). (108)

To sum up, for n→∞ and γ2 → 1 we have B →∞. �

C.7.2 Bounded Bias when γ2 > 1

Recall the expression of the bias term when h > n

B =
r2

d
tr (Q1 +Q2 + Id) , (109)

where

Q1 = X
(
φ(X>W )φ(W>X)

)−1

φ(X>W )KWφ(W>X)
(
φ(X>W )φ(W>X)

)−1

X>,

Q2 = X
(
φ(X>W )φ(W>X)

)−1

φ(X>W )W>.

Therefore we have
2

d
tr (Q1) = 2tr

(
X>X

d

(
φ(X>W )φ(W>X)

)−1

φ(X>W )KWφ(W>X)
(
φ(X>W )φ(W>X)

)−1
)

≤ 2λmax

(
X>X

d

)
tr

((
φ(X>W )φ(W>X)

)−1

φ(X>W )KWφ(W>X)
(
φ(X>W )φ(W>X)

)−1
)

= O(1) · tr
(
φ(W>X)

(
φ(X>W )φ(W>X)

)−2

φ(X>W )KW

)
≤ O(1) · λmax

(
φ(W>X)

(
φ(X>W )φ(W>X)

)−2

φ(X>W )

)
· tr (KW )

= O(1) · σ−2
min(φ(X>W ))tr (KW ) = O(1) ·O(n−1) ·O(n) = O(1).

and similarly
2

d
tr (Q2) = 2tr

((
φ(X>W )φ(W>X)

)−1

φ(X>W ) · 1

d
W>X

)
≤ tr

(((
φ(X>W )φ(W>X)

)−1

φ(X>W )

)
(...)>

)
+ tr

(
d−2X>WW>X

)
= tr

((
φ(X>W )φ(W>X)

)−1
)

+
1

d
tr

(
1

d
XX>WW>

)
≤ n · σmin

(
φ(X>W )

)−2
+

1

d
λmax

(
1

d
XX>

)
tr
(
WW>

)
= O(1),
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Therefore B = O(1) <∞ when h > n. �

Remark. Concurrent to this work, Mei and Montanari (2019) provides a complete charac-
terization of the bias term and confirms our observations above.

C.8 Proof of Theorem 7

C.8.1 Verifying the Lipschitz Condition

We first show that the gradient of the empirical risk is Lipschitz in the Frobenius norm.
Lemma 13. Given (A1-3), the gradient of the empirical risk defined in (11) is Lf -Lipschitz
w.r.t. W , i.e.

∥∥∥∂L(X;W )
∂W − ∂L(X;W ′)

∂W

∥∥∥
F
≤ Lf ‖W −W ′‖F .

Proof. For simplicity we assume n, d, h to be even and let d0 = d/2, n0 = n/2 and
h0 = h/2. Since the second layer is fixed ai ∼ Unif{−1/

√
h, 1/

√
h}, we let ai = 1/

√
h

and ai+h0
= −1/

√
h for all 1 ≤ i ≤ h0. We therefore write a> = h−1/2[1h0

,−1h0
]> and

W = [W+,W−]:

f(x;W−,W+) =
1√
h
1>φ(W>+ x)− 1√

h
1>φ(W>−x). (110)

The empirical risk can thus be written as

L(X;W+,W−) =
1

n

∑
x∈X

L(x;W+,W−)

=
1

n

∑
x∈X

[
y − 1√

h
1>φ(W>+ x) +

1√
h
1>φ(W>−x)

]2
. (111)

We show the Lipschitz condition for W+. Write the derivative of W+ as

∂L(X;W+)

∂W+
=

1

n
√
h

∑
x∈X

[
y · xφ′(xTW+)− 1√

h
1Tφ(WT

+x) · xφ′(xTW+) +
1√
h
1Tφ(WT

−x) · xφ′(xTW+)

]
=

1

n
√
h

∑
x∈X

y · xφ′(xTW+)− 1

nh

∑
x∈X

1Tφ(WT
+x) · xφ′(xTW+) +

1

nh

∑
x∈X

1Tφ(WT
−x) · xφ′(xTW+).

Or weight-wise (let w be a column of W+),

∂L(X;W+)

∂w
=

1

n
√
h

∑
x∈X

y · xφ′(xTw)︸ ︷︷ ︸
G1(w)

− 1

nh

∑
x∈X

1Tφ(WT
+x) · xφ′(xTw)︸ ︷︷ ︸

G2(w,W+)

+
1

nh

∑
x∈X

1Tφ(WT
−x) · xφ′(xTw)︸ ︷︷ ︸

G3(w,W−)

.

We upper-bound the spectral norm of the derivative of each term.

