
Under review as a conference paper at ICLR 2020

UNDERSTANDING AND ROBUSTIFYING
DIFFERENTIABLE ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable Architecture Search (DARTS) has attracted a lot of attention due to
its simplicity and small search costs achieved by a continuous relaxation and an
approximation of the resulting bi-level optimization problem. However, DARTS
does not work robustly for new problems: we identify a wide range of search
spaces for which DARTS yields degenerate architectures with very poor test per-
formance. We study this failure mode and show that, while DARTS successfully
minimizes validation loss, the found solutions generalize poorly when they coin-
cide with high validation loss curvature in the architecture space. We show that
by adding one of various types of regularization we can robustify DARTS to find
solutions with less curvature and better generalization properties. Based on these
observations, we propose several simple variations of DARTS that perform sub-
stantially more robustly in practice. Our observations are robust across five search
spaces on three image classification tasks and also hold for the very different do-
mains of disparity estimation (a dense regression task) and language modelling.

1 INTRODUCTION

Neural Architecture Search (NAS), the process of automatically designing neural network archi-
tectures, has recently attracted attention by achieving state-of-the-art performance on a variety of
tasks (Zoph & Le, 2017; Real et al., 2019). Differentiable architecture search (DARTS) (Liu et al.,
2019) significantly improved the efficiency of NAS over prior work, reducing its costs to the same or-
der of magnitude as training a single neural network. This expanded the scope of NAS substantially,
allowing it to also be applied on more expensive problems, such as semantic segmentation (Chenxi
et al., 2019) or disparity estimation (Saikia et al., 2019).

However, several researchers have also reported DARTS to not work well, in some cases even no
better than random search (Li & Talwalkar, 2019; Sciuto et al., 2019). Why is this? How can these
seemingly contradicting results be explained? The overall goal of this paper is to understand and
overcome such failure modes of DARTS. To this end, we make the following contributions:

1. We identify 12 NAS benchmarks based on four search spaces in which standard DARTS yields
degenerate architectures with poor test performance across several datasets (Section 3).

2. By computing the eigenspectrum of the Hessian of the validation loss with respect to the archi-
tectural parameters, we show that there is a strong correlation between its dominant eigenvalue
and the architecture’s generalization error. Based on this finding, we propose a simple variation
of DARTS with early stopping that performs substantially more robustly (Section 4).

3. We show that, related to previous work on sharp/flat local minima, regularizing the inner objective
of DARTS more strongly allows it to find solutions with smaller Hessian spectrum and better
generalization properties. Based on these insights, we propose two practical robustifications of
DARTS that overcome its failure modes in all our 12 NAS benchmarks (Section 5).

Our findings are robust across a wide range of NAS benchmarks based on image recognition and
also hold for the very different domains of language modelling (PTB) and disparity estimation. They
consolidate the findings of the various results in the literature and lead to a substantially more robust
version of DARTS. We provide our implementation and scripts to facilitate reproducibility1.

1 https://github.com/MetaAnonym/RobustDARTS

1

https://github.com/MetaAnonym/RobustDARTS

Under review as a conference paper at ICLR 2020

2 BACKGROUND AND RELATED WORK

2.1 RELATION BETWEEN FLAT/SHARP MINIMA AND GENERALIZATION PERFORMANCE

Already Hochreiter & Schmidhuber (1997) observed that flat minima of the training loss yield better
generalization performance than sharp minima. Recent work (Keskar et al., 2016; Yao et al., 2018)
focuses more on the settings of large/small batch size training, where observations show that small
batch training tends to get attracted to flatter minima and generalizes better.Similarly, Nguyen et al.
(2018) observed that this phenomenon manifests also in the hyperparameter space. They showed
that whenever the hyperparameters overfit the validation data, the minima lie in a sharper region of
the space. This motivated us to conduct a similar analysis in the context of differentiable architecture
search later in Section 4.1, where we see the same effect in the space of neural network architectures.

2.2 BI-LEVEL OPTIMIZATION

We start by a short introduction of the bi-level optimization problem (Colson et al., 2007). These
are problems which contain two optimization tasks, nested within each other.

Definition 2.1. Given the outer objective function F : RP × RN → R and the inner objective
function f : RP × RN → R, the bi-level optimization problem is given by

min
y∈RP

F (y, θ∗(y)) (1)

s.t. θ∗(y) ∈ argmin
θ∈RN

f(y, θ), (2)

where y ∈ RP and θ ∈ RN are the outer and inner variables, respectively. One may also see the
bi-level problem as a constrained optimization problem, with the inner problem as a constraint.

In general, even in the case when the inner objective (2) is strongly convex and has an unique
minimizer θ∗(y) = argminθ∈RN f(y, θ)), it is not possible to directly optimize the outer objective
(1). A possible method around this issue is to use the implicit function theorem to retrieve the
derivative of the solution map (or response map) θ∗(y) ∈ F ⊆ RN w.r.t. y (Bengio, 2000; Pedregosa,
2016; Beirami et al., 2017). Another strategy is to approximate the inner problem with a dynamical
system (Domke, 2012; Maclaurin et al., 2015; Franceschi et al., 2017; 2018), where the optimization
dynamics could, e.g., describe gradient descent. In the case that the minimizer of the inner problem
is unique, under some conditions the set of minimizers of this approximate problem will indeed
converge to the minimizers of the bilevel problem (1) (see Franceschi et al. (2018)).

2.3 NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) denotes the process of automatically designing neural network
architectures in order to overcome the cumbersome trial-and-error process when designing archi-
tectures manually. We briefly review NAS here and refer to the recent survey by Elsken et al.
(2019b) for a more thorough overview. Prior work mostly employs either reinforcement learning
techniques (Baker et al., 2017a; Zoph & Le, 2017; Zhong et al., 2018; Zoph et al., 2018) or evo-
lutionary algorithms (Stanley & Miikkulainen, 2002; Liu et al., 2018b; Miikkulainen et al., 2017;
Real et al., 2017; 2019) to optimize the discrete architecture space. As these methods are often
very expensive, various works focus on reducing the search costs by, e.g., employing network mor-
phisms (Cai et al., 2018a;b; Elsken et al., 2017; 2019a), weight sharing within one-shot models (Sax-
ena & Verbeek, 2016; Bender et al., 2018; Pham et al., 2018) or multi-fidelity optimization (Baker
et al., 2017b; Falkner et al., 2018; Li et al., 2017; Zela et al., 2018), but their applicability still often
remains restricted to rather simple tasks and small datasets.

2.4 DIFFERENTIABLE ARCHITECTURE SEARCH (DARTS)

A recent line of work focuses on relaxing the discrete neural architecture search problem to a con-
tinuous one that can be solved by gradient descent (Liu et al., 2019; Xie et al., 2019; Casale et al.,
2019; Cai et al., 2019). In DARTS (Liu et al., 2019), this is achieved by simply using a weighted

2

Under review as a conference paper at ICLR 2020

sum of possible candidate operations for each layer, whereas the real-valued weights then effec-
tively parametrize the network’s architecture. We will now review DARTS in more detail, as our
work builds directly upon it.

Continuous relaxation of the search space. In agreement with prior work (Zoph et al., 2018;
Real et al., 2019), DARTS optimizes only substructures called cells that are stacked to define the
full network architecture. Each cell contains N nodes organized in a directed acyclic graph. The
graph contains two inputs nodes (given by the outputs of the previous two cells), a set of intermediate
nodes, and one output node (given by concatenating all intermediate nodes). Each intermediate node
x(j) represents a feature map. See Figure 1 for an illustration of such a cell. Instead of applying
a single operation to a specific node during architecture search, Liu et al. (2019) relax the decision
which operation to choose by computing the intermediate node as a mixture of candidate operations,
applied to predecessor nodes x(i), i < j, x(j) =

∑
i<j

∑
o∈O

exp(αi,j
o)∑

o′∈O exp(αi,j

o′)
o
(
x(i)
)
, where O

denotes the set of all candidate operations (e.g., 3 × 3 convolution, skip connection, 3 × 3 max
pooling, etc.) and α = (αi,jo)i,j,o serves as a real-valued parameterization of the architecture.

Gradient-based optimization of the search space. DARTS then optimizes both the weights
of the search network (often called the one-shot model, since the weights of all individual sub-
graphs/architectures are shared) and architectural parameters by alternating gradient descent. The
network weights and the architecture parameters are optimized on the training and validation set,
respectively. This can be interpreted as solving the bi-level optimization problem (1), (2), where
F and f are the validation and training loss, Lvalid and Ltrain, respectively, while y and θ de-
note the architectural parameters α and network weights w, respectively. Note that DARTS only
approximates the lower-level solution by a single gradient step (see Appendix A for more details).

At the end of the search phase, a discrete cell is obtained by choosing the k most important incoming
operations for each intermediate node while all others are pruned. Importance is measured by the
operation weighting factor exp(αi,j

o)∑
o′∈O exp(αi,j

o′)
.

3 WHEN DARTS FAILS

We now describe various search spaces and demonstrate that standard DARTS fails on them. We
start with four search spaces similar to the original CIFAR-10 search space but simpler, and evaluate
across three different datasets (CIFAR-10, CIFAR-100 and SVHN). They are quite standard in that
they use the same macro architecture as the original DARTS paper (Liu et al., 2018a), consisting of
normal and reduction cells; however, they only allow a subset of operators for the cell search space:

S1: This search space uses a different set of only two operators per edge, which we identified
using an offline process that iteratively dropped the operations from the original DARTS
search space with the least importance. This pre-optimized space has the advantage of
being quite small while still including many strong architectures. We refer to Appendix B
for details on its construction and an illustration (Figure 8).

