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ABSTRACT

Recent evidence shows that convolutional neural networks (CNNs) are biased
towards textures so that CNNs are non-robust to adversarial perturbations over
textures, while traditional robust visual features like SIFT (scale-invariant feature
transforms) are designed to be robust across a substantial range of affine distortion,
addition of noise, etc with the mimic of human perception nature. This paper aims
to leverage good properties of SIFT to renovate CNN architectures towards better
accuracy and robustness. We borrow the scale-space extreme value idea from
SIFT, and propose EVPNet (extreme value preserving network) which contains
three novel components to model the extreme values: (1) parametric differences
of Gaussian (DoG) to extract extrema, (2) truncated ReLU to suppress non-stable
extrema and (3) projected normalization layer (PNL) to mimic PCA-SIFT like
feature normalization. Experiments demonstrate that EVPNets can achieve similar
or better accuracy than conventional CNNs, while achieving much better robustness
on a set of adversarial attacks (FGSM,PGD,etc) even without adversarial training.

1 INTRODUCTION

Convolutional neural networks (CNNs) evolve very fast ever since AlexNet (Krizhevsky & Hinton,
2012) makes a great breakthrough on ImageNet image classification challenge (Deng et al., 2009) in
2012. Various network architectures have been proposed to further boost classification performance
since then, including VGGNet (Simonyan & Zisserman, 2015), GoogleNet (Szegedy et al., 2015),
ResNet (He et al., 2016), DenseNet (Huang et al., 2017) and SENet (Hu et al., 2018), etc. Recently,
people even introduce network architecture search to automatically learn better network architectures
(Zoph & Le, 2017; Liu et al., 2018).

However, state-of-the-art CNNs are challenged by their robustness, especially vulnerability to
adversarial attacks based on small, human-imperceptible modifications of the input (Szegedy et al.,
2014; Goodfellow et al., 2015). Su et al. (2018) thoroughly study the robustness of 18 well-known
ImageNet models using multiple metrics, and reveals that adversarial examples are widely existent.
Many methods are proposed to improve network robustness, which can be roughly categorized into
three perspectives: (1) modifying input or intermediate features by transformation (Guo et al., 2018),
denoising (Liao et al., 2018; Jia et al., 2019), generative models (Samangouei et al., 2018; Song et al.,
2018); (2) modifying training by changing loss functions (Wong & Kolter, 2018; Elsayed et al., 2018;
Zhang et al., 2019), network distillation (Papernot et al., 2016), or adversarial training (Goodfellow
et al., 2015; Tramer et al., 2018) (3) designing robust network architectures (Xie et al., 2019; Svoboda
et al., 2019; Nayebi & Ganguli, 2017) and possible combinations of these basic categories. For more
details of current status, please refer to a recent survey (Akhtar & Mian, 2018).

Although it is known that adversarial examples are widely existent (Su et al., 2018), some fundamental
questions are still far from being well studied like what causes it, and how the factor impacts the
performance, etc. One of the interesting findings in (Su et al., 2018) is that model architecture is
a more critical factor to network robustness than model size (e.g. number of layers). Some recent
works start to explore much deeper nature. For instance, both (Geirhos et al., 2019; Baker et al.,
2018) show that CNNs are trained to be strongly biased towards textures so that CNNs do not
distinguish objects contours from other local or even noise edges, thus perform poorly on shape
dominating object instances. On the contrary, there are no statistical difference for human behaviors
on both texture rich objects and global shape dominating objects in psychophysical trials. Ilyas et al.
(2019) further analyze and show that deep convolutional features can be categorized into robust and
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Figure 1: Left: Input image; Middle: response after ReLU of first conv-layer in ResNet-50; Right: response
of first EVPConv-layer in EVPNet-50 (by replacing all k × k conv-layers in ResNet-50). Note multi-channel
feature maps are merged into one channel with per-pixel max-out operations for easy illustration. Clearly,
ResNet-50 has more noise responses, while EVPNet-50 gives more responses on object boundary.

non-robust features, while non-robust features may even account for good generalization. However,
non-robust features are not expected to have good model interpretability. It is thus an interesting
topic to disentangle robust and non-robust features with certain kinds of human priors in the network
designing or training process.