∂G1(w)

∂w
=

1

n
√
h

∑
x∈X

y · xx>φ′′(xTw) =
1

n
√
h

∑
x∈X

yφ′′(xTw) · xx>. (112)

Note that the spectral norm of the gradient matrix satisfies∥∥∥∥∂G1(w)

∂w

∥∥∥∥
2

=

∥∥∥∥∥ 1

n
√
h

∑
x∈X

yφ′′(xTw) · xx>
∥∥∥∥∥

2

≤ O(1)
1

n
√
h

max
x∈X

yφ′′(xTw) ·
∥∥XX>∥∥

2

= O(1)O

(
1

n
√
h

)
O(
√
h)O(n) = O(1), (113)
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where we have utilized the fact that λmax(X>X) = O(d) and |y| = |β>x+ ε| ∈ O(
√
d), as

well as the boundness assumption on activation derivative (A3). Hence we have

‖G1(w1)−G1(w2)‖22 ≤ O(1) ‖w1 −w2‖22 . (114)

With a similar claim, for the second term g2(w,W+) we have∥∥∥∥∂G2(w,W+)

∂w

∥∥∥∥
2

=
1

hn

∥∥∥∥∥∑
x∈X

1Tφ(WT
+x)φ′′(wTx)xxT + φ′(wTx)2xxT

∥∥∥∥∥
2

=
1

hn

∥∥∥∥∥∑
x∈X

(
1Tφ(WT

+x)φ′′(wTx) + φ′(wTx)2
)
xxT

∥∥∥∥∥
2

= O(1). (115)

Therefore

‖G2(w1,W )−G2(w2,W )‖2 ≤ O(1) ‖w1 −w2‖2 . (116)

Define w′ ∈W+\{w} as a different column of W+, observe that∥∥∥∥∂G2(w,W+)

∂w′

∥∥∥∥
2

=
1

hn

∥∥∥∥∥∑
x∈X

φ′(wTx)φ′(w′Tx)xxT

∥∥∥∥∥
2

= O(n−1). (117)

Combining the two equations above and sum over all w′ ∈W+\{w} yields

‖G2(w1,W1+)−G2(w2,W2+)‖22
≤ 2

∥∥G2(w2,W
2
+)−G2(w1,W

2
+)
∥∥2

2
+ 2

∥∥G2(w1,W
1
+)−G2(w1,W

2
+)
∥∥2

2

=O(1) ‖w1 −w2‖22 +
∑

w′1∈W1+\{w1}

O(n−2) ‖w′1 −w′2‖
2
2

=O(1) ‖w1 −w2‖22 +O(n−1) ‖W1+ −W2+‖2F . (118)

Similarly for G3(w,W−) we have

‖G3(w1,W1−)−G3(w2,W2−)‖22 ≤ O(1) ‖w1 −w2‖22 +O(n−1) ‖W1− −W2−‖2F .

Applying the results above weight-wise, we get∥∥∥∥∂L(X;W1)

∂W+
− ∂L(X;W2)

∂W+

∥∥∥∥2

F

=
∑

w1∈W1

‖G1(w1) +G2(w1,W1+) +G3(w1,W1−)−G1(w2)−G2(w2,W2+)−G3(w2,W2−)‖22

≤3
∑

w1∈W1

‖G1(w1)−G1(w2)‖22 + ‖G2(w1,W1+)−G2(w2,W2+)‖22 + ‖G3(w1,W1−)−G3(w2,W2−)‖22

≤
∑

w1∈W1

O(1) ‖w1 −w2‖22 +O(n−1) ‖W1+ −W2+‖2F +O(n−1) ‖W1− −W2−‖2F

≤O(1) ‖W1 −W2‖2F . (119)

Note that the same argument holds for W−. We have thus shown that for some constant
Lf > 0 such that ∥∥∥∥∂L(X;W1)

∂W
− ∂L(X;W2)

∂W

∥∥∥∥
F

≤ Lf ‖W1 −W2‖F . (120)

�
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C.8.2 Defining Gradient Flows

Recall the simplified definition of the network in the previous section:

f(x;W−,W+) =
1√
h
1>φ(W>+ x)− 1√

h
1>φ(W>−x). (121)

In this section we define three gradient flows and show that the three flows are similar in
some sense. GF-original is the original gradient flow (11), i.e.

∂WO
+

∂t
=

1

2n0

2n0∑
i=1

[ 1√
h

(
yi −

1√
h
1>φ(WO>

+ xi) +
1√
h
1>φ(WO>

− xi)
)
xiφ
′(x>i W

O
+ )
]
, (122)

∂WO
−

∂t
= − 1

2n0

2n0∑
i=1

[ 1√
h

(
yi −

1√
h
1>φ(WO>

+ xi) +
1√
h
1>φ(WO>

− xi)
)
xiφ
′(x>i W

O
− )
]
.

(123)

with vanishing initialization wO
i (0) ∼ N (0, I/dh1+ε).

We now define the same flow (123) from exact zero initialization wD
i (0) = 0 termed GF-

double . Due to zero initialization, a basic observation is that the solution [WD
+ ,W

D
− ] is at

most rank-2, and more precisely, the parameters in the flow takes the form of WD
± (t) =

wD
±(t)1> where wD

±(t) admits the following dynamics:

∂wD
+

∂t
= gD+(wD

+) =
1

2n0

2n0∑
i=1

[ 1√
h

(
yi −

√
hφ(wD>

+ xi) +
√
hφ(wD>

− xi)
)
φ′(wD>

+ xi)xi

]
,

(124)

∂wD
−

∂t
= gD−(wD

−) = − 1

2n0

2n0∑
i=1

[ 1√
h

(
yi −

√
hφ(wD>

+ xi) +
√
hφ(wD>

− xi)
)
φ′(wD>

− xi)xi

]
.