S2: In this space, the set of candidate operations per edge is {3 × 3 SepConv, SkipConnect}.
We choose these operations since they are the most frequent ones in the discovered cells
reported by Liu et al. (2019).

S3: In this space, the set of candidate operations per edge is {3 × 3 SepConv, SkipConnect,
Zero}, where the Zero operation simply replaces every value in the input feature map by
zeros.

S4: In this space, the set of candidate operations per edge is {3 × 3 SepConv, Noise}, where
the Noise operation simply replaces every value from the input feature map by noise
ε ∼ N (0, 1). This is the only space out of S1-S4 that is not a strict subspace of the
original DARTS space; we intentionally added the Noise operation, which actively harms
performance and should therefore not be selected by DARTS.

We ran DARTS on each of these spaces, using exactly the same setup as Liu et al. (2019). Figure
1 shows the poor cells DARTS selected on these search spaces for CIFAR-10 (see Appendix G for

3

Under review as a conference paper at ICLR 2020

c_{k-2}

0

skip_connect

c_{k-1} skip_connect
1

skip_connect

2

skip_connect

3
skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(a) Space 1

c_{k-2}

0

skip_connect
2skip_connect

c_{k-1}
skip_connect

1skip_connect

skip_connect

skip_connect

3skip_connect
c_{k}

sep_conv_3x3

(b) Space 2

c_{k-2} 0
skip_connect

1
skip_connect

2skip_connect

3
skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(c) Space 3

c_{k-2}

0
sep_conv_3x3

1

sep_conv_3x3
2noise

3
noise

c_{k-1}

sep_conv_3x3

noise

noise
c_{k}

noise

(d) Space 4

Figure 1: The poor cells standard DARTS finds on spaces S1-S4. For all spaces, DARTS chooses
mostly parameter-less operations (skip connection) or even the harmful Noise operation. Shown
are the normal cells on CIFAR-10; see Appendix G for reduction cells and other datasets.

analogous results on the other datasets). Already visually, one might suspect that the found cells are
suboptimal: the parameter-less skip connections dominate in almost all the edges for spaces S1-S3,
and for S4 even the harmful Noise operation was selected for five out of eight operations. Table
1 (first column) confirms the very poor performance standard DARTS yields on all of these search
spaces and on different datasets. We note that Liu et al. (2019) and Xie et al. (2019) argue that the
Zero operation can help to search for the architecture topology and choice of operators jointly, but
in our experiments it did not help to reduce the importance weight of the skip connection (compare
Figure 1b vs. Figure 1c).

We emphasize that search spaces S1-S3 are very natural, and, as strict subspaces of the original
space, should merely be easier to search than that. They are in no way special or constructed in an
adversarial manner. Only S4 was constructed specifically to show-case the failure mode of DARTS
selecting the obviously suboptimal Noise operator.

S5: Very small search space with known global optimum. Knowing the global minimum has
the advantage that one can benchmark the performance of algorithms by measuring the regret of
chosen points with respect to the known global minimum. Therefore, we created another search
space with only one intermediate node for both normal and reduction cells, and 3 operation choices
in each edge, namely 3× 3 SepConv, SkipConnection, and 3× 3 MaxPooling. The total number of
possible architectures in this space is 81, all of which we evaluated a-priori. We dub this space S5.

We ran DARTS on this search space three times for each dataset and compared its result to the
baseline of Random Search with weight sharing (RS-ws) by Li & Talwalkar (2019). Figure 2 shows
the test regret of the architectures selected by DARTS (blue) and RS-ws (green) throughout the
search. DARTS manages to find an architecture close to the global minimum, but around epoch 40
the test performance deteriorated. Note that the one-shot (search model) validation error (dashed
red line) did not deteriorate but rather converged, indicating that the architectural parameters are
overfitting to the validation set. In contrast, RS-ws stays relatively constant throughout the search;
when evaluating only the final architecture found, RS-ws indeed outperformed DARTS.

0 10 20 30 40 50
Search epoch

0

1

2

3

4

5

6

7

Te
st

 re
gr

et
 (%

)

L2 factor: 0.0003
DARTS test regret
DARTS one-shot val. error
RS-ws test regret

10

20

30

40

50

60

Va
lid

at
io

n
er

ro
r (

%
)

Figure 2: Test regret and validation er-
ror of the one-shot model when running
DARTS on S5 and CIFAR-10. DARTS
finds the global minimum but starts
overfitting the architectural parameters
to the validation set in the end.

S6: encoder-decoder architecture for disparity esti-
mation. To study whether our findings generalize be-
yond image recognition, we also analyzed a search space
for a very different problem: finding encoder-decoder ar-
chitectures for the dense regression task of disparity esti-
mation; please refer to Appendix E for details. We base
this search space on AutoDispNet (Saikia et al., 2019),
which used DARTS for a space containing normal, down-
sampling and upsampling cells. We again constructed
a reduced space. Similarly to the image classification
search spaces, we found the normal cell to be mainly
composed of parameter-less operations (see Figure 23 in
Appendix G). As expected, this causes a large general-
ization error (see first row in Table 2 of our later experi-
ments).

4

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50
Search epoch

10

15

20

25

30

On
e-

sh
ot

 v
al

id
at

io
n

er
ro

r (
%

)

0 10 20 30 40 50
Search epoch

2

3

4

5

6

7

8

Te
st

 e
rro

r (
%

)

0 10 20 30 40 50
Search epoch

0.2

0.4

0.6

0.8

Do
m

in
an

t E
ig

en
va

lu
e S1

S2
S3
S4

Figure 3: (left) validation error of search model; (middle) test er-
ror of the architectures deemed by DARTS optimal (right) dom-
inant eigenvalue of ∇2

αLvalid throughout DARTS search. Solid
line and shaded areas show mean and standard deviation of 3 in-
dependent runs. All experiments conducted on CIFAR-10.

0.15 0.20 0.25 0.30 0.35 0.40
Average Dominant Eigenvalue

3.0

3.5

4.0

4.5

5.0

5.5

Te
st

 e
rro

r (
%

)

S1 C10 (Average over the EV trajectory)
 Pearson corr. coef.: 0.867, p-value: 0.00000

Figure 4: Correlation be-
tween dominant eigenvalue of
∇2
αLvalid and test error of cor-

responding architectures.

4 THE ROLE OF DOMINANT EIGENVALUES OF ∇2
αLvalid

We now analyze why DARTS fails in all these cases. Motivated by Section 2.1, we will have a
closer look at the largest eigenvalue λαmax of the Hessian matrix of validation loss ∇2

αLvalid w.r.t.
the architectural parameters α.

4.1 LARGE ARCHITECTURAL EIGENVALUES AND GENERALIZATION PERFORMANCE

One may hypothesize that DARTS performs poorly because its approximate solution of the bi-level
optimization problem by iterative optimization fails, but we actually observe validation errors to
progress nicely: Figure 3 (left) shows that the one-shot validation error converges in all cases, even
though the cell structures selected here are the ones in Figure 1.

Rather, the architectures DARTS finds do not generalize well. This can be seen in Figure 3 (middle).
There, every 5 epochs, we evaluated the architecture deemed by DARTS to be optimal according
to the α values. As one can notice, the architectures start to degenerate after a certain number of
search epochs, similarly to the results shown in Figure 2. We hypothesized that this might be related
to sharp local minima as discussed in Section 2.1. To test this hypothesis, we computed the full
Hessian ∇2

αLvalid of the validation loss w.r.t. the architectural parameters on a randomly sampled
mini-batch. Figure 3 (right) shows that the dominant eigenvalue λαmax (which serves as a proxy
for the sharpness) indeed increases in standard DARTS, along with the test error (middle) of the
final architectures, while the validation error still decreases (left). We also studied the correlation
between λαmax and test error more directly, by measuring these two quantities for 24 different archi-
tectures (obtained via standard DARTS and the regularized versions we discuss in Section 5). For
the example of space S1 on CIFAR-10, Figure 4 shows that λαmax indeed strongly correlates with
test error (with a Pearson correlation coefficient of 0.867).

4.2 LARGE ARCHITECTURAL EIGENVALUES AND PERFORMANCE DROP AFTER PRUNING

0.0 0.5 1.0 1.5 2.0
Dominant Eigenvalue

0

10

20

30

Va
lid

at
io

n
ac

cu
ra

cy
 d

ro
p

(%
)

Eigenvalues vs. Accuracy Drop
 Spearman corr. coef.: 0.736

Figure 5: Drop in accuracy
after discretizing the search
model vs. the sharpness of
minima (by means of λαmax).

One reason why DARTS performs poorly when the architectural
eigenvalues are large (and thus the minimum is sharp) might be
the pruning step at the end of DARTS: the optimal, continuous α∗
from the search is pruned to obtain a discrete α∗d, somewhere in the
neighbourhood of α∗. In the case of a sharp minimum α∗, α∗d might
have a loss function value significantly higher than the minimum
α∗, while in the case of a flat minimum, α∗d is expected to have a
similar loss function value.

To investigate this hypothesis, we measured the performance drop
w.r.t. to the search model weights incurred by this discretization
step and correlated it with λαmax. The results in Figure 5 show that,
indeed, low curvature never led to large performance drops. Having
identified this relationship, we now move on to avoid high curvature.

5

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6
Max. Drop probability

3

4

5

6

7

Te
st

 e
rro

r (
%

)

C10
S1
S2
S3
S4

0.0 0.2 0.4 0.6
Max. Drop probability

22

24

26

28

30

C100

0.0 0.2 0.4 0.6
Max. Drop probability

2

3

4

5

6

7

SVHN

Figure 6: Effect of regularization strength via ScheduledDropPath (during the search phase) on the
test performance of DARTS (solid lines) and DARTS-ES (dashed-lines). Results for each of the
search spaces and datasets.