In fact, human priors have been extensively used in handcraft designed robust visual features like
SIFT (Lowe, 2004). SIFT detects scale-space (Lindeberg, 1994) extrema from input images, and
selects stable extrema to build robust descriptors with refined location and orientation, which achieves
great success for many matching and recognition based vision tasks before CNN being reborn in
2012 (Krizhevsky & Hinton, 2012). The scale-space extrema are efficiently implemented by using a
difference-of-Gaussian (DoG) function to search over all scales and image locations, while the DoG
operator is believed to biologically mimic the neural processing in the retina of the eye (Young, 1987).
Unfortunately, there is (at least explicitly) no such scale-space extrema operations in all existing
CNNs. Our motivation is to study the possibility of leveraging good properties of SIFT to renovate
CNN networks architectures towards better accuracy and robustness.

In this paper, we borrow the scale-space extrema idea from SIFT, and propose extreme value
preserving networks (EVPNet) to separate robust features from non-robust ones, with three novel
architecture components to model the extreme values: (1) parametric DoG (pDoG) to extract extreme
values in scale-space for deep networks, (2) truncated ReLU (tReLU) to suppress noise or non-stable
extrema and (3) projected normalization layer (PNL) to mimic PCA-SIFT (Ke et al., 2004) like feature
normalization. pDoG and tReLU are combined into one block named EVPConv, which could be used
to replace all k × k (k > 1) conv-layers in existing CNNs. We conduct comprehensive experiments
and ablation studies to verify the effectiveness of each component and the proposed EVPNet. Figure 1
illustrates a comparison of responses for standard convolution + ReLU and EVPConv in ResNet-50
trained on ImageNet, and shows that the proposed EVPConv produces less noises and more responses
around object boundary than standard convolution + ReLU, which demonstrates the capability of
EVPConv to separate robust features from non-robust ones. Our major contribution are:

• To the best of our knowledge, we are the first to explicitly separate robust features from non-robust
ones in deep neural networks from an architecture design perspective.

• We propose three novel network architecture components to model extreme values in deep
networks, including parametric DoG, truncated ReLU, and projected normalization layer, and
verify their effectiveness through comprehensive ablation studies.
• We propose extreme value preserving networks (EVPNets) to combine those three novel com-

ponents, which are demonstrated to be not only more accurate, but also more robust to a set of
adversarial attacks (FGSM, PGD, etc) even for clean model without adversarial training.

2 RELATED WORK

Robust visual features. Most traditional robust visual feature algorithms like SIFT (Lowe, 2004)
and SURF (Bay et al., 2006) are based on the scale-space theory (Lindeberg, 1994), while there
is a close link between scale-space theory and biological vision (Lowe, 2004), since many scale-
space operations show a high degree of similarity with receptive field profiles recorded from the
mammalian retina and the first stages in the visual cortex. For instance, DoG computes the difference
of two Gaussian blurred images and is believed to mimic the neural processing in the retina (Young,
1987). SIFT is one such kind of typical robust visual features, which consists of 4 major stages: (1)
scale-space extrema detection with DoG operations; (2) Keypoints localization by their stability; (3)
Orientation and scale assignment based on primary local gradient direction; (4) Histogram based
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keypoint description. We borrow the scale-space extrema idea from SIFT, and propose three novel
and robust architecture components to mimic key stages of SIFT.

Robust Network Architectures. Many research efforts have been devoted to network robustness
especially on defending against adversarial attacks as summarized in Akhtar & Mian (2018). However,
there are very limited works that tackle this problem from a network architecture design perspective.
A major category of methods (Liao et al., 2018; Xie et al., 2019) focus on designing new layers to
perform denoising operations on the input image or the intermediate feature maps. Most of them
are shown effective on black-box attacks, while are still vulnerable to white-box attacks. Non-local
denoising layer proposed in Xie et al. (2019) is shown to improve robustness to white-box attack to
an extent with adversarial training (Madry et al., 2018). Peer sample information is introduced in
Svoboda et al. (2019) with a graph convolution layer to improve network robustness. Biologically
inspired protection (Nayebi & Ganguli, 2017) introduces highly non-linear saturated activation
layer to replace ReLU layer, and demonstrates good robustness to adversarial attacks, while similar
higher-order principal is also used in Krotov & Hopfield (2018). However, these methods still lack a
systematic architecture design guidance, and many (Svoboda et al., 2019; Nayebi & Ganguli, 2017)
are not robust to iterative attack methods like PGD under clean model setting. In this work, inspired
by robust visual feature SIFT, we are able to design a series of innovative architecture components
systematically for improving both model accuracy and robustness.