(125)

Lastly, we define the GF-single with solution denoted as w± = wS
±(t) :

∂wS
+

∂t
= gS+(wS

+) =
1

2n0

2n0∑
i=1

[ 1√
h

(
yi −

√
hφ′(0)wS>

+ xi +
√
hφ′(0)w1>

− xi

)
φ′(0)xi

]
, (126)

∂wS
−

∂t
= gS−(wS

−) =
−1

2n0

2n0∑
i=1

[ 1√
h

(
yi −

√
hφ′(0)wS>

+ xi +
√
hφ′(0)wS>

− xi

)
φ′(0)xi

]
(127)

from zero initialization wD
i (0) = 0. This can be seen as the 1st order Taylor expansion of

the non-linearity φ at the origin of GF-double.

C.8.3 Step 1. From GF-double to GF-single

Step 1.1. Bounding the Difference in Risk. Due to low rank property of solution of
GF-single and GF-double, in this subsection we slightly abuse the notation and define

f(x;w±) = f(x;w+1
>,w−1

T ) =
1√
h
1>φ((w+1

T )>x)− 1√
h
1>φ((w−1

T )>x)

=
√
hφ(wT

+x)−
√
hφ(wT

−x). (128)

Consider the difference of the population risk of two models with parameters wS
± and wD

± :
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|2(RS −RD)|

=
∣∣∣Ex

(
x>β − f(x;wS

±)
)2 − (x>β − f(x;wD

±)
)2∣∣∣

≤
√
Ex[f(x;wS

±)− f(x;wD
±)]2Ex[β>x− f(x;wS

±) + β>x− f(x;wD
±)]2

≤
√
hEx[|φ(wS>

+ x)− φ(wD>
+ x)|+ |φ(wS>

− x)− φ(wD>
− x)|]2 ·

√
Ex[|β>x− f(x;wS

±)|+ |β>x− f(x;wD
±)|]2

≤
√

2hEx[|φ(wS>
+ x)− φ(wD>

+ x)|2 + |φ(wS>
− x)− φ(wD>

− x)|2] ·
√

2Ex[|β>x− f(x;wS
±)|2 + |β>x− f(x;wD

±)|2]

≤
√

2hLip(φ)Ex[|wS>
+ x−wD>

+ x|2 + |wS>
− x−wD>

− x|2] ·
√

2RS + 2RD

(i)

≤O(
√
h)

√∥∥wS
+ −wD

+

∥∥2

2
+
∥∥wS
− −wD

−
∥∥2

2
, (129)

in which (i) is due to the fact that both RS and RD are bounded at initialization, and both
flows do not result in unbounded risk for γ1 ∈ (0, 1)∪ (1,∞) as shown in the following section.
We now show that this difference between the trajectories is asymptotically vanishing for
w+, and w− follows the same argument.∥∥wD

+(t)−wS
+(t)

∥∥
2

=

∥∥∥∥∫ t

0

gD+(wD
+(s))− gS+(wS

+(s)) ds

∥∥∥∥
2

≤
∥∥∥∥∫ t

0

gS+(wS
+(s))− gS+(X;wD

+(s)) ds

∥∥∥∥
2

+

∥∥∥∥∫ t

0

gD+(wD
+(s))− gS+(wD

+(s)) ds

∥∥∥∥
2︸ ︷︷ ︸

E+

=

∥∥∥∥∥
∫ t

0

1

2n0

2n0∑
i=1

[(
− φ′(0)(wD

+(s)−wS
+(s))>xi + φ′(0)(wD

−(s)−wS
−(s))>xi

)
φ′(0)xi

]
ds

∥∥∥∥∥
2

+ E+

=

∥∥∥∥φ′(0)2 1

2n0
XXT

∫ t

0

wD
+(s)−wS

+(s) ds

∥∥∥∥
2

+ E+

≤ φ′(0)2 1

2n0

∥∥XXT
∥∥

2

∫ t

0

∥∥wD
+(s)−wS

+(s)
∥∥

2
ds+O(1/h)t

= O(1)

∫ t

0

∥∥wD
+(s)−wS

+(s)
∥∥

2
ds+O(1/h)t. (130)

Given that up to time t the norm of the weights
∥∥wD

∥∥
2

= O(1/
√
h), the error from Taylor

expansion E+ ≤ O(1/h)t is derived below.

E+ =

∥∥∥∥∫ t

0

gD+(wD
+(s))− gS+(wD

+(s)) ds

∥∥∥∥
2

=

∥∥∥∥∥
∫ t

0

1

2n0

2n0∑
i=1

O
(
(wD>

+ xi)
2
)
φ′(wD>

+ xi)xi ds

∥∥∥∥∥
2

≤ 1

2n0
O(1)

∫ t

0

∥∥∥∥∥
2n0∑
i=1

O
(
(wD

+(s)>xi)
2
)
· xi

∥∥∥∥∥
2

ds

≤ O(n−1)

∫ t

0

∥∥∥∥∥
2n0∑
i=1

O
(
wD

+(s)>xi
)
wD

+(s)>xix
>
i

∥∥∥∥∥
2

ds

≤ O(n−1)

∫ t

0

∥∥∥∥ 1√
d
·wD

+(s)>XX>
∥∥∥∥

2

ds

= O(n−3/2)

∫ t

0

O(d−1/2)O(d) ds ≤ O(1/h)t. (131)
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By Gronwall’s theorem we have∥∥wD
+(t)−wS

+(t)
∥∥

2
≤ C1 ·

1

h
eC2t. (132)

A similar inequality can also derived for w−. Hence we obtain an upper-bound on the
difference between the empirical risk of the two models at time t:

|RS(t)−RD(t)| ≤ C ′1 ·
1√
h
eC2t. (133)

Now we have established that the difference in the parameters of GF-Single and GF-double
asymptotically vanishes if the norm of the weights is of order O(1/

√
h). In the following

subsection we show that the closeness of the two flows implies that
∥∥wD(t)

∥∥
2
≈
∥∥wS(t)

∥∥
2

=

O(1/
√
h), hence the assumption of the norm of wD is satisfied.