4.3 EARLY STOPPING BASED ON LARGE EIGENVALUES OF ∇2
αLvalid

We propose a simple early stopping methods to avoid large curvature and thus poor generalization.
We emphasize that simply stopping the search based on validation performance (as one would do
in the case of training a network) does not apply here as NAS directly optimizes validation perfor-
mance, which – as we have seen in Figure 2 – keeps on improving. Table 1: Performance of

DARTS and DARTS-ES.
(mean ± std for 3 runs each).
Benchmark DARTS DARTS-ES

C10

S1 4.66± 0.71 3.05 ± 0.07
S2 4.42± 0.40 3.41 ± 0.14
S3 4.12± 0.85 3.71 ± 1.14
S4 6.95± 0.18 4.17 ± 0.21

C100

S1 29.93± 0.41 28.90 ± 0.81
S2 28.75± 0.92 24.68 ± 1.43
S3 29.01± 0.24 26.99 ± 1.79
S4 24.77 ± 1.51 23.90 ± 2.01

SVHN

S1 9.88± 5.50 2.80 ± 0.09
S2 3.69± 0.12 2.68 ± 0.18
S3 4.00± 1.01 2.78 ± 0.29
S4 2.90± 0.02 2.55 ± 0.15

Instead, we propose to track λαmax over the course of architecture
search and stop whenever it increases too much. To implement this
idea, we use a simple heuristic that worked off-the-shelf without any
tuning. Let λ

α

max(i) denote the value of λαmax smoothed over k = 5

epochs around i; then, we stop if λ
α

max(i−k)/λ
α

max(i) < 0.75 and
return the architecture from epoch i − k. By this early stopping
heuristic, we do not only avoid exploding eigenvalues, which are
correlated with poor generalization (see Figure 4), but also shorten
the time of the search. Table 1 shows the results for running DARTS
with this early stopping criterion (DARTS-ES) across S1-S4 and
all three image classification datasets. Early stopping significantly
improved DARTS for all settings without ever harming it.

5 REGULARIZATION OF INNER OBJECTIVE IMPROVES GENERALIZATION OF
ARCHITECTURES

As we saw in Section 4.1, sharper minima (by means of large eigenvalues) of the validation loss
lead to poor generalization performance. In our bi-level optimization setting, the outer variables’
trajectory depends on the inner optimization procedure. Therefore, we hypothesized that modifying
the landscape of the inner objective Ltrain could redirect the outer variables α to flatter areas of the
architectural space. We study two ways of regularization (data augmentation in Section 5.1 and L2

regularization in Section 5.2) and find that both, along with the early stopping criterion from Section
4.3, make DARTS more robust in practice. We emphasize that we do not alter the regularization of
the final training and evaluation phase, but solely that of the search phase. The setting we use for all
experiments in this paper to obtain the final test performance is described in Appendix C.

5.1 REGULARIZATION VIA DATA AUGMENTATION

We first investigate the effect of regularizing via data augmentation, namely masking out parts of
the input and intermediate feature maps via Cutout (CO, DeVries & Taylor (2017)) and Scheduled-
DropPath (DP, Zoph et al. (2018)), respectively, during architecture search. We ran DARTS with
CO and DP (with and without our early stopping criterion, DARTS-ES) with different maximum DP
probabilities on all three image classification datasets and search spaces S1-S4.

6

Under review as a conference paper at ICLR 2020

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

3

4

5

6

7

Te
st

 e
rro

r (
%

)

C10
S1
S2
S3
S4

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

22

24

26

28

30

C100

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

2

3

4

5

6

7

SVHN

Figure 7: Effect of L2 regularization of the inner objective during architecture search for DARTS
(solid lines) and DARTS-ES (dashed).

Table 2: Effect of regularization for dispar-
ity estimation. Search was conducted on
FlyingThings3D (FT) and then evaluated
on both FT and Sintel. Lower is better.

Aug. One-shot valid FT test Sintel test Params
Scale EPE EPE EPE (M)
0.0 4.49 3.83 5.69 9.65
0.1 3.53 3.75 5.97 9.65
0.5 3.28 3.37 5.22 9.43
1.0 4.61 3.12 5.47 12.46
1.5 5.23 2.60 4.15 12.57
2.0 7.45 2.33 3.76 12.25
L2 reg. One-shot valid FT test Sintel test Params
factor EPE EPE EPE (M)
3× 10−4 3.95 3.25 6.13 11.00
9× 10−4 5.97 2.30 4.12 13.92
27× 10−4 4.25 2.72 4.83 10.29
81× 10−4 4.61 2.34 3.85 12.16

Figure 6 summarizes the results: regularization im-
proves the test performance of DARTS and DARTS-
ES in all cases, sometimes very substantially, and at
the same time kept the dominant eigenvalue relatively
low (Figure 12). This also directly results in smaller
drops in accuracy after pruning, as discussed in Sec-
tion 4.2; indeed, the search runs plotted in Figure 5
are the same as in this section. Figure 16 in the ap-
pendix explicitly shows how regularization relates to
the accuracy drops. We also refer to further results in
the appendix: Figure 10 (showing test vs. validation
error) and Table 5 (showing that overfitting of the ar-
chitectural parameters is reduced).

Similar observations hold for disparity estimation on
S6, where we vary the strength of standard data aug-
mentation methods, such as shearing or brightness change, rather then masking parts of features,
which is unreasonable for this task. The augmentation strength is described by an “augmentation
scaling factor” (Appendix E). Table 2 summarizes the results. We report the average end point error
(EPE), which is the Euclidean distance between the predicted and ground truth disparity maps. Data
augmentation avoided the degenerate architectures and substantially improved results.

5.2 INCREASED L2 REGULARIZATION

As a second type of regularization, we also tested different L2 regularization factors 3i · 10−4 for
i ∈ {1, 3, 9, 27, 81}. Standard DARTS in fact does already include a small amount of L2 regular-
ization; i = 1 yields its default. Figure 7 shows that DARTS’ test performance (solid lines) can
be significantly improved by higher L2 factors across all datasets and spaces, while keeping the
dominant eigenvalue low (Figure 13). DARTS with early stopping (dashed lines) also benefits from
additional regularization. Again, we observe the implicit regularization effect on the outer objective
which reduces the overfitting of the architectural parameters. We again refer to Table 2 for disparity
estimation; Appendix F shows similar results for language modelling (Penn TreeBank).

5.3 PRACTICAL ROBUSTIFICATION OF DARTS BY REGULARIZING THE INNER OBJECTIVE

Based on the insights from the aforementioned analysis and empirical results, we now propose two
alternative simple modifications to make DARTS more robust in practice without having to manually
tune its regularization hyperparameters.

DARTS with adaptive regularization One option is to adapt DARTS’ regularization hyperpa-
rameters in an automated way, in order to keep the architectural weights in areas of the validation
loss objective with smaller curvature. The simplest off-the-shelf procedure towards this desiderata
would be to increase the regularization strength whenever the dominant eigenvalue starts increasing
rapidly. Algorithm 1 (DARTS-ADA, Appendix D.1) shows such a procedure. We use the same

7

Under review as a conference paper at ICLR 2020

stopping criterion as in DARTS-ES (Section 4.3), roll back DARTS to the epoch when this criterion
is met, and continue the search with a larger regularization value R for the remaining epochs (larger
by a factor of η). This procedure is repeated whenever the criterion is met, unless the regularization
value exceeds some maximum predefined value Rmax.

Multiple DARTS runs with different regularization strength Liu et al. (2019) already sug-
gested to run the search phase of DARTS four times, resulting in four architectures, and to return
the best of these four architectures w.r.t. validation performance when retrained from scratch for a
limited number of epochs. We propose to use the same procedure, with the only difference that
the four runs use different amounts of regularization. The resulting RobustDARTS (R-DARTS)
method is conceptually very simple, trivial to implement and likely to work well if any of the tried
regularization strengths works well.

Table 3: Empirical evaluation of practical robustified ver-
sions of DARTS. Each entry is the test error after retraining
the selected architecture as usual. The best method for each
setting is boldface and underlined, the second best boldface.

Benchmark RS-ws DARTS R-DARTS(DP) R-DARTS(L2) DARTS-ES DARTS-ADA

C10

S1 3.23 3.84 3.11 2.78 3.01 3.10
S2 3.66 4.85 3.48 3.31 3.26 3.35
S3 2.95 3.34 2.93 2.51 2.74 2.59
S4 8.07 7.20 3.58 3.56 3.71 4.84

C100

S1 23.30 29.46 25.93 24.25 28.37 24.03
S2 21.21 26.05 22.30 22.24 23.25 23.52
S3 23.75 28.90 22.36 23.99 23.73 23.37
S4 28.19 22.85 22.18 21.94 21.26 23.20

SVHN

S1 2.59 4.58 2.55 4.79 2.72 2.53
S2 2.72 3.53 2.52 2.51 2.60 2.54
S3 2.87 3.41 2.49 2.48 2.50 2.50
S4 3.46 3.05 2.61 2.50 2.51 2.46

Table 3 evaluates the performance
of our practical robustifications
of DARTS, DARTS-ADA and
R-DARTS (based on either L2 or
ScheduledDropPath regularization),
by comparing them to the original
DARTS, DARTS-ES and Random
Search with weight sharing (RS-ws).
For each of these methods, as pro-
posed in the DARTS paper (Liu et al.,
2019), we ran the search four inde-
pendent times with different random
seeds and selected the architecture
used for the final evaluation based on
a validation run as described above.
As the table shows, in accordance with Li & Talwalkar (2019), RS-ws often outperformed the
original DARTS; however, with our robustifications, DARTS typically performs substantially
better than RS-ws. DARTS-ADA consistently improved over standard DARTS for all benchmarks,
indicating that a gradual increase of regularization during search prevents ending up in the bad
regions of the architectural space. Finally, RobustDARTS yielded the best performance and since it
is also easier to implement than DARTS-ES and DARTS-ADA, it is the method that we recommend
to be used in practice.