3 PRELIMINARY

Difference-of-Gaussian. Given an input image I and Gaussian kernel G(x, y, σ) as below

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

, (1)

where σ denotes the variance. Also, difference of Gaussian (DoG) is defined as
D(x, y, σ) = G(x, y, kσ)⊗ I −G(x, y, σ)⊗ I, (2)

where ⊗ is the convolution operation and k controls the ratio of the variances. Scale-space DoG
repeatedly convolves input images with the same Gaussian kernels, and produces difference-of-
Gaussian images by subtracting adjacent image scales. Scale-space extrema (maxima and minima)
are detected in DoG images by comparing a pixel to its 26 neighbors in 3×3 grids at current and two
adjacent scales (Lowe, 2004).

Adversarial Attacks. We use h(·) to denote the softmax output of classification networks, and
hc(·) to denote the prediction probability of class c. Then given a classifier h(x) = y, the goal
of adversarial attack is to find xadv such that the output of classifier deviates from the true label y:
maxi h

i(xadv) 6= y while closing to the original input: ||x− xadv|| ≤ ε. Here || · || refers to a norm
operator, i.e. L2 or L∞.

Attack Method. The most simple adversarial attack method is Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015), a single-step method which takes the sign of the gradient on the
input as the direction of the perturbation. L(·, ·) denotes the loss function defined by cross entropy.
Specifically, the formation is as follows:

xadv = x+ α · sign(∇xL(h(x), y)), (3)

where x is the clean input, y is the label. α is the norm bound of the adversarial perturbation.
Projected gradient descent (PGD) iteratively applies FGSM with a small step size αi (Kurakin et al.,
2017a; Madry et al., 2018) with formulation as below:

xadv
i+1 = Proj(x+ αi · sign(∇xL(h(x

adv
i ), y))), (4)

where i is the iteration number. ‘Proj’ is the function to project the image back to ε-ball every step.
Some advanced and complex attacks are further introduced in DeepFool (Moosavi-Dezfooli et al.,
2016), CW (Carlini & Wagner, 2017), MI-FGSM (Dong et al., 2018).

Adversarial Training aims to inject adversarial examples into training procedure so that the trained
networks can learn to classify adversarial examples correctly. Specifically, adversarial training solves
the following empirical risk minimization problem:

arg min
h∈H

E(x,y) D[ max
x∗∈A(x)

L(h(x∗), y)], (5)

where A(x) denotes the area around x bounded by L∞/L2 norm ε, and H is the hypothesis space. In
this work, we employ both FGSM and PGD to generate adversarial examples for adversarial training.
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Figure 2: Novel components in EVPNet (a) Overall architecture of EVPConv; (b) plot of truncated ReLU
(tReLU) function; (c) projected normalization layer (PNL).

4 METHOD

Inspired by traditional robust visual feature SIFT, this paper aims to improve model accuracy and
robustness by introducing three novel network architecture components to mimic some key compo-
nents in SIFT: parametric DoG (pDoG), truncated ReLU (tReLU), and projected normalization layer
(PNL). Combining pDoG and tReLU constructs the so-called extreme value preserving convolution
(EVPConv) block as shown in Figure 2(a), which can be used to replace all k×k (k > 1) conv-layers
in existing CNNs. PNL is a new and robust layer plugged in to replace global average pooling (GAP)
layer as shown in Figure 2(c). A network with all the three components is named as extreme value
preserving network (EVPNet). In the following, we will describe these three components in details
separately, and elaborate on how they are used to construct the EVPConv block and EVPNet.

4.1 THREE BASIC COMPONENTS TO MIMIC SIFT

Parametric DoG (pDoG) is a network component we design to mimic DoG operation. Recall
DoG in Equation 2, it repeatedly convolves input images with the same Gaussian kernel in which
kernel size σ is designable, and then computes the differences for adjacent Gaussian blurred images.
For CNNs, we mimic DoG with two considerations. First, we replace the Gaussian kernel with a
learnable convolutional filter. Specifically, we treat each channel of feature map separately as one
image, and convolve it with a learnable k × k kernel to mimic Gaussian convolution. Note that
the learnable convolution kernel is not required to be symmetric since some recent evidence shows
that non-symmetric DoG may perform even better (Einevoll & Plesser, 2012; Winnemöller, 2011).
Applying the procedure to all the feature-map channels is equal to a depth-wise (DW) convolution
(Howard et al., 2017). Second, we enforce successive depth-wise convolutions in the same block with
shared weights since traditional DoG operation uses the same Gaussian kernel. As CNNs produce
full scale information at different stages with a series of convolution and downsampling layers, each
pDoG block just focuses on producing extrema for current scale, while not requiring to produce full
octave extrema like SIFT. The shared DW convolution introduces minimum parameter overhead, and
avoid “extrema drift” in the pDoG space so that it may help finding accurate local extrema. Formally,
given input feature map f0, a minimum of two successive depth-wise convolution is applied as

f1 = DW (f0;w); f2 = DW (f1;w), (6)

where DW (; ) is depth-wise convolution with w as the shared weights. pDoG is thus computed as

d0 = f1 − f0; d1 = f2 − f1. (7)