Step 1.2. Solution of GF-single. A basic observation of GF-single is that wS
+(t) =

−wS
−(t) for all t. Therefore, The solution of GF-single can be written in analytical form:

wS
+(t) = −wS

−(t) =
1

2
√
h

(
I − e−

φ′(0)2
n0

XXT t

)
(XXT )−1Xy (134)

when d < n, or otherwise

wS
+(t) = −wS

−(t) =
1

2
√
h

(
I − e−

φ′(0)2
n0

XTXt

)
X(XTX)−1y. (135)

when d > n. We first assume that d < n, under which the stationary point is

wS
+(t =∞) = −wS

−(t =∞) =
1

2
√
h
X†y. (136)

Note that the stationary point satisfies the norm assumption above. We compute the
difference in risk between the model at some finite time t and the stationary point i.e. t =∞,

|RS(t)−RS(∞)| ≤ C
√
h ·
∥∥wS

+(t)−wS
+(∞)

∥∥
= C
√
h

∥∥∥∥ 1

2
√
h
e−

φ′(0)2
n0

XXT t(XXT )−1Xy

∥∥∥∥
2

= C

∥∥∥∥e−φ′(0)2n0
XXT t(XXT )−1XXTβ

∥∥∥∥
2

≤ C exp

(
−φ′(0)2

∥∥∥∥ 1

n
XXT

∥∥∥∥
2

t

)
‖β‖2 = C3e

−C4t. (137)

for constants C3, C4 > 0. If we take t = log log h→∞, combining (133) and (137) yields

|RD(t)−RS(∞)| ≤ |RS(t)−RD(t)|+ |RS(t)−RS(∞)|

=
1√
h
C1e

C2 log log h + C3e
−C4 log log h

= O

(
poly log(h)√

h

)
+O

(
1

poly log(h)

)
→ 0. (138)

Equation (138) for case d > n follows a similar proof.

C.8.4 Step 2. From GF-original to GF-double

In this section we compare GF-original with GF-double. Note that the two flows differ
only at initialization: vanishing initialization wO

i (0) ∼ N (0, I/dh1+ε) v.s. zero initialization
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wD
i (0) = 0. By the Lipschitz condition on the empirical gradient (Lemma 13) we have∥∥WO(t)−WD(t)

∥∥2

F

=
∥∥WO(0)−WD(0)

∥∥2

F
+

∫ t

0

∂
∥∥WO(s)−WD(s)

∥∥2

F

∂t
ds

=
∥∥WO(0)

∥∥2

F
+

∫ t

0

tr

(
(WO(s)−WD(s))>

∂[WO(s)−WD(s)]

∂t

)
ds

=
∥∥WO(0)

∥∥2

F
+

∫ t

0

∥∥WO(s)−WD(s))
∥∥
F

∥∥∥∥∂L(X;WO(s))

∂W
− ∂L(X;WD(s))

∂W

∥∥∥∥
F

ds

≤
∥∥WO(0)

∥∥2

F
+

∫ t

0

∥∥WO(s)−WD(s)
∥∥2

F
+

∥∥∥∥∂L(X;WO(s))

∂W
− ∂L(X;WD(s))

∂W

∥∥∥∥2

F

ds

≤
∥∥WO(0)

∥∥2

F
+ (1 + Lf )

∫ t

0

∥∥WO(s)−WD(s)
∥∥2

F
ds, (139)

And hence by Gronwall’s lemma one obtains:∥∥WO(t)−WD(t)
∥∥
F
≤
∥∥WO(0)

∥∥
F
e(1+Lf )t/2 = O(d−(1+ε)/2)eCt. (140)

Therefore∥∥f(x,WD(t))− f(x,WO(t))
∥∥

2
=
∥∥φ(x>WD(t))a− φ(x>WO(t))a

∥∥
2

≤
∥∥φ(x>WD(t))− φ(x>WO(t))

∥∥
2
‖a‖2

≤ Lφ ‖x‖2
∥∥WD(t)−WO(t)

∥∥
F
‖a‖2

= O(
√
d) ·

∥∥WD(t)−WO(t)
∥∥
F

= O(d−ε/2)eCt. (141)

Taking t = log log h, together with the same argument in Step 1 yields

|RO(t)−RD(t)| = O

(
poly log h

d−ε/2

)
→ 0. (142)

C.8.5 Putting things together

By (138) and (142), we know that taking t = log log h,

|RO(t)−RS(∞)| ≤ |RO(t)−RD(t)|+ |RD(t)−RS(∞)| → 0. (143)

Finally observe that RS(∞) is the risk of the minimum-norm solution on the input features
discussed in Section 3. �

C.9 Proof of Theorem 8

C.9.1 The Kernel Linearization

Denote ω = vec(W ) = vec([W+,W−]), and ω0 = vec(W init). Define

K(t) =
∂f(X;ωt)

∂ωt

>
∂f(X;ωt)

∂ωt
, (144)

which is the kernel matrix of the neural tangent kernel Jacot et al. (2018); Du et al. (2018).