Table 4: DARTS vs. Robust-
DARTS on the original DARTS
search spaces. We show mean ±
stddev for 5 repetitions (based on
4 fresh subruns each as in Table
3); for the more expensive PTB we
could only afford 1 such repetition.

Benchmark DARTS R-DARTS(L2)
C10 2.91 ± 0.25 2.95 ± 0.21

C100 20.58 ± 0.44 18.01 ± 0.26
SVHN 2.46 ± 0.09 2.17 ± 0.09
PTB 58.64 57.59

Finally, since the evaluations in this paper have so far focussed
on smaller subspaces of the original DARTS search space, the
reader may wonder how well RobustDARTS works on the full
search spaces. As Table 4 shows, RobustDARTS performed
similarly to DARTS for the two original benchmarks from the
DARTS paper (PTB and CIFAR-10), on which DARTS was
developed and is well tuned; however, even when only chang-
ing the dataset to CIFAR-100 or SVHN, RobustDARTS al-
ready performed significantly better than DARTS, underlining
its robustness.

6 CONCLUSIONS

We showed that the generalization performance of architectures found by DARTS is related to the
eigenvalues of the Hessian matrix of the validation loss w.r.t. the architectural parameters. Stan-
dard DARTS often results in degenerate architectures with large eigenvalues and poor generaliza-
tion. Based on this observation, we proposed a simple early stopping criterion for DARTS based
on tracking the largest eigenvalue. Our empirical results also show that properly regularizing the
inner objective helps controlling the eigenvalue and therefore improves generalization. Our findings
substantially improve our understanding of DARTS’ failure modes and lead to much more robust
versions. They are consistent across many different search spaces on image recognition tasks and
also for the very different domains of language modelling and disparity estimation. Our code is
available for reproducibility.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. In International Conference on Learning Representations,
2017a.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating Neural Architecture
Search using Performance Prediction. In NIPS Workshop on Meta-Learning, 2017b.

Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, and Vahid Tarokh. On optimal gener-
alizability in parametric learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 3455–3465. Curran Associates, Inc., 2017.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing, 2018.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):1889–
1900, Aug 2000. ISSN 0899-7667. doi: 10.1162/089976600300015187.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In A. Fitzgibbon et al. (Eds.) (ed.), European Conf. on Computer Vision (ECCV),
Part IV, LNCS 7577, pp. 611–625. Springer-Verlag, October 2012.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by
network transformation. In AAAI, 2018a.

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-Level Network Transforma-
tion for Efficient Architecture Search. In International Conference on Machine Learning, June
2018b.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations, 2019.

Francesco Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture search. arXiv
preprint, 2019.

Liu Chenxi, Chen Liang Chieh, Schroff Florian, Adam Hartwig, Hua Wei, Yuille Alan L., and
Fei Fei Li. Auto-deeplab: Hierarchical neural architecture search for semantic image segmenta-
tion. In Conference on Computer Vision and Pattern Recognition, 2019.

Benot Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization, 2007.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Justin Domke. Generic methods for optimization-based modeling. In Neil D. Lawrence and Mark
Girolami (eds.), Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics, volume 22 of Proceedings of Machine Learning Research, pp. 318–326, La Palma,
Canary Islands, 21–23 Apr 2012. PMLR.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with convolutional networks. In IEEE International
Conference on Computer Vision (ICCV), 2015.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Simple And Efficient Architecture Search
for Convolutional Neural Networks. In NIPS Workshop on Meta-Learning, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architec-
ture search via lamarckian evolution. In International Conference on Learning Representations,
2019a.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019b.

9

Under review as a conference paper at ICLR 2020

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter op-
timization at scale. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Re-
search, pp. 1437–1446, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/falkner18a.html.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1165–1173, International Convention Centre, Sydney, Aus-
tralia, 06–11 Aug 2017. PMLR.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1568–1577, Stockholmsmssan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, January 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
configuration evaluation for hyperparameter optimization. In Proceedings of the International
Conference on Learning Representations (ICLR’17), 2017. Published online: iclr.cc.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
CoRR, abs/1902.07638, 2019.

H. Liu, K. Simonyan, O. Vinyals, C.Fernando, and K. Kavukcuoglu. Hierarchical representations
for efficient architecture search. In International Conference on Learning Representations (ICLR)
2018 Conference Track, April 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical Representations for Efficient Architecture Search. In International Conference on Learn-
ing Representations, 2018b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 2113–2122, Lille, France, 07–09 Jul 2015. PMLR.

N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
arXiv:1512.02134.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving Deep
Neural Networks. In arXiv:1703.00548, March 2017.

Thanh Dai Nguyen, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Stable bayesian optimization.
International Journal of Data Science and Analytics, 6(4):327–339, Dec 2018. ISSN 2364-4168.
doi: 10.1007/s41060-018-0119-9.

10

http://proceedings.mlr.press/v80/falkner18a.html
iclr.cc

Under review as a conference paper at ICLR 2020

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Maria Florina Bal-
can and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 737–746, New
York, New York, USA, 20–22 Jun 2016. PMLR.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In International Conference on Machine Learning, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 2902–2911, International Conven-
tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Aging Evolution for Image Classi-
fier Architecture Search. In AAAI, 2019.

Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and Thomas Brox. Autodispnet:
Improving disparity estimation with automl, 2019.

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems
29, pp. 4053–4061. Curran Associates, Inc., 2016.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. arXiv preprint, 2019.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10:99–127, 2002.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In International Conference on Learning Representations, 2019.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 31, pp. 4949–4959. Curran Associates, Inc., 2018.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning: Ef-
ficient joint neural architecture and hyperparameter search. In ICML 2018 Workshop on AutoML
(AutoML 2018), July 2018.

Zhao Zhong, Jingchen Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generation. In CVPR. IEEE Computer Society, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Interna-
tional Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In Conference on Computer Vision and Pattern Recognition, 2018.

11

Under review as a conference paper at ICLR 2020

A MORE DETAIL ON DARTS

Here we present a detailed description of DARTS architectural update steps. We firstly provide
the general formalism which computes the gradient of the outer level problem in (1) by means of
the implicit function theorem. Afterwards, we present how DARTS computes the gradient used to
update the architectural parameters α.

A.1 DERIVATIVE WITH SMOOTHED NON-QUADRATIC LOWER LEVEL PROBLEM

Consider the general definition of the bi-level optimization problem as given by (1) and (2). Given
that f is twice continuously differentiable and that all stationary points are local minimas, one
can make use of the implicit function theorem to find the derivative of the solution map θ∗(y)
w.r.t. y (Bengio, 2000). Under the smoothness assumption, the optimality condition of the lower
level (2) is ∇θf(y, θ) = 0, which defines an implicit function θ∗(y). With the assumption that
minθ f(y, θ) has a solution, there exists a (y, θ∗) such that ∇θf(y, θ∗) = 0. Under the condition
that ∇θf(y, θ∗) = 0 is continuously differentiable and that θ∗(y) is continuously differentiable at
y, implicitly differentiating the last equality from both sides w.r.t. y and applying the chain rule,
yields:

∂(∇θf)
∂θ

(y, θ∗) · ∂θ
∗

∂y
(y) +

∂(∇θf)
∂y

(y, θ∗) = 0. (3)

Assuming that the Hessian∇2
θf(y, θ

∗) is invertible, we can rewrite (3) as follows:

∂θ∗

∂y
(y) = −

(
∇2
θf(y, θ

∗)
)−1
· ∂(∇θf)

∂y
(y, θ∗). (4)

Applying the chain rule to (1) for computing the total derivative of F with respect to y yields:

dF

dy
=
∂F

∂θ
· ∂θ

∗

∂y
+
∂F

∂y
, (5)

where we have omitted the evaluation at (y, θ∗). Substituting (4) into (5) and reordering yields:

dF

dy
=
∂F

∂y
− ∂F

∂θ
·
(
∇2
θf
)−1
· ∂

2f

∂θ∂y
. (6)

equation 6 computes the gradient of F, given the function θ∗(y), which maps outer variables to the
inner variables minimizing the inner problem. However, in most of the cases obtaining such a map-
ping is computationally expensive, therefore different heuristics have been proposed to approximate
dF/dy (Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al., 2017; 2018).