Following SIFT, we compute local extrema (maxima and minimal) across the pDoG images using
maxout operations (Goodfellow et al., 2013):

z0 = max(d0,d1); z1 = −min(d0,d1) = max(−d0,−d1). (8)

Note we do not compute local extrema in 3 × 3 spatial grids as in SIFT since we do not require
keypoint localization in CNNs. Finally, to keep the module compatible to existing networks, we need
ensure the output feature map to be of the same size (number of channels and resolution). Therefore,
a maxout operation is taken over to merge two feature maps and obtain the final output of this block:

o = max(z0, z1). (9)

Truncated ReLU (tReLU). The pDoG block keeps all the local extrema in the DoG space, while
many local extrema are unstable because of small noise and even contrast changes. SIFT adopts a
local structure fitting procedure to reject those unstable local extrema. To realize similar effect, we
propose truncated ReLU (tReLU) to suppress non-robust local extrema. The basic idea is to truncate
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small extrema which correspond to noise and non-stable extrema in the pDoG space. This can be
implemented by modifying the commonly used ReLU function as

y =

{
|x| if |x| ≥ θ,
0 if |x| < θ,

(10)

where θ is a learnable truncated parameter. Note that this function is discontinued at x = θ and
x = −θ. We make a small modification to obtain a continuous version for easy training as below

y = tReLU(x) =

{
|x| − θ if |x| ≥ θ,

0 if |x| < θ.
(11)

Figure 2(b) plots the tReLU function. Different from the original ReLU, tReLU introduces a threshold
parameter θ and keeps elements with higher magnitude. θ can be either a block-level parameter
(each block has one global threshold) or a channel-level parameter (each channel holds a separate
threshold). By default, we take θ as a block-level parameter.

tReLU is combined with pDoG not only to suppress non-robust extrema, but also to simplify the
operations. When combining Equation 8 and Equation 9 together, there is nested maxout operation
which satisfies commutative law, so that we could rewrite z0 and z1 as

z0 = max(d0,−d0) = |d0|; z1 = max(d1,−d1) = |d1|, (12)

where | · | is element-wise absolute operation. With tReLU to suppress non-robust features, we have

z0 = tReLU(d0); z1 = tReLU(d1). (13)

Hence, in practice, we use Equation 13 instead of Equation 8 to compute z0 and z1. Note that tReLU
does improve robustness and accuracy for pDoG feature maps, while providing no benefits when
replacing ReLU in standard CNNs according to our experiments (see Table 1).

Projected Normalization Layer (PNL). SIFT (Lowe, 2004) computes gradient orientation his-
togram followed by L2 normalization to obtain final feature representation. This process does not
take gradient pixel relationship into account. PCA-SIFT (Ke et al., 2004) handles this issue by
projecting each local gradient patch into a pre-computed eigen-space using PCA. We borrow the
idea from PCA-SIFT to build projected normalization layer (PNL) to replace global average pooling
(GAP) based feature generation in existing CNNs. Suppose the feature-map data matrix before GAP
is X ∈ Rd×c, where d = w × h corresponds to feature map resolution, and c is the number of
channels, we obtain column vectors {xi ∈ Rc}di=1 from X to represent the i-th pixel values from all
channels. The PNL contains three steps:

(1) We add a 1 × 1 conv-layer, which can be viewed as a PCA with learnable projection matrix
W ∈ Rc×p. The output is ui =WTxi, where ui ∈ Rp further forms a data matrix U ∈ Rd×p.

(2) We compute L2 norm for row vectors {ũj ∈ Rd}pj=1 of U , to obtain a vector v = (v1, · · · , vp)
with vj = ‖ũj‖2.

(3) To eliminate contrast or scale impact, we do normalization on v to obtain ṽ = v/‖v‖p, while
the normalized vector ṽ is fed into classification layer for prediction purpose.

It is interesting to note that PNL actually computes a second order pooling similar as (Gao et al.,
2019; Yu & Salzmann, 2018). Suppose wj ∈ Rc is the j-th row ofW , vj in step-2 can be rewritten as

vj =

√∑d

i=1
(wT

j xi)2 =

√∑d

i=1
wT

j xixT
i wj =

√
wT

j (
∑d

i=1
xixT

i )wj =
√
wT

j Awj ,

where A =
∑d

i=1 xix
T
i is an auto-correlation matrix. Figure 2(c) illustrates the PNL layer. Theoreti-

cally, GAP produces a hyper-cube, while PNL produces a hyper-ball in the manifold space. This is
beneficial for robustness since hyper-ball is more smooth, and a smoothed surface is proven more
robust (Cohen et al., 2019). Our experiments also verify this point (see Table 1).