Write ỹ(t) = f(X, t) ∈ Rn and its evolution:
d

dt
ỹ(t) = K(t)(y − ỹ(t)), (145)

and the corresponding linearized flow:
d

dt
ȳ(t) = K(0)(y − ȳ(t)), (146)
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with corresponding parameters ω̃ = Vec(W̃ ) and ω̄ = Vec(W̄ ), respectively. Previous works
(e.g. Du et al. (2018); Oymak and Soltanolkotabi (2019)) have proved (non-asymptotically)
that the two paths (145) and (146) are close if the model is overparameterized, i.e. h ∈ poly(n),
under no assumptions on the teacher model. In our asymptotic setup and assumptions
(A1)(A2), we show that similar conclusion holds without significant overparameterization.

We employ an argument similar to (Du et al., 2018, Theo. 3.2) to bound the distance traveled
by the parameters. From Corollary 16 (i.e. λmin(K(0)) = O(d)) and Lemma 13 we know
that for ‖W (t)−W (0)‖2F = O(1), λmin(K(t)) = O(d). Therefore, assume that up to time
T the parameters satisfy ‖W (t)−W (0)‖2F = O(1), from (Chizat and Bach, 2018b, Lemma
B1,B.2) and Lemma 13 we have

‖ỹ(t)− y‖2 ≤ C1 ‖ỹ(0)− y‖2 e
−C2dt; lim

n,d,h→∞
‖ỹ(t)− ȳ(t)‖2 → 0, (147)

for 0 ≤ t ≤ T and some constants C1, C2 > 0. Since ‖ỹ(0)− y‖2 = O(n), setting T =
nε−1 log(n) for small ε ensures that ‖ỹ(t)− y‖2 → 0 as n→∞. The Frobenius norm of the
gradient can be bounded as follows:∥∥∥∥∥∂L(X; W̃ (t))

∂W̃ (t)

∥∥∥∥∥
F

=
1√
h

∥∥∥∥∥ 1

n

n∑
i=1

|y − ỹ(t)|xiφ′(xiW̃ )

∥∥∥∥∥
F

≤ 1√
nh
‖y − ỹ(t)‖2O(d) = C1 ‖ỹ(0)− y‖2 e

−C2dt. (148)

Integrating the gradient yields
∥∥∥W̃ (t)− W̃ (0)

∥∥∥
F

= O(1). Thus the distance traveled by

W̃ from initialization to the optimum indeed satisfies the assumption above. The same
argument trivially applies to

∥∥W̄ (t)− W̄ (0)
∥∥
F
. Difference between parameters of the two

trajectories can also be obtained:∥∥∥W̃ (t)− W̄ (t)
∥∥∥
F
≤
∥∥∥W̃ (0)− W̄ (0)

∥∥∥
F

+

∫ t

0

∥∥∥∥∥∂L(X; W̃ (s))

∂W
− ∂L(X; W̄ (s))

∂W

∥∥∥∥∥
F

ds
(i)
= O(t),

(149)

where (i) is due to Lemma 13 and that in both trajectories the distance traveled by the
parameters is O(1). We now bound the difference of f̃ and f̄ on Gaussian input:∥∥∥f̃(x)− f̄(x)

∥∥∥ =
∥∥∥φ(x>W̃ )a− φ(x>W̄ )a

∥∥∥ ≤ Lφ ‖x‖2 ∥∥∥W̃ − W̄∥∥∥
F
.

Take T = O(nε−1 log(n)) at which the empirical risk tends to 0 (i.e. the flow converges),
we have

∥∥∥f̃(x)− f̄(x)
∥∥∥ = O(

√
dt) = O(nε−1/2 log n)→ 0. Thus the difference between the

population risk of f̃ and f̄ is also asymptotically vanishing. In the following subsection we
compute the risk of the linearized (kernel) model f̄ .

C.9.2 Computing the Kernel Risk

Given input X ∈ Rd×n and label y = β>X + ε ∈ R1×n, gradient flow on the tangent kernel
solves the following equation of ω:

y = f(X;ω) =
∂f(X;ω0)

∂ω

>
(ω − ω0) (150)

where ∂f(X;ω0)/∂ω is a dh×n matrix with each column ∂f(xi;ω0)/∂ω. This corresponds
to the kernel linearization. Note that for n→∞ and γ1, γ2 ∈ (0,∞), dh > n trivially holds
and hence the least squares solution is given by

ω1 = ω0 +
∂f(X;ω0)

∂ω

(
∂f(X;ω0)

∂ω

>
∂f(X;ω0)

∂ω

)−1

(X>β + ε). (151)
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And the population risk can be written as

2R = Ex,ε

[(
x>β − f(x;ω1)

)2]
= Ex,ε

(x>β − ∂f(x;ω0)

∂ω

>
(ω1 − ω0)

)2


= Ex,ε


x>β − ∂f(x;ω0)

∂ω

>
∂f(X;ω0)

∂ω

(
∂f(X;ω0)

∂ω

>
∂f(X;ω0)

∂ω

)−1

(X>β + ε)

2


= Ex

[(
x>β − û>K̂−1

X X>β
)2
]

︸ ︷︷ ︸
2B

+Ex

[
ûK̂−1

X K̂−1
X û>

]
σ2︸ ︷︷ ︸

2V

, (152)

Where a bias-variance decomposition has been made here, and for simplicity we define

û =
∂f(X;ω0)

∂ω

>
∂f(x;ω0)

∂ω
, K̂X =

∂f(X;ω0)

∂ω

>
∂f(X;ω0)

∂ω
. (153)

C.9.3 Approximating the Kernel Matrix

Following Cheng and Singer (2013) we utilize the orthonormal decomposition of φ′(x) in
L2(R, dµG). Denote b20 = Ex∼N (0,1)[φ

′(x)]2, and b21 = Ex∼N (0,1)[φ
′(x)2]− b20. We have the

orthogonal decomposition of φ′

φ′(x) = b0 + φ′⊥(x), (154)
where E[φ′⊥(x)] = 0. We have the following lemmas.