A.2 DARTS ARCHITECTURAL GRADIENT COMPUTATION

DARTS optimization procedure is defined as a bi-level optimization problem where Lvalid is the
outer objective (1) and Ltrain is the inner objective (2):

min
α
Lvalid(α,w∗(α)) (7)

s.t. w∗(α) = argmin
w

Ltrain(α,w), (8)

where both losses are determined by both the architecture parameters α (outer variables) and the
network weights w (inner variables). Based on Appendix A.1, under some conditions, the total
derivative of Lvalid w.r.t. α evaluated on (α,w∗(α)) would be:

dLvalid
dα

= ∇αLvalid −∇wLvalid
(
∇2
wLtrain

)−1∇2
α,wLtrain, (9)

where∇α = ∂
∂α ,∇w = ∂

∂w and∇2
α,w = ∂2

∂α∂w . Computing the inverse of the Hessian is in general
not possible considering the high dimensionality of the model parameters w, therefore resolving to
gradient-based iterative algorithms for finding w∗ is necessary. However, this would also require to

12

Under review as a conference paper at ICLR 2020

optimize the model parameters w till convergence each time α is updated. If our model is a deep
neural network it is clear that this computation is expensive, therefore Liu et al. (2019) propose
to approximate w∗(α) by updating the current model parameters w using a single gradient descent
step:

w∗(α) ≈ w − ξ∇wLtrain(α,w), (10)

where ξ is the learning rate for the virtual gradient step DARTS takes with respect to the model
weights w. From equation 10 the gradient of w∗(α) with respect to α is

∂w∗

∂α
(α) = −ξ∇2

α,wLtrain(α,w), (11)

By setting the evaluation point w∗ = w − ξ∇wLtrain(α,w) and following the same derivation as
in Appendix A.1, we obtain the DARTS architectural gradient approximation:

dLvalid
dα

(α) = ∇αLvalid(α,w∗)− ξ∇wLvalid(α,w∗)∇2
α,wLtrain(α,w∗), (12)

where the inverse Hessian ∇2
wL−1train in (9) is replaced by the learning rate ξ. This expression

however contains again an expensive vector-matrix product. Liu et al. (2019) reduce the complexity
by using the finite difference approximation around w± = w ± ε∇wLvalid(α,w∗) for some small
ε = 0.01/ ‖∇wLvalid(α,w∗)‖2 to compute the gradient of∇αLtrain(α,w∗) with respect to w as

∇2
α,wLtrain(α,w∗) ≈

∇αLtrain(α,w+)−∇αLtrain(α,w−)
2ε∇wLvalid(α,w∗)

⇔

∇wLvalid(α,w∗)∇2
α,wLtrain(α,w∗) ≈

∇αLtrain(α,w+)−∇αLtrain(α,w−)
2ε

. (13)

In the end, combining equation 12 and equation 13 gives the gradient to compute the architectural
updates in DARTS:

dLvalid
dα

(α) = ∇αLvalid(α,w∗)−
ξ

2ε

(
∇αLtrain(α,w+)−∇αLtrain(α,w−)

)
(14)

In all our experiments we always use ξ = η (also called second order approximation in Liu et al.
(2019)), where η is the learning rate used in SGD for updating the parameters w.

B CONSTRUCTION OF S1 FROM SECTION 3

We ran DARTS two times on the default search space to find the two most important operations per
mixed operation. Initially, every mixed operation consists of 8 operations. After the first DARTS
run, we drop the 4 (out of 8) least important ones. In the second DARTS run, we drop the 2 (out
of the remaining 4) least important ones. S1 is then defined to contain only the two remaining most
important operations per mixed op. Refer to Figure 8 for an illustration of this pre-optimized space.

C FINAL ARCHITECTURE EVALUATION

Similar to the original DARTS paper (Liu et al., 2019), the architecture found during the search are
scaled up by increasing the number of filters and cells and retrained from scratch to obtain the final
test performance. For CIFAR-100 and SVHN we use 16 number of initial filters and 8 cells when
training architectures from scratch for all the experiments we conduct. The rest of the settings is the
same as in Liu et al. (2019).

On CIFAR-10, when scaling the ScheduledDropPath drop probability, we use the same settings for
training from scratch the found architectures as in the original DARTS paper, i.e. 36 initial filters
and 20 stacked cells. However, for search space S2 and S4 we reduce the number of initial filters
to 16 in order to avoid memory issues, since the cells found with more regularization usually are
composed only with separable convolutions. When scaling the L2 factor on CIFAR-10 experiments
we use 16 initial filters and 8 stacked cells, except the experiments on S1, where the settings are the
same as in Liu et al. (2019), i.e. 36 initial filters and 20 stacked cells.

13

Under review as a conference paper at ICLR 2020

c_{k-2}

0

skip_connect

dil_conv_3x3

1

skip_connect

dil_conv_5x5

2

max_pool_3x3

skip_connect

3

skip_connect

sep_conv_3x3

c_{k-1}

skip_connect

dil_conv_5x5

skip_connect

sep_conv_3x3

skip_connect

sep_conv_3x3

max_pool_3x3

skip_connect

skip_connect

dil_conv_3x3

skip_connect

sep_conv_3x3

skip_connect

dil_conv_3x3

c_{k}

skip_connect

dil_conv_3x3

dil_conv_3x3

dil_conv_5x5

dil_conv_3x3

dil_conv_5x5

(a) Normal cell space

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

1

max_pool_3x3

avg_pool_3x3

2

max_pool_3x3

avg_pool_3x3

3

max_pool_3x3

avg_pool_3x3

c_{k-1}

max_pool_3x3

dil_conv_3x3

max_pool_3x3

avg_pool_3x3

max_pool_3x3

sep_conv_3x3

max_pool_3x3

avg_pool_3x3

skip_connect

dil_conv_5x5

skip_connect

dil_conv_3x3

skip_connect

dil_conv_5x5

c_{k}

skip_connect

dil_conv_5x5

skip_connect

dil_conv_5x5

skip_connect

dil_conv_5x5

(b) Reduction cell space

Figure 8: Search space S1.

Note that although altering the regularization factors during DARTS search, when training the final
architectures from scratch we always use the same values for them as in Liu et al. (2019), i.e.
ScheduledDropPath maximum drop probability linearly increases from 0 towards 0.2 throughout
training, Cutout is always enabled with cutout probability 1.0, and the L2 regularization factor is set
to 3 · 10−4.

14

Under review as a conference paper at ICLR 2020

D ADDITIONAL EMPIRICAL RESULTS

0 10 20 30 40 50
Search epoch

0

1

2

3

4

5

6

7

Te
st

 re
gr

et
 (%

)

L2 factor: 0.0009
DARTS test regret
DARTS one-shot val. error
RS-ws test regret

0 10 20 30 40 50
Search epoch

L2 factor: 0.0018

10

20

30

40

50

60

Va
lid

at
io

n
er

ro
r (

%
)

0 10 20 30 40 50
Search epoch

0

1

2

3

4

5

6

7

Te
st

 re
gr

et
 (%

)

L2 factor: 0.0027

0 10 20 30 40 50
Search epoch

L2 factor: 0.0081

0 10 20 30 40 50
Search epoch

L2 factor: 0.0243

10

20

30

40

50

60

Va
lid

at
io

n
er

ro
r (

%
)

Figure 9: Test regret and validation error of the one-shot model when running DARTS on S5 and
CIFAR-10 with different L2 regularization values. The architectural parameters’ overfit reduces as
we increase the L2 factor and successfully finds the global minimum. However, we notice that the
architectural parameters start underfitting as we increase to much the L2 factor, i.e. both validation
and test error increase.

Table 5: Validation (train) and test accuracy on CIFAR-10 of the one-shot and final evaluation model,
respectively. The values in the last column show the maximum eigenvalue λαmax (computed on a
random sampled mini-batch) of the Hessian, at the end of search for different maximum drop path
probability). The four blocks in the table state results for the search spaces S1-S4, respectively.

Drop Valid acc. Test acc. Params λαmax
Prob. seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3

S1

0.0 87.22 87.01 86.98 96.16 94.43 95.43 2.24 1.93 2.03 1.023 0.835 0.698
0.2 84.24 84.32 84.22 96.39 96.66 96.20 2.63 2.84 2.48 0.148 0.264 0.228
0.4 82.28 82.18 82.79 96.44 96.94 96.76 2.63 2.99 3.17 0.192 0.199 0.149
0.6 79.17 79.18 78.84 96.89 96.93 96.96 3.38 3.02 3.17 0.300 0.255 0.256

S2

0.0 88.49 88.40 88.35 95.15 95.48 96.11 0.93 0.86 0.97 0.684 0.409 0.268
0.2 85.29 84.81 85.36 95.15 95.40 96.14 1.28 1.44 1.36 0.270 0.217 0.145
0.4 82.03 82.66 83.20 96.34 96.50 96.44 1.28 1.28 1.36 0.304 0.411 0.282
0.6 79.86 80.19 79.70 96.52 96.35 96.29 1.21 1.28 1.36 0.292 0.295 0.281

S3

0.0 88.78 89.15 88.67 94.70 96.27 96.66 2.21 2.43 2.85 0.496 0.535 0.446
0.2 85.61 85.60 85.50 96.78 96.84 96.74 3.62 4.04 2.99 0.179 0.185 0.202
0.4 83.03 83.24 83.43 97.07 96.85 96.48 4.10 3.74 3.38 0.156 0.370 0.184
0.6 79.86 80.03 79.68 96.91 94.56 96.44 4.46 2.30 2.66 0.239 0.275 0.280

S4

0.0 86.33 86.72 86.46 92.80 93.22 93.14 1.05 1.13 1.05 0.400 0.442 0.314
0.2 81.01 82.43 82.03 95.84 96.08 96.15 1.44 1.44 1.44 0.070 0.054 0.079
0.4 79.49 79.67 78.96 96.11 96.30 96.28 1.44 1.44 1.44 0.064 0.057 0.049
0.6 74.54 74.74 74.37 96.42 96.36 96.64 1.44 1.44 1.44 0.057 0.060 0.066

D.1 ADAPTIVE DARTS DETAILS

We evaluated DARTS-ADA (Section 5.3) with R = 3 · 10−4 (DARTS default), Rmax = 3 · 10−2
and η = 10 on all the search spaces and datasets we use for image classification. The results are
shown in Table 3 (DARTS-ADA). The function train and eval conducts the normal DARTS
search for one epoch and returns the architecture at the end of that epoch’s updates and the stop
value if a decision was made to stop the search and rollback to stop epoch.