4.2 EVPCONV AND EVPNET

With these three novel components, we can derive a novel convolution block named EVPConv, and
the corresponding networks EVPNet. In details, EVPConv starts from the pDoG component, and
replaces Equation 8 with tReLU as in Equation 13. In SIFT, the contribution of each pixel is weighted
by the gradient magnitude. This idea can be extended to calibrate contributions from each feature-map
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Network +pDoG +tReLU +PNL Clean FGSM PGD-10-1 PGD-10-2 DeepFool CW

SE-ResNet-20

91.68 24.23 3.03 0.00 20.19 0.57
X 92.55 31.14 3.37 0.00 29.33 0.60

X 91.38 25.37 2.79 0.00 23.41 0.23
X 90.92 40.66 13.16 1.66 31.86 1.02

X X 91.98 37.46 4.64 0.01 36.54 0.98
X X 92.62 60.12 28.03 6.37 39.28 4.56
X X X 92.85 66.21 41.06 12.19 40.28 6.78

Table 1: Ablation study results on CIFAR-10, attack with ε = 8. Here ‘PGD-N -s’ denotes PGD attack with N
iterations of step size s pixels.

.

channel. Fortunately, Squeeze-and-Excitation (SE) module proposed in (Hu et al., 2018) provides the
desired capability. We thus insert the SE block after tReLU, and compute the output of EVPConv as:

(s0, s1) = SE(concat(z0, z1)),

o = max(s0, s1), (14)
where concat(·) means concatenating z0 and z1 together to realize a unified and unbiased calibration,
SE(·) means the SE module, and s0 and s1 are the calibration results corresponding to z0 and z1.
Figure 2(a) illustrates the overall structure of EVPConv.

EVPConv can be plugged to replace any k × k (k >1) conv-layers in existing CNNs, while the PNL
layer can be plugged to replace the GAP layer for feature abstraction. The network consisting of
both EVPConv block and the PNL layer is named as EVPNet. The EVPConv block introduces very
few additional parameters: w for shared depth-wise convolution, θ for tReLU and parameters for
SE module. Note that we allow each EVPConv block having its own w and θ. EVPConv brings
relatively fewer additional parameters, which is about 7∼20% (see Appendix A) (smaller models
more relative increasing). It also increases theoretic computing cost 3∼10% for a bunch of parameter-
free operations like DoG and maxout. However, the added computing cost is non-negligible in
practice (2× slower according to our training experiments) due to more memory cost for additional
copy of feature-maps. Near memory computing architecture (Singh et al., 2019) may provide efficient
support for this new computing paradigm.

5 EXPERIMENTS

Experimental Setup. We evaluate the proposed network components and EVPNet on CIFAR10 and
SVHN datasets. CIFAR-10 is a widely used image classification dataset containing 60, 000 images
of size 32×32 with 50, 000 for training and 10,000 for testing. SVHN (Netzer et al., 2011) is a digit
recognition dataset containing 73,257 training images, 26,032 test images, all with size 32×32.

We introduce our novel components into the well-known and widely used ResNet, and compare to
the basic model on both clean accuracy and adversarial robustness. As the EVPConv block contains
a SE module, to make a fair comparison, we set SE-ResNet as our comparison target. In details,
we replace the input conv-layer and the first 3× 3 conv-layer in the residual block with EVPConv,
and replace the GAP layer with the proposed PNL layer. Following (He et al., 2016; Huang et al.,
2017), for CIFAR-10, all the networks are trained with SGD using momentum 0.9, 160 epochs in
total. The initial learning rate is 0.1, divided by 10 at 80 and 120 epochs. For SVHN, we use the
same network architecture as CIFAR-10. The models are trained for 80 epochs, with initial learning
rate 0.1, divided by 10 at 40 and 60 epochs. For tReLU, the channel-level parameter θ is initialized
by uniformly sampling from [0, 1].