Lemma 14 (Approximation of (K̂X)ij). There exist constants c, c′ > 0 such that for i 6= j

with probability 1− e−cnε2∣∣∣∣∣1d ∂f(xi;ω0)

∂ω

>
∂f(xj ;ω0)

∂ω
− 1

d
b20x
>
i xj

∣∣∣∣∣ < ε2, (155)

and with probability 1− e−c′nε2∣∣∣∣∣1d ∂f(xi;ω0)

∂ω

>
∂f(xi;ω0)

∂ω
− (b20 + b21)

∣∣∣∣∣ < ε. (156)

Proof. When i 6= j (i.e. Equation (155)). We have

1

d
[K̂X ]ij =

1

d

∂f(xi;ω0)

∂ω

>
∂f(xj ;ω0)

∂ω

=
1

d

h∑
k=1

∂f(xi;ω0)

∂wk

>
∂f(xj ;ω0)

∂wk

=
1

dh

h∑
k=1

x>i xjφ
′(w>k xi)φ

′(w>k xj)

→ 1

d
x>i xjEw

[
φ′(w>xi)φ

′(w>xj)
]

=
1

d
H(xi,xj). (157)

The expectation H(xi,xj) = x>i xjEw

[
φ′(w>xi)φ

′(w>xj)
]
can be seen as the expected

tangent kernel of nonlinear activation function studied in Arora et al. (2019b). Moreover,
due to the assumed boundedness of φ′(x), by Hoeffding’s inequality we have

Pr

[∣∣∣∣∣1d ∂f(xi;ω0)

∂ω

>
∂f(xj ;ω0)

∂ω
− 1

d
H(xi,xj)

∣∣∣∣∣ < 1

d
x>i xjε

]
> 1− e−c1hε

2

. (158)
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In addition, by the concentration of x>i xj and ‖xi‖22 in high dimensions, i.e. Pr[x>i xj/d >

ε] < 1− e−c2dε2 and Pr[|x>i xi/d− 1| < ε] > 1− e−c3dε2 , the orthonormal decomposition of
φ′(x) = b0x+ φ′⊥(x) in L2(R, µG) leads to the following linear approximation of the kernel
matrix

1

d
H(xi,xj) = b20

1

d
x>i xj +O

(
(x>i xj/d)2

)
. (159)

and by taking ε = x>i xj/d under the joint event we can show that∣∣∣∣∣1d ∂f(xi;ω0)

∂ω

>
∂f(xj ;ω0)

∂ω
− 1

d
b20x
>
i xj

∣∣∣∣∣ < ε2 (160)

with probability 1− e−cdε2 . The same argument follows for the case where i = j. �

Corollary 15 (Approximation of û). For arbitrary m > 0, with probability 1− e−c logm d

1

d
‖û− ũ‖2 =

∥∥∥∥∥1

d

∂f(x;ω0)

∂ω

>
∂f(X;ω0)

∂ω
− 1

d
ũ

∥∥∥∥∥
2

<
logm d

d
, (161)

where ũ = b20x
>X.

Proof. Taking ε = logm d/d together with Lemma 14 yields the desired result. �

Corollary 16 (Approximation of K̂X). With probability 1− e−c logm d

1

d

∥∥∥K̂X − K̃X

∥∥∥
F

=

∥∥∥∥∥1

d

∂f(X;ω0)

∂ω

>
∂f(X;ω0)

∂ω
− 1

d
K̃X

∥∥∥∥∥
F

< logm d, (162)

where K̃X = b20X
>X + b21dI.

Proof. Also by directly applying Lemma 14. �

Remark. K̃X is always positive definite and from Vershynin (2010) one can show that
λmin(K̂X) = O(d).
Remark. For φ(x) = ReLU(x), b20 = b21 = 1/4. For φ(x) = SoftPlus(x), b20 = 1/4,
b21 = 0.043379. For φ(x) = sigmoid(x) = (1 + e−x)−1, b20 = 0.042692, b21 = 0.002144. Note
that b1 ≥ 0 for all smooth activations φ, and the equality holds if and only if φ is linear.