15

Under review as a conference paper at ICLR 2020

Algorithm 1: DARTS ADA

/* E: epochs to search; R: initial regularization value; Rmax: maximal regularization value; stop criter:

stopping criterion; η: regularization increase factor */

Input : E, R, Rmax, stop criter, η

/* start search for E epochs */

for epoch in E do
/* run DARTS for one epoch and return stop=True together with the stop epoch */

/* and the architecture at stop epoch if the criterion is met */

stop, stop epoch, arch ← train and eval(stop criter);
if stop &R ≤ Rmax then

/* start DARTS from stop epoch with a larger R */

arch ← DARTS ADA(E - stop epoch, η · R, Rmax, stop criter, η);
break

end
end
Output: arch

0.0 0.1 0.2 0.3 0.4 0.5 0.6

3

4

5

6

7

Te
st

 e
rro

r (
%

)

S1 C10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S2 C10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S3 C10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S4 C10

12

14

16

18

20

22

24

26

28

On
e-

sh
ot

 V
al

. e
rro

r (
%

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
21

22

23

24

25

26

27

28

29

Te
st

 e
rro

r (
%

)

S1 C100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S2 C100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S3 C100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S4 C100

35

40

45

50

55

60

On
e-

sh
ot

 V
al

. e
rro

r (
%

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
DP max. prob.

2

4

6

8

10

12

14

16

18

Te
st

 e
rro

r (
%

)

S1 SVHN

0.0 0.1 0.2 0.3 0.4 0.5 0.6
DP max. prob.

S2 SVHN

0.0 0.1 0.2 0.3 0.4 0.5 0.6
DP max. prob.

S3 SVHN

0.0 0.1 0.2 0.3 0.4 0.5 0.6
DP max. prob.

S4 SVHN
Test error
One-shot val. error

5

6

7

8

9

10

11

12

13

On
e-

sh
ot

 V
al

. e
rro

r (
%

)

Figure 10: Test errors of architectures along with the validation error of the one-shot model for each
dataset and space when scaling the ScheduledDropPath drop probability. Note that these results
(blue lines) are the same as the ones in Figure 7.

16

Under review as a conference paper at ICLR 2020

0.0003 0.0009 0.0027 0.0081 0.0243

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Te
st

 e
rro

r (
%

)

S1 C10

0.0003 0.0009 0.0027 0.0081 0.0243

S2 C10

0.0003 0.0009 0.0027 0.0081 0.0243

S3 C10

0.0003 0.0009 0.0027 0.0081 0.0243

S4 C10

10

15

20

25

30

35

On
e-

sh
ot

 V
al

. e
rro

r (
%

)

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

22

24

26

28

30

Te
st

 e
rro

r (
%

)

S1 C100

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

S2 C100

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

S3 C100

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

S4 C100

40

50

60

70

80

On
e-

sh
ot

 V
al

. e
rro

r (
%

)

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Te
st

 e
rro

r (
%

)

S1 SVHN

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

S2 SVHN

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

S3 SVHN

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

S4 SVHN
Test error
One-shot val. error

0

2

4

6

8

10

On
e-

sh
ot

 V
al

. e
rro

r (
%

)

Figure 11: Test errors of architectures along with the validation error of the one-shot model for each
dataset and space when scaling the L2 factor. Note that these results (blue lines) are the same as the
ones in Figure 6.

17

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar10
dp=0.0000
dp=0.2000
dp=0.4000
dp=0.6000

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar10

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar10

0 10 20 30 40 50
Epoch

0.05

0.10

0.15

0.20

0.25

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar10

0 10 20 30 40 50
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar100

0 10 20 30 40 50
Epoch

0.4

0.6

0.8

1.0

1.2

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar100

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar100

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

0.30

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar100

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

M
ax

. E
ig

en
va

lu
e

M
A

S1 svhn

0 10 20 30 40 50
Epoch

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

M
ax

. E
ig

en
va

lu
e

M
A

S2 svhn

0 10 20 30 40 50
Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

M
ax

. E
ig

en
va

lu
e

M
A

S3 svhn

0 10 20 30 40 50
Epoch

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

M
ax

. E
ig

en
va

lu
e

M
A

S4 svhn

Figure 12: Local average of the dominant EV λαmax throughout DARTS search (for different drop
path prob. values). Markers denote the early stopping point based on the criterion in Section 4.3.

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar10
L2=0.0003
L2=0.0009
L2=0.0027
L2=0.0081
L2=0.0243

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar10

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar10

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar10

0 10 20 30 40 50
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar100

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar100

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar100

0 10 20 30 40 50
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar100

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

M
ax

. E
ig

en
va

lu
e

M
A

S1 svhn

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

M
ax

. E
ig

en
va

lu
e

M
A

S2 svhn

0 10 20 30 40 50
Epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

M
ax

. E
ig

en
va

lu
e

M
A

S3 svhn

0 10 20 30 40 50
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ax

. E
ig

en
va

lu
e

M
A

S4 svhn

Figure 13: Effect of L2 regularization no the EV trajectory. The figure is analogous to Figure 12.

18

Under review as a conference paper at ICLR 2020

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

Eigenspectrum: S1 cifar10
dp=0.0000
dp=0.2000
dp=0.4000
dp=0.6000

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

Eigenspectrum: S2 cifar10

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Eigenspectrum: S3 cifar10

0 10 20 30
i-th eigenvalue

0.00

0.05

0.10

0.15

Eigenspectrum: S4 cifar10

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S1 cifar100

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S2 cifar100

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

Eigenspectrum: S3 cifar100

0 10 20 30
i-th eigenvalue

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Eigenspectrum: S4 cifar100

0 10 20 30
i-th eigenvalue

0.2

0.1

0.0

0.1

0.2

Eigenspectrum: S1 svhn

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Eigenspectrum: S2 svhn

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

Eigenspectrum: S3 svhn

0 10 20 30
i-th eigenvalue

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Eigenspectrum: S4 svhn

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Eigen. distribution: S1 cifar10
dp=0.0000
dp=0.2000
dp=0.4000
dp=0.6000

0.2 0.0 0.2 0.4
0

2

4

6

8

Eigen. distribution: S2 cifar10

0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Eigen. distribution: S3 cifar10

0.05 0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

30

Eigen. distribution: S4 cifar10

0.5 0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6
Eigen. distribution: S1 cifar100

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

Eigen. distribution: S2 cifar100

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Eigen. distribution: S3 cifar100

0.1 0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

Eigen. distribution: S4 cifar100

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

2

4

6

8

10

12

14

16
Eigen. distribution: S1 svhn

0.1 0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

Eigen. distribution: S2 svhn

0.2 0.1 0.0 0.1 0.2 0.3
0

2

4

6

8

10

12

14
Eigen. distribution: S3 svhn

0.05 0.00 0.05 0.10 0.15
0

5

10

15

20

25

30

35

40

Eigen. distribution: S4 svhn

Figure 14: Effect of ScheduledDropPath and Cutout on the full eigenspectrum of the Hessian at the
end of architecture search for each of the search spaces. Since most of the eigenvalues after the 30-th
largest one are almost zero, we plot only the largest (based on magnitude) 30 eigenvalues here. We
also provide the eigenvalue distribution for these 30 eigenvalues. Notice that not only the dominant
eigenvalue is larger when dp = 0 but in general also the others.

19

Under review as a conference paper at ICLR 2020

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

Eigenspectrum: S1 cifar10
L2=0.0003
L2=0.0009
L2=0.0027
L2=0.0081
L2=0.0243

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

Eigenspectrum: S2 cifar10

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eigenspectrum: S3 cifar10

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

Eigenspectrum: S4 cifar10

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S1 cifar100

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S2 cifar100

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

1.0
Eigenspectrum: S3 cifar100

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Eigenspectrum: S4 cifar100

0 10 20 30
i-th eigenvalue

0.2

0.1

0.0

0.1

0.2

0.3
Eigenspectrum: S1 svhn

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Eigenspectrum: S2 svhn

0 10 20 30
i-th eigenvalue

0.00

0.05

0.10

0.15

0.20
Eigenspectrum: S3 svhn

0 10 20 30
i-th eigenvalue

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125
Eigenspectrum: S4 svhn

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Eigen. distribution: S1 cifar10
L2=0.0003
L2=0.0009
L2=0.0027
L2=0.0081
L2=0.0243

0.2 0.0 0.2 0.4
0

2

4

6

8

10

12

Eigen. distribution: S2 cifar10

0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

2

4

6

8

10
Eigen. distribution: S3 cifar10

0.1 0.0 0.1 0.2
0

5

10

15

20

25
Eigen. distribution: S4 cifar10

0.5 0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12
Eigen. distribution: S1 cifar100

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

7
Eigen. distribution: S2 cifar100

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Eigen. distribution: S3 cifar100

0.1 0.0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

Eigen. distribution: S4 cifar100

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

5

10

15

20

25

30

35

Eigen. distribution: S1 svhn

0.1 0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16
Eigen. distribution: S2 svhn

0.1 0.0 0.1 0.2
0

2

4

6

8

10

12

14

Eigen. distribution: S3 svhn

0.05 0.00 0.05 0.10 0.15
0

5

10

15

20

25

30

Eigen. distribution: S4 svhn

Figure 15: Effect of L2 regularization on the full eigenspectrum of the Hessian at the end of archi-
tecture search for each of the search spaces. Since most of the eigenvalues after the 30-th largest one
are almost zero, we plot only the largest (based on magnitude) 30 eigenvalues here. We also provide
the eigenvalue distribution for these 30 eigenvalues. Notice that not only the dominant eigenvalue is
larger when L2 = 3 · 10−4 but in general also the others.