In this work, we consider adversarial perturbations constrained under l∞ norm. The allowed pertur-
bation norm ε is 8 pixels (Madry et al., 2018). We evaluate non-targeted attack adversarial robustness
in three settings: normal training, FGSM adversarial training (Goodfellow et al., 2015; Tramer et al.,
2018) and PGD adversarial training (Madry et al., 2018). During adversarial training, we use the
predicted label to generate adversarial examples to prevent label leaking effect (Kurakin et al., 2017b).
To avoid gradient masking (Tramer et al., 2018), we use R-FGSM for FGSM adversarial training,
which basically starts from a random point in the ε ball. Following Madry et al. (2018), during
training, PGD attacks generate adversarial examples by 7 PGD iterations with 2-pixel step size
starting from random points in the allowed ε ball. We report accuracy on both whitebox and blackbox
attack. We evaluate a set of well-known whitebox attacks, including FGSM, PGD, DeepFool, CW.
We use ‘PGD-N ’ to denote attack with N PGD iterations of step size 2 pixels by default. Specifically,
we compare results for PGD-10 and PGD-40. For blackbox attack, we choose VGG-16 as the source
model which is found by Su et al. (2018) to exhibit high adversarial transferability, and choose
FGSM as the method to generate adversarial examples from VGG-16 as it is shown to lead to better
transferability Su et al. (2018).
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Network Training Method Model Clean FGSM PGD-10 PGD-40 DeepPool CW Blackbox

SE-ResNet-20

Normal Baseline 91.68 24.23 0.00 0.00 20.19 0.57 78.32
EVPNet 92.85 66.21 12.19 6.84 40.28 6.78 79.31

FGSM Baseline 84.84 62.17 29.41 27.74 60.88 25.54 81.81
EVPNet 84.94 64.90 34.10 31.75 62.74 29.87 82.50

PGD Baseline 84.02 64.39 36.23 34.84 63.01 32.59 82.71
EVPNet 84.30 65.90 38.60 36.94 64.23 34.14 83.83

SE-ResNet-56

Normal Baseline 94.20 37.18 0.00 0.00 24.33 0.97 83.42
EVPNet 93.80 74.05 29.39 7.43 44.59 8.33 84.04

FGSM Baseline 87.50 67.88 35.84 33.87 62.34 34.54 86.17
EVPNet 89.61 69.93 41.79 35.63 63.45 35.42 87.57

PGD Baseline 86.86 69.45 39.90 39.90 64.22 38.90 87.33
EVPNet 90.13 71.33 40.81 40.80 66.11 39.10 89.00

Table 2: Comparison results on CIFAR-10 at different training settings and different networks, attack with ε = 8.

Network Training Method Model Clean FGSM PGD-10 PGD-40 DeepFool CW Blackbox

SE-ResNet-20

Normal Baseline 95.76 70.44 50.18 0.13 32.19 0.22 90.27
EVPNet 96.55 80.89 66.71 4.71 43.17 7.78 90.49

FGSM Baseline 95.79 66.53 5.83 1.94 56.33 4.94 90.56
EVPNet 96.44 90.80 43.17 20.71 58.22 18.23 90.78

PGD Baseline 92.47 74.72 6.25 1.53 57.56 6.36 91.03
EVPNet 96.06 80.45 31.30 8.69 60.02 12.43 92.40

SE-ResNet-56

Normal Baseline 96.48 75.14 1.19 0.05 34.92 0.43 90.53
EVPNet 96.68 84.60 41.94 14.30 46.46 9.94 90.94

FGSM Baseline 96.60 76.03 3.67 0.00 57.32 6.78 91.03
EVPNet 97.09 81.53 33.83 18.34 59.54 20.34 91.70

PGD Baseline 86.50 69.92 12.95 3.27 59.23 7.83 91.43
EVPNet 96.39 77.82 20.96 7.21 60.34 13.10 92.06

Table 3: Comparison results on SVHN at different training settings and different networks, attack with ε = 8.

Ablation Study. This part conducts a thorough ablation study to show the effectiveness of each
novel architecture component and how they interact to provide strong adversarial robustness. We
conduct experiments on CIFAR-10 with SE-ResNet-20, which contains one input conv-layer, three
residual stage each with two bottleneck residual blocks, and GAP layer followed by a classification
layer. We evaluate the accuracy and robustness for all the possible combinations of the proposed
three components under the normal training setting. For PGD attack, we use two step sizes: 1 pixel
as in Xie et al. (2019) and 2 pixels as in Madry et al. (2018). Table 1 lists full evaluation results of
each tested model. Several observations can be made from the table:

(1) Solely adding pDoG or PNL layer leads to significant robustness improvement. pDoG even
yields clean accuracy improvement, while PNL yields slightly clean accuracy drops.

(2) tReLU does not bring benefit for standard convolution, while yields notable improvement on
both clean accuracy and adversarial accuracy, when combining with pDoG. That verifies our
previous claim that tReLU is suitable to work for the DoG space.