C.9.4 The Bias Term

With these approximation above we proceed to calculating (152)

2B = Ex

[(
x>β − û>K̂−1

X X>β
)2
]
. (163)

We first bound the error in substituting û with ũ:∥∥∥û>K̂−1
X X>β − ũ>K̂−1

X X>β
∥∥∥

2
≤ ‖û− ũ‖2

∥∥∥K̂−1
X

∥∥∥
2
‖X‖2 ‖β‖2

= O
(

logm d · d−1 ·
√
d · 1

)
= O

(
logm d√

d

)
, (164)

where
∥∥∥K̂−1

X

∥∥∥
2

= λ−1
min(K̂X) = O(1/d) and ‖X‖2 = O(

√
d) by Vershynin (2010). Therefore

we have as n, d, h→∞

2B = Ex

[(
x>β − û>K̂−1

X X>β
)2
]
→ Ex

[(
x>β − ũ>K̂−1

X X>β
)2
]

= Ex

[(
x>β − b20x>XK̂−1

X X>β
)2
]
. (165)
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By taking expectation over x and the rotational invariance argument similar to Hastie et al.
(2019), we have

Ex

[(
x>β − b20x>XK̂−1

X X>β
)2
]

=Ex

[
β>
(
I − b20XK̂−1

X X>
)2

β

]
=
β>β

d
tr
((
I − b20XK̂−1

X X>
)(

I − b20XK̂−1
X X>

))
. (166)

In addition, we bound the error in substituting K̂X by K̃X defined in (162):∣∣∣∣1d tr
(
XK̂−1

X X> −XK̃−1
X X>

)∣∣∣∣ =

∣∣∣∣1d tr
(
X>XK̂−1

X (K̂X − K̃X)K̃−1
X

)∣∣∣∣
<

1

d

∥∥X>X∥∥
2

∥∥∥K̂−1
X

∥∥∥
2

∥∥∥K̂X − K̃X

∥∥∥
F

∥∥∥K̃−1
X

∥∥∥
2

= O
(
d−1 · d · d−1 · d logm d · d−1

)
= O

(
logm d

d

)
, (167)

and ∣∣∣∣1d tr
(
XK̂−1

X X>XK̂−1
X X> −XK̃−1

X X>XK̃−1
X X>

)∣∣∣∣
=

∣∣∣∣1d tr
(
X>X(K̂−1

X − K̃
−1
X )X>X(K̂−1

X + K̃−1
X )
)∣∣∣∣

<
1

d

∥∥X>X∥∥
2

∥∥∥K̂−1
X

∥∥∥
2

∥∥∥K̂X − K̃X

∥∥∥
F

∥∥∥K̃−1
X

∥∥∥
2

∥∥X>X∥∥
2

∥∥∥K̂−1
X + K̃−1

X

∥∥∥
2

=O
(
d−1 · d · d−1 · d logm d · d−1 · d · d−1

)
= O

(
logm d

d

)
. (168)

Combining these two formulas in (166) yields

2B → Ex

[(
x>β − b20x>XK̂−1

X X>β
)2
]

→ β>β

d
tr
((
I − b20XK̃−1

X X>
)(

I − b20XK̃−1
X X>

))
=
β>β

d
tr
((
I − b20X(b20X

>X + b21dI)−1X>
)2)

. (169)

By the same technique on Marčenko–Pastur showed in Section B.2 we obtain

B = β>β

(
γ1 − 1

2γ1
+

γ1(γ1 + γ1m+m− 2) + 1

2γ1

√
γ1(γ1 +m(γ1(m+ 2) + 2)− 2) + 1

)
, (170)

where m = b−2
0 b21. �

C.9.5 The Variance Term

Similarly, for the variance we utilize the approximation

2V = Ex

[
ûK̂−1

X K̂−1
X û>

]
σ2 (171)

Specifically, we have ∣∣∣ûK̂−1
X K̂−1

X û> − ũK̂−1
X K̂−1

X ũ>
∣∣∣

≤‖û− ũ‖2
∥∥∥K̂−1

X

∥∥∥
2
‖û+ ũ‖2

∥∥∥K̂−1
X

∥∥∥
2

=O

(
logm d · 1

d
· d · 1

d

)
= O

(
logm d

d

)
, (172)
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and ∣∣∣Ex

[
ũK̂−1

X K̂−1
X ũ> − ũK̃−1

X K̃−1
X ũ>

]∣∣∣
=tr

((
K̂−1
X − K̃

−1
X

)(
K̂−1
X + K̃−1

X

)
Exũũ

>
)

=tr
(
K̂−1
X

(
K̂X − K̃X

)
K̃−1
X

(
K̂−1
X + K̃−1

X

)
XTX

)
≤
∥∥∥K̂−1

X

∥∥∥
2

∥∥∥K̂X − K̃X

∥∥∥
F

∥∥∥K̃−1
X

∥∥∥
2

∥∥∥K̂−1
X + K̃−1

X

∥∥∥
2

∥∥XTX
∥∥

2

=O(d−1 · d logm d · d−1 · d−1 · d) = O

(
logm d

d

)
, (173)

By combining the two approximations above we know that as n, d, p→∞∣∣∣2V − Ex

[
ũK̃−1

X K̃−1
X ũ>

]
σ2
∣∣∣ = O

(
logm d

d

)
→ 0. (174)

Therefore

2V → σ2Ex

[
ũK̃−1

X K̃−1
X ũ>

]
= σ2Ex

[
b40x

TX
(
b20X

>X + b21dI
)−2

XTx
]

= σ2 1

d
tr

(
1

d
XTX ·

(
1

d
XTX + b−2

0 b21I

)−2
)

= σ2

(
−1

2
+

γ1 + γ1m+ 1

2
√
γ1(γ1 +m(γ1(m+ 2) + 2)− 2) + 1

)
, (175)

where m = b−2
0 b21.