20

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6
Max. Drop probability

0

2

4

6

8

10

Va
lid

at
io

n
ac

cu
ra

cy
 d

ro
p

(%
)

C10-S1
C10-S2
C10-S3
C10-S4
C100-S1
SVHN-S1

Figure 16: Drop in accuracy after discretizing the search model for different spaces, datasets and
drop path regularization strengths.. Example of some of the settings from Section 5.

21

Under review as a conference paper at ICLR 2020

D.2 A CLOSER LOOK AT THE EIGENVALUES

Over the course of all experiments from the paper, we tracked the largest eigenvalue across all
configuration and datasets to see how they evolve during the search. Figures 12 and 13 shows the
results across all the settings for image classification. It can be clearly seen that increasing the inner
objective regularization, both in terms of L2 or data augmentation, helps controlling the largest
eigenvalue and keeping it to a small value, which again helps explaining why the architectures
found with stronger regularization generalize better. The markers on each line highlight the epochs
where DARTS is early stopped. As one can see from Figure 4, there is indeed some correlation
between the average dominant eigenvalue throughout the search and the test performance of the
found architectures by DARTS.

Figures 14 and 15 (top 3 rows) show the full spectrum (sorted based on eigenvalue absolute values)
at the end of search, whilst bottom 3 rows plot the distribution of eigenvalues in the eigenspectrum.
As one can see, not only the dominant eigenvalue is larger compared to the cases when the regu-
larization is stronger and the generalization of architectures is better, but also the other eigenvalues
in the spectrum have larger absolute value, indicating a sharper objective landscape towards many
dimensions. Furthermore, from the distribution plots note the presence of more negative eigenvalues
whenever the architectures are degenerate (lower regularization value) indicating that DARTS gets
stuck in a point with larger positive and negative curvature of the validation loss objective, associated
with a more degenerate Hessian matrix.

E DISPARITY ESTIMATION

E.1 DATASETS

We use the FlyingThings3D dataset (Mayer et al., 2016) for training AutoDispNet. It consists of
rendered stereo image pairs and their ground truth disparity maps. The dataset provides a training
and testing split consisting of 21, 818 and 4248 samples respectively with an image resolution of
960×540. We use the Sintel dataset (Butler et al. (2012)) for testing our networks. Sintel is another
synthetic dataset from derived from an animated movie which also provides ground truth disparity
maps (1064 samples) with a resolution of 1024× 436.

E.2 TRAINING

We use the AutoDispNet-C architecture as described in Saikia et al. (2019). However, we use
the smaller search which consists of three operations: MaxPool3 × 3, SepConv3 × 3, and
SkipConnect. For training the search network, images are downsampled by a factor of two and
trained for 300k mini-batch iterations. During search, we use SGD and ADAM to optimize the
inner and outer objectives respectively. Differently from the original AutoDispNet we do not warm-
start the search model weights before starting the architectural parameter updates. The extracted
network is also trained for 300k mini-batch iterations but full resolution images are used. Here,
ADAM is used for optimization and the learning rate is annealed to 0 from 1e − 4, using a cosine
decay schedule.

E.3 EFFECT OF REGULARIZATION ON THE INNER OBJECTIVE

To study the effect of regularization on the inner objective for AutoDispNet-C we use experiment
with two types of regularization: data augmentation and of L2 regularization on network weights.

We note that we could not test the early stopping method on AutoDispNet since AutoDispNet relies
on custom operations to compute feature map correlation (Dosovitskiy et al., 2015) and resampling,
for which second order derivatives are currently not available (which are required to compute the
Hessian).

Data augmentation. Inspite of fairly large number of training samples in FlyingThings3D, data
augmentation is crucial for good generalization performance. Disparity estimation networks employ
spatial transformations such as translation, cropping, shearing and scaling. Additionally, appearance
transformations such as additive Gaussian noise, changes in brightness, contrast, gamma and color

22

Under review as a conference paper at ICLR 2020

are also applied. Parameters for such transformations are sampled from a uniform or Gaussian distri-
bution (parameterized by a mean and variance). In our experiments, we vary the data augmentation
strength by multiplying the variance of these parameter distributions by a fixed factor, which we dub
the augmentation scaling factor. The extracted networks are evaluated with the same augmentation
parameters. The results of increasing the augmentation strength of the inner objective can be seen
in Table 2. We observe that as augmentation strength increases DARTS finds networks with more
number of parameters and better test performance. The best test performance is obtained for the net-
work with maximum augmentation for the inner objective. At the same time the one-shot validation
error increases when scaling up the augmentation factor, which again enforces the argument that the
overfitting of architectural parameters is reduced by this implicit regularizer.
L2 regularization. We study the effect of increasing regularization strength on the weights of the
network. The results are shown in Table 2. Also in this case best test performance is obtained with
the maximum regularization strength.

F RESULTS ON PENN TREEBANK

Here we investigate the effect of more L2 regularization on the inner objective for searching re-
current cells on Penn Treebank (PTB). We again used a reduced search space with only ReLU and
identity mapping as possible operations. The rest of the settings is the same as in (Liu et al., 2019).

We run DARTS search four independent times with different random seeds, each with four L2

regularization factors, namely 5× 10−7 (DARTS default), 15× 10−7, 45× 10−7 and 135× 10−7.
Figure 17 shows the test perplexity of the architectures found by DARTS with the aforementioned
L2 regularization values. As we can see, a stronger regularization factor on the inner objective
makes the search procedure more robust. The median perplexity of the discovered architectures
gets better as we increase the L2 factor from 5× 10−7 to 45× 10−7, while the one-shot validation
mean perplexity increases. This observation is similar to the ones on image classification shown in
Figure 9, showing again that properly regularizing the inner objective helps reduce overfitting the
architectural parameters.

5e-07 1.5e-06 4.5e-06 1.35e-05
L2 factor

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Te
st

 p
er

pl
ex

ity

734

736

738

740

742
On

e-
sh

ot
 v

al
id

at
io

n
pe

rp
le

xi
ty

Effect of more L2 regularization on generalization
Valid ppt

Figure 17: Performance of recurrent cells found with different L2 regularization factors on the inner
objective on PTB. We run DARTS 4 independent times with different random seeds, train each of
them from scratch with the evaluation settings for 1600 epochs and report the median test perplexity.
The blue dashed line denotes the validation perplexity of the search model.

23

Under review as a conference paper at ICLR 2020

G DISCOVERED CELLS ON SEARCH SPACES S1-S4 FROM SECTION 3 ON
OTHER DATASETS

c_{k-2}

0

max_pool_3x3

1

max_pool_3x3

3

max_pool_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3

2sep_conv_3x3

dil_conv_3x3

c_{k}

skip_connect

(a) S1

c_{k-2}

0

sep_conv_3x3
2sep_conv_3x3

c_{k-1} sep_conv_3x3

1
sep_conv_3x3

3
skip_connect

sep_conv_3x3

skip_connect c_{k}

skip_connect

(b) S2

c_{k-2}

0

skip_connect

1
sep_conv_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3
c_{k}

(c) S3

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(d) S4

Figure 18: Reduction cells found by DARTS when ran on CIFAR-10 with its default hyperparame-
ters on spaces S1-S4. These cells correspond with the normal ones in Figure 1.

c_{k-2}

0

skip_connect
1

skip_connect

2

skip_connect

c_{k-1} skip_connect

skip_connect

skip_connect

3
skip_connect

skip_connect

c_{k}

(a) S1 (C100)

c_{k-2}
0

skip_connect

c_{k-1}

skip_connect

1skip_connect

2
skip_connect

3
skip_connect

skip_connect

c_{k}sep_conv_3x3

sep_conv_3x3

(b) S2 (C100)

c_{k-2}

0

skip_connect

1
sep_conv_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

skip_connect

skip_connect

skip_connect

sep_conv_3x3
c_{k}

(c) S3 (C100)

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1} sep_conv_3x3
2

noise

noise c_{k}

noise

3noise

noise

(d) S4 (C100)

c_{k-2}

0

skip_connect

c_{k-1} skip_connect
1

skip_connect

2

skip_connect

3
skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(e) S1 (SVHN)

c_{k-2} 0skip_connect

c_{k-1}

skip_connect
1

skip_connect

skip_connect 2

skip_connect

3skip_connect
c_{k}

skip_connect

skip_connect

(f) S2 (SVHN)

c_{k-2}

0

skip_connect

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect
c_{k}

(g) S3 (SVHN)

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1}
sep_conv_3x3

noise

2noise c_{k}
noise 3

noise

noise

(h) S4 (SVHN)

Figure 19: Normal cells found by DARTS on CIFAR-100 and SVHN when ran with its default
hyperparameters on spaces S1-S4. Notice the dominance of parameter-less operations such as skip
connection and pooling ops.

c_{k-2}

0

max_pool_3x3
1

avg_pool_3x3

c_{k-1}
max_pool_3x3

2
sep_conv_3x3

dil_conv_5x5

dil_conv_3x3

c_{k}
3

dil_conv_5x5

dil_conv_5x5

(a) S1 (C100)

c_{k-2}

0

sep_conv_3x3

1

sep_conv_3x3

c_{k-1} sep_conv_3x3 skip_connect

2
skip_connect

3
skip_connect

c_{k}

sep_conv_3x3

skip_connect

(b) S2 (C100)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

skip_connect
c_{k}

(c) S3 (C100)

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(d) S4 (C100)

c_{k-2}

0

avg_pool_3x3

2
max_pool_3x3

3max_pool_3x3

c_{k-1} max_pool_3x3
1

avg_pool_3x3

max_pool_3x3

skip_connect

c_{k}

skip_connect

(e) S1 (SVHN)

c_{k-2}

0
skip_connect

1
skip_connect

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}
skip_connect

sep_conv_3x3

skip_connect

c_{k}

sep_conv_3x3

(f) S2 (SVHN)

c_{k-2}

0

skip_connect

1

skip_connect
3

skip_connect

c_{k-1}

skip_connect

sep_conv_3x3

2skip_connect
skip_connect

skip_connect

c_{k}

(g) S3 (SVHN)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(h) S4 (SVHN)

Figure 20: Reduction cells found by DARTS on CIFAR-100 and SVHN when ran with its default
hyperparameters on spaces S1-S4.