(3) Combining all the three components together obtains the best adversarial robustness, while still
achieve 1.2% clean accuracy improvement over the model without these three components.

Based on these observations, we incorporate all the three components into the CNNs to obtain the
so-called EVPNet for the following experiments if not explicitly specified. As 2-pixels PGD attack is
much stronger than 1-pixel PGD attack, we use it as default in the following studies.

Benchmark Results. We conduct extensive experiments on CIFAR-10 and SVHN to compare the
proposed EVPNet with the source networks. The two sources networks are ResNet-20 and ResNet-56.
For fair comparison, we use the SE extended ResNet as our baseline. Table 2 lists comprehensive
comparison results on CIFAR-10. We list 7 different kinds of accuracies: clean model accuracy,
whilebox attack accuracies by FGSM/PGD-10/PGD-40/DeepFool/CW, and blackbox attack accuracy
with adversarial examples generated by FGSM on the VGG-16 model. We can see that under normal
training case, EVPNet outperforms baseline by a large margin in terms of robustness with FGSM,
PGD, DeepFool, and CW attacks. Even under the strongest PGD-40 white box attack, our EVPNet
still has non-zero accuracy without any adversarial training. For those cases with adversarial training,
our EVPNet consistently beats baseline networks with noticeable margin.

Table 3 further lists comparison results on SVHN. Similarly, our EVPNet consistently outperforms
baseline models on all the three training settings. It is interesting to note that PGD adversarial
training performs worse on PGD-10/PGD-40 attacks than FGSM adversarial training, and even much
worse than normal training on this dataset. This may be due to the fact that SVHN is a shape/edge
dominating digit recognition dataset, which may generate a lot of difficult adversarial samples with
broken edges. And it also coincides with the finding by Baker et al. (2018). Our EVPNet shows
better robustness on this dataset without adversarial training than CIFAR-10, which may suggest that
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Figure 3: Test accuracy vs the number of PGD iterations for both networks on two datasets.
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Figure 4: Normalized adversarial-benign distance for feature responses between adversarial and benign examples
at different res-block output. Networks are trained without adversarial training.

EVPNet is more robust on shape/edge dominating object instances. All these evidences prove that
the proposed EVPNet is a robust network architecture.

Analysis. We make some further analysis to compare EVPNet to baseline networks. First, we plot
the test error at different PGD iterations for different evaluated networks under normal training case
on both CIFAR-10 and SVHN datasets as shown in Figure 3. It can be seen that EVPNet consistently
performs significantly better than the corresponding baseline networks under all PGD iterations.
Some may concern that the accuracy of EVPNet on the strongest PGD-40 attack is not satisfied
(∼ 10%). We argue that from three aspects: (1) The adversarial result is remarkable as it is by the
clean model without using any other tricks like adversarial training, adversarial loss, etc. (2) The
proposed components also brings consistent clean accuracy improvement even on large-scale dataset
(see Appendix A). (3) More importantly, the methodology we developed may shed some light on
future studies in network robustness and network architecture design/search.

Second, we further investigate the error amplification effect as Liao et al. (2018). Specifically, we
feed both benign examples and adversarial examples into the evaluated networks, and compute the
normalized L2 distance for each res-block outputs as γ = ‖x− x′‖2/‖x‖2, where x is the response
vector of benign example, and x′ is the response vector for the adversarial example. We randomly
sample 64 images from the test set to generate adversarial examples using PGD-40. The models
evaluated are trained without adversarial training. Figure 4 illustrates the results. As we can see,
EVPNet has much lower average normalized distance than the baseline models almost on all the
blocks. It is interesting to see that the baseline models have a big jump for the normalized distance at
the end of the networks on all the 4 sub-figures. This urges the adversarial learning researchers to
make further investigation on the robustness especially for latter layers around GAP. Nevertheless,
this analysis demonstrates that EVPNet significantly reduces the error amplification effect.

Third, we compare the differences on feature responses between regular convolution + ReLU and
EVPConv. This comparison is made on large-scale and relative high resolution (224×224) ImageNet
dataset for better illustration. We train ResNet-50 and EVPNet-50 on ImageNet, and visualize their
prediction responses for the first corresponding convolution block in Figure 1. It clearly shows that
ResNet-50 has more noise responses, while EVPNet-50 gives more responses on object boundary.
This demonstrates the capability of EVPConv to separate robust features from non-robust ones. Full
benchmark results on ImageNet are also very promising, see Appendix A for more details.