C.9.6 Putting Things Together

Recall the population risk is the sum of the bias and variance

R→ r2

(
γ1 − 1

2γ1
+

γ1(γ1 + γ1m+m− 2) + 1

2γ1

√
γ1(γ1 +m(γ1(m+ 2) + 2)− 2) + 1

)

+ σ2

(
−1

4
+

γ1 + γ1m+ 1

4
√
γ1(γ1 +m(γ1(m+ 2) + 2)− 2) + 1

)
. (176)

Observe that the population risk is independent of γ2, i.e. double descent does not occur
when the network is overparameterized via changing the width. In addition, the bias is
monotonically increasing and upper-bounded by the null risk r2 and lower-bounded by the
bias of the least squares solution on the input features β̂ = X†y, whereas the variance (and
therefore the risk) remains bounded for all γ1 ∈ (0,∞) as long as m > 0, i.e. φ is nonlinear.
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(b) non-vanishing initialization.

Figure 8: Population risk of two-layer ReLU networks with optimized first layer under Gaussian
data and linear teacher. Individual dotted lines correspond to different γ2 (from 0.2 to 2) which is
independent to the risk. (a) Vanishing initialization. The risk under symmetric data is predicted
by Proposition 17. (b) Non-vanishing initialization. The red and blue lines represent models
optimized from i.i.d. and symmetric initialization, respectively. The risk for symmetric initialization
is predicted by Theorem 8.

D Additional Results

D.1 Risk of ReLU Network under Symmetric Data

If the dataset is symmetric and the label is noiseless, that is

Symmetric Data: ∀i ∈ [1, n],∃!j ∈ [1, n] s.t. xi + xj = 0,

then the population risk of the gradient flow solution can be given explicitly for certain
nonlinearities:
Proposition 17. Given the same conditions as in Proposition 7, if the data is symmetric
and the nonlinearity satisfies φ′(x) + φ′(−x) = C for constant C, then as n, d, h→∞

R(γ1<0.5)(f̂)→ 0; R(γ1≥0.5)(f̂) =

(
1− 1

2γ1

)
r2. (177)

Note that the requirement on the nonlinearity holds for ReLU and SoftPlus. This expression
is again independent to γ2 and aligns with the experimental results in Figure 8. In addition,
the risk is upper-bounded by the null risk for all γ1. We remark that the symmetry
assumption does not hold in general for i.i.d. samples from symmetric distributions, and
Figure 8 demonstrates that the additional condition alters the dependence of the risk on γ1.

Proof. Without loss of generality assume X = [X0,−X0]. Then by (124), (125) one have

∂w+

∂t
=

1

2n0

2n0∑
i=1

[(
yi − h0φ(w>+xi) + h0φ(w>−xi)

)
φ′(w>+xi)xi

]
, (178)

∂w−
∂t

= − 1

2n0

2n0∑
i=1

[(
yi − h0φ(w>+xi) + h0φ(w>−xi)

)
φ′(w>−xi)xi

]
. (179)

Therefore from exact zero initialization one can show that, for nonlinear activations satisfying
φ(x)− φ(−x) = x, such as ReLU and SoftPlus,

∂(w+)

∂t
+
∂(w−)

∂t

=
1

2n0

2n0∑
i=1

[(
yi − h0φ(w>+xi) + h0φ(w>−xi)

)
(φ′(w>+xi)− φ′(w>−xi))xi

]
= 0. (180)
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And therefore the gradient flow of w+ is

∂w+

∂t
=

1

2n0

2n0∑
i=1

[(
yi − h0φ(w>+xi) + h0φ(−w>+xi)

)
φ′(w>+xi)xi

]
=

1

2n0
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i=1

[(
yi − hφ(w>+xi) + h0φ(−w>+xi)

)(
φ′(w>+xi) + φ′(−w>+xi)

)
xi

]
=

1

2n0

n0∑
i=1

[(
yi − h0w

>
+xi

)
xi

]
=

1

2n0
X0y0 −

1

2n0
h0X0X

>
0 w+. (181)

The flow of w− follows from symmetry. It is easy to show that the stationary point satisfies

w
(t=∞)
+ = −w(t=∞)

− =


1

h0
β, γ1 < 0.5,

1

h0
X(X>X)−1X>β, γ1 > 0.5.

(182)

And hence the asymptotic risk is

R→


0, γ1 < 0.5,(

1− 1

2γ1

)
‖β‖2, γ1 > 0.5.

(183)

The same conclusion holds for vanishing initialization if we assume that the trajectory stays
close to that of exact zero initialization. Note that although the prediction aligns well with
the experimental results, the argument in Theorem 7 does not directly apply due to the
undefined derivative of ReLU at the origin.
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E Experiment Setup

Optimizing the Second Layer. We compute the minimum-norm solution by directly
solving the linear inverse problem. We set n = 1000 and vary γ1, γ2 from 0.1 to 3. The linear
teacher model F (x) = x>β is fixed as β = −1d/

√
d. For each set of (γ1, γ2) we average

across 50 draws to obtain the risk.

Optimizing the First Layer. For both initializations, we use gradient descent with small
step size (η = 0.1) and train the model for minimally 25000 steps and till ‖∇W f(X,W )‖2F <
10−6. We fix n = 320 and vary γ1, γ2 from 0.1 to 3 with the same linear teacher model
β = −1d/

√
d. The risk is averaged across 20 models trained from different initializations.
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