24

Under review as a conference paper at ICLR 2020

c_{k-2}
0

dil_conv_3x3

1skip_connect

c_{k-1}
skip_connect

3max_pool_3x3

dil_conv_3x3

2sep_conv_3x3

dil_conv_3x3

c_{k}

dil_conv_3x3

(a) S1 (C10)

c_{k-2}

0

sep_conv_3x3
1

sep_conv_3x3

2skip_connect

c_{k-1} sep_conv_3x3

skip_connect c_{k}

sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3

(b) S2 (C10)

c_{k-2}

0

skip_connect

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect c_{k}

(c) S3 (C10)

c_{k-2}

0

sep_conv_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3 1

sep_conv_3x3
2

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}
sep_conv_3x3

(d) S4 (C10)

c_{k-2}

0

skip_connect 1
skip_connect 2

max_pool_3x3

c_{k-1}

skip_connect

3skip_connect

dil_conv_3x3

skip_connect

c_{k}

dil_conv_3x3

(e) S1 (C100)

c_{k-2}

0

skip_connect 1

skip_connect

c_{k-1}
skip_connect

skip_connect

2
skip_connect

3skip_connect

skip_connect c_{k}

sep_conv_3x3

(f) S2 (C100)

c_{k-2}

0

skip_connect

1
skip_connect

2skip_connectc_{k-1}

skip_connect

skip_connect

sep_conv_3x3
3

skip_connect

c_{k}

sep_conv_3x3

(g) S3 (C100)

c_{k-2}

0sep_conv_3x3

1

sep_conv_3x3
2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_3x3

sep_conv_3x3
c_{k}

noise

(h) S4 (C100)

c_{k-2}
0

skip_connect

1

skip_connect

c_{k-1}

dil_conv_5x5

skip_connect

2skip_connect 3

skip_connect

c_{k}dil_conv_3x3 dil_conv_5x5

(i) S1 (SVHN)

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1} skip_connect

skip_connect
2skip_connect

3skip_connect
c_{k}

sep_conv_3x3

sep_conv_3x3

(j) S2 (SVHN)

c_{k-2}

0

skip_connect

3

skip_connect

c_{k-1}

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}
sep_conv_3x3

(k) S3 (SVHN)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(l) S4 (SVHN)

Figure 21: Normal cells found by DARTS-ES when ran with DARTS default hyperparameters on
spaces S1-S4.

c_{k-2}

0

max_pool_3x3

1
max_pool_3x3

2

max_pool_3x3 3

max_pool_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3

max_pool_3x3

max_pool_3x3 c_{k}

(a) S1 (C10)

c_{k-2}

0

sep_conv_3x3 1

sep_conv_3x3

2

skip_connect

c_{k-1} sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3skip_connect
c_{k}

skip_connect

(b) S2 (C10)

c_{k-2}

0

skip_connect

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(c) S3 (C10)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(d) S4 (C10)

c_{k-2}
0

max_pool_3x3

2

max_pool_3x3

c_{k-1}
max_pool_3x3

1
max_pool_3x3

dil_conv_5x5
c_{k}dil_conv_5x5

3dil_conv_5x5
dil_conv_5x5

(e) S1 (C100)

c_{k-2}

0

sep_conv_3x3 1

sep_conv_3x3

2

sep_conv_3x3

c_{k-1} sep_conv_3x3

skip_connect

sep_conv_3x3

3skip_connect
c_{k}

sep_conv_3x3

(f) S2 (C100)

c_{k-2} 0sep_conv_3x3

1skip_connect

2
skip_connect

3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(g) S3 (C100)

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(h) S4 (C100)

c_{k-2}

0

max_pool_3x3 1

max_pool_3x3
2

max_pool_3x3

c_{k-1} max_pool_3x3

max_pool_3x3
c_{k}

dil_conv_5x5

3dil_conv_5x5

dil_conv_5x5

(i) S1 (SVHN)

c_{k-2}

0

sep_conv_3x3
1

sep_conv_3x3

c_{k-1}
sep_conv_3x3

2
sep_conv_3x3

sep_conv_3x3

3
sep_conv_3x3

c_{k}

sep_conv_3x3

sep_conv_3x3

(j) S2 (SVHN)

c_{k-2}

0
sep_conv_3x3

1sep_conv_3x3

c_{k-1} sep_conv_3x3
2

sep_conv_3x3

sep_conv_3x3 c_{k}

sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3

(k) S3 (SVHN)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(l) S4 (SVHN)

Figure 22: Reduction cells found by DARTS-ES when ran with DARTS default hyperparameters on
spaces S1-S4.

25

Under review as a conference paper at ICLR 2020

c_{k-2}

0

max_pool_3x3
2

sep_conv_3x3

c_{k-1}
max_pool_3x3

1max_pool_3x3

max_pool_3x3

max_pool_3x3

c_{k}

(a) Normal cell

c_{k-2}

0

skip_connect

2

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1
sep_conv_3x3

sep_conv_3x3

c_{k}sep_conv_3x3

(b) Reduction cell

c_skip

0

sep_conv_3x3

2

max_pool_3x3

c_pred_{k-1} sep_conv_3x3

c_{k-2}

sep_conv_3x3

1
sep_conv_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3

c_{k}sep_conv_3x3

(c) Upsampling cell

Figure 23: Cells found by AutoDispNet when ran on S6-d. These cells correspond to the results for
augmentation scale 0.0 of Table 2.

c_{k-2}

0

sep_conv_3x3
1

sep_conv_3x3

2sep_conv_3x3
c_{k-1}

skip_connect

skip_connect

sep_conv_3x3

c_{k}

(a) Normal cell

c_{k-2}

0

skip_connect
1skip_connect

c_{k-1}
sep_conv_3x3

sep_conv_3x3

2sep_conv_3x3 c_{k}

sep_conv_3x3

(b) Reduction cell

c_skip 0sep_conv_3x3

c_pred_{k-1}

sep_conv_3x3

c_{k-2}
sep_conv_3x3

1
skip_connect

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_3x3 c_{k}

sep_conv_3x3

(c) Upsampling cell

Figure 24: Cells found by AutoDispNet when ran on S6-d. These cells correspond to the results for
augmentation scale 2.0 of Table 2.

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_3x3

2sep_conv_3x3 c_{k}

sep_conv_3x3

(a) Normal cell

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1}
skip_connect

sep_conv_3x3

2sep_conv_3x3 c_{k}

sep_conv_3x3

(b) Reduction cell
c_skip

0
skip_connect

1

skip_connect

2

skip_connect

c_pred_{k-1}
sep_conv_3x3

c_{k-2}
sep_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(c) Upsampling cell

Figure 25: Cells found by AutoDispNet when ran on S6-d. These cells correspond to the results for
L2 = 3 · 10−4 of Table 2.

c_{k-2}

0

sep_conv_3x3

2

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1
sep_conv_3x3

sep_conv_3x3

c_{k}sep_conv_3x3

(a) Normal cell

c_{k-2} 0
skip_connect

c_{k-1}

max_pool_3x3

1
skip_connect

sep_conv_3x3
2

sep_conv_3x3
c_{k}

sep_conv_3x3

(b) Reduction cell

c_skip

0

sep_conv_3x3

1

sep_conv_3x3

c_pred_{k-1} sep_conv_3x3

c_{k-2}

skip_connect

c_{k-1}

sep_conv_3x3

2

sep_conv_3x3

sep_conv_3x3

c_{k}

sep_conv_3x3

(c) Upsampling cell

Figure 26: Cells found by AutoDispNet when ran on S6-d. These cells correspond to the results for
L2 = 81 · 10−4 of Table 2.

26

	Introduction
	Background and Related Work
	Relation between flat/sharp minima and generalization performance
	Bi-level Optimization
	Neural Architecture Search
	Differentiable Architecture Search (DARTS)

	When DARTS fails
	The Role of Dominant Eigenvalues of 2Lvalid
	Large architectural eigenvalues and generalization performance
	Large architectural eigenvalues and performance drop after pruning
	Early stopping based on large eigenvalues of 2Lvalid

	Regularization of inner objective improves generalization of architectures
	Regularization via data augmentation
	Increased L2 regularization
	Practical Robustification of DARTS by Regularizing the Inner Objective

	Conclusions
	More detail on DARTS
	Derivative with smoothed non-quadratic lower level problem
	DARTS architectural gradient computation

	Construction of S1 from Section 3
	Final Architecture Evaluation
	Additional empirical results
	Adaptive DARTS details
	A closer look at the eigenvalues

	Disparity Estimation
	Datasets
	Training
	Effect of regularization on the inner objective

	Results on Penn Treebank
	Discovered cells on search spaces S1-S4 from Section 3 on other datasets