6 CONCLUSION

This paper mimics good properties of robust visual feature SIFT to renovate CNN architectures with
some novel architecture components, and proposes the extreme value preserving networks (EVPNet).
Experiments demonstrate that EVPNets can achieve similar or better accuracy over conventional
CNNs, while achieving much better robustness to a set of adversarial attacks (FGSM, PGD, etc) even
for clean model without any other tricks like adversarial training.
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A EXPERIMENTS ON IMAGENET

We further make experiments on large-scale ImageNet classification dataset. We propose to replace
the widely used ResNet architecture with the proposes components, and obtain the derived network
named EVPNet. We did experiments on three ResNet architectures: ResNet-26A/26B and ResNet-50.
ResNet-26A/26B are two variants of ResNet-18, both having the same number of residual blocks
(ResBlock) as ResNet18, but replacing standard ResBlock with bottleneck ResBlock. ResNet26A
has the same filter width in each stage as ResNet18 (i.e, [64, 64, 128, 256, 512]). Due to the
bottleneck structure, ResNet26A has just about 1/8 parameters of ResNet18. ResNet26B has the
same filter width in each stage as ResNet50 (i.e., [64, 256, 512, 1024, 2048]), which yields just
slightly higher parameter size than ResNet18, but much lower than ResNet-50. Note there are two
small modifications. First, we move the SE module in SE-ResNet after the last conv-layer in the
bottleneck ResBlock to after the 2nd conv-layer, which is consistent with our EVPConv block for
fair comparison. Second, for ResNet, we implement the stride = 2 convolution in downsampling
ResBlock as ResNet-B structure in He et al. (2019).

For fair comparison, We trained all the models (ResNet, SEResNet, EVPNet) by ourselves on the
same GPU server with 8 NVidia 2080TI GPUs with the same training configurations: (1) the same
data augmentation (baseline one used by He et al. (2019));(2) Nesterov Accelerated Gradient (NAG)
descent as the optimizer; (3) training 90 epochs with batchsize 256; (4) the learning rate is initialized
to 0.1 and divided by 10 at the 30th, 60th, and 80th epochs. We evaluated model performance on the
validation set with just single center-crop test, without using any data augmentation in this procedure.
Besides clean model accuracy, we also evaluate the adversarial attacks by FGSM and PGD-10 with
maximum perturbation for each pixel ε = 8 under l∞ norm.

Table 4 lists the full comparison results as well as model information like parameter size and
computing cost. It shows that EVPNet gives consistent accuracy improvement over ResNet and
SEResNet in all the three tested network architectures. EVPNet-26A improves ResNet-26A and SE-
ResNet-26A by 6.09% and 3.61% respectively in absolute accuracy. EVPNet-50 improves ResNet-50
and SE-ResNet-50 by 1.97% and 0.83% respectively in absolute accuracy.

In terms of parameter size, EVPNet brings 7∼20% additional parameters to the ResNet counterparts
(smaller models more relative increasing). In terms of computing FLOPs, EVPNet increases 3∼10%
for a bunch of parameter-free operations like DoG and maxout. However, the added computing cost
is non-negligible in practice (2× slower in our training experiments) due to more memory cost for
additional copy of feature-maps.

In the adversarial attack evaluation, EVPNet still consistently outperforms the counterparts of ResNet,
SEResNet. For the strongest PGD-10 attacks, all ResNet and SE-ResNet models drop top-1 accuracy
to near zero, while the EVPNet variants keep 6∼10% top-1 accuracy. The gap in FGSM attacks is
even larger. This improvement is remarkable considering that it is by clean model without adversarial
training. Our attempts may inspire future new ways for robust network architecture design or even
automatic search.

Network Model Clean FGSM PGD-10 #Params(M) FLOPs(G)

ResNet-26A
Baseline 57.63 21.45 0.10 1.33 0.261

SEResNet 60.11 26.98 0.45 1.35 0.262
EVPNet 63.72 30.23 6.78 1.65 0.290

ResNet-26B
Baseline 72.39 28.31 0.10 15.24 2.34

SEResNet 74.14 32.19 1.02 15.58 2.36
EVPNet 75.38 38.12 9.45 17.01 2.41

ResNet-50
Baseline 75.04 29.13 0.23 24.36 4.10

SEResNet 76.18 33.45 1.20 24.97 4.11
EVPNet 77.01 40.12 8.30 26.75 4.18

Table 4: Top-1 accuracy by ResNet-26A/B, ResNet-50 on ImageNet under normal training. The last two columns
list the model parameter size and model computing FLOPs.

11


	Introduction
	Related Work
	Preliminary
	Method
	Three Basic Components to mimic SIFT
	EVPConv and EVPNet

	Experiments
	Conclusion
	Experiments on ImageNet

