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ABSTRACT

Detecting communities or the modular structure of real-life networks (e.g. a social
network or a product purchase network) is an important task because the way a
network functions is often determined by its communities.
The traditional approaches to community detection involve modularity-based ap-
proaches, which generally speaking, construct partitions based on heuristics that
seek to maximize the ratio of the edges within the partitions to those between
them. Node embedding approaches, which represent each node in a graph as a
real-valued vector, transform the problem of community detection in a graph to
that of clustering a set of vectors. Existing node embedding approaches are pri-
marily based on first initiating uniform random walks from each node to con-
struct a context of a node and then seeks to make the vector representation of
the node close to its context. However, standard node embedding approaches do
not directly take into account the community structure of a network while con-
structing the context around each node. To alleviate this, we explore two different
threads of work. First, we investigate the use of biased random walks (specifically,
maximum entropy based walks) to obtain more centrality preserving embedding
of nodes, which we hypothesize may lead to more effective clusters in the em-
bedded space. Second, we propose a community structure aware node embed-
ding approach where we incorporate modularity-based partitioning heuristics into
the objective function of node embedding. We demonstrate that our proposed ap-
proach for community detection outperforms a number of modularity-based base-
lines as well as K-means on a standard node-embedded vector space (specifically,
node2vec) on a wide range of real-life networks of different sizes and densities.

INTRODUCTION

Partitioning a network (graph) into communities usually leads to better analyzing the functionality of
the network and is of immense practical interest for real-world networks, because such communities
potentially represent organizational units in social networks, scientific disciplines in authorship-
citation academic publications networks, or functional units in biological networks (e.g. protein-
protein interactions) (Girvan & Newman, 2002; Newman & Girvan, 2004; Waltman & Van Eck,
2013). A network community represents a set of nodes with a relatively dense set of connections
between its members and relatively sparse connections between its member nodes and the ones
outside the community.

Traditional approaches of community detection incrementally construct a community (set of nodes)
by employ an objective function that seeks to maximize its internal connectivity and minimize the
number of external edges (Newman & Girvan, 2004; Newman, 2006; Blondel et al., 2008; Prat-
Pérez et al., 2014). Graph representation learning approaches such as (Perozzi et al., 2014; Grover
& Leskovec, 2016) represent each node of a graph as a real-valued vector seeking to preserve the
correlation between the topological properties of the discrete graph with the distance measures in the
embedded metric space. For example, the vectors corresponding to a pair of nodes in the embedded
space is usually close (low distance or high inner product similarity) if it is likely to visit a node of
the pair with a random walk started at the other one.

However, a major limitation of the random walk based node representation learning approach is
that a random walk may span across the community from which it stared with, which eventually
could lead to representing nodes from different communities in close proximity in the embedding
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space. This in turn can may not result in effective community detection on application of a standard
clustering algorithm, e.g. K-means, in the space of embedded node vectors.

Ideally speaking, for effective community detection with a clustering algorithm operating on the em-
bedded space of node vectors, a node embedding algorithm should preserve the community structure
from the discrete space of the sets of nodes to the continuous space of real-valued vectors as per-
ceived with the conventional definitions of the distance metric (e.g. l2 distance) and the inner product
between pairs of vectors denoting the similarity between them. In other words, a central (hub) node
of a community in the discrete graph representation should be transformed in the embedded space
in such a way so that it contains other vectors, corresponding to the nodes of the other members in
the community, in its close neighborhood. In our study, we investigate two methods to achieve such
a transformation.

Our Contributions First, in contrast to the uniform random walk (URW) based contextualization
of nodes in standard node embedding approaches, such as node2vec (Grover & Leskovec, 2016)
and DeepWalk (Perozzi et al., 2014), we investigate a maximum-entropy based biased random walk
(MERW) Sinatra et al. (2011), where in contrast to URW, the transition probabilities are non-local,
i.e., they depend on the structure of the entire graph.

Alternately, in our second proposed approach, we investigate if traditional approaches to community
detection that operate on a discrete graph (adjacency matrix), e.g. modularity-heuristic (Clauset
et al., 2004) or InfoMap (Rosvall & Bergstrom, 2008), can be useful to contextualize a node for the
purpose of obtaining its embedded representation. In other words, while training a classifier for a
node vector that learns to predict its context, we favour those cases where the context nodes are a part
of the same community as that of the current node, as predicted by a modularity-based heuristic).

We also investigate a combination of the two different community aware embedding approaches, i.e.
employing MERW to first contextualize the nodes and then using the weighted training based on the
modularity heuristic.

The rest of the paper is organized as follows. We first review the literature on community detec-
tion and node embedding. We then describe the details about the MERW-based node embedding
and community-structure aware node embedding. Next, we describe the setup of our experiments,
which is followed by a presentation and analysis of the results. Finally, we conclude the paper with
directions for future work.

BACKGROUND AND RELATED WORK

In this section, we provide a brief overview of the community detection and node representation
learning approaches.

COMBINATORIAL APPROACHES TO COMMUNITY DETECTION

In this section, we review a number of combinatorial approaches to community detection. Each com-
binatorial approach has the common underlying principle of first constructing an initial partition of
an input graph into a set of sub-graphs (communities) and then refining the partition at every itera-
tive step. Among a number of possible ways to modify a current partition, the one that maximizes
a global objective function is chosen. The global objective, in turn, is computed by aggregating the
local objectives over and across the constituent sub-graphs.

Clauset et al. (2004) defines modularity as an intrinsic measure of how effectively, with respect to
its topology, a graph (network) is partitioned into a given set of communities. More formally, given
a partition of a graph G = (V,E) into p communities, i.e. given an assigned community (label)
cv ∈ {1, . . . , p} for each node v ∈ V , the modularity, Q is defined as the expected ratio of the
number of intra-community edges to the total number of edges, the expectation being computed
with respect to the random case of assigning the nodes to arbitrary communities. More specifically,

Q =
1

2|E|
∑
vw

(
Avw −

kvkw
2|E|

I(cv = cw)
)
, (1)
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where Avw denotes the adjacency relation between nodes v and w, i.e. Avw = 1 if (v, w) ∈ E;
kv denotes the number of edges incident on a node v; I(cv, cw) indicates if nodes v and w are a
part of the same community. A high value of Q in Equation 1 represents a substantial deviation of
the fraction of intra-community edges to the total number of edges from what one would expect
for a randomized network, and Clauset et al. (2004) suggests that a value above 0.3 is often a good
indicator of significant community structure in a network.

The ‘CNM’ (Clauset Newman Moore) algorithm (Newman & Girvan, 2004) proposes a greedy
approach that seeks to optimise the modularity score (Equation 1). Concretely speaking, it starts
with an initial state of node being assigned to a distinct singleton community, seeking to refine the
current assignment at every iteration by merging a pair of communities that yields the maximum
improvement of the modularity score. The algorithm proceeds until it is impossible to find a pair of
communities which if merged yields an improvement in the modularity score.

The ‘Louvain’ or the ‘Multilevel’ algorithm (Blondel et al., 2008) involves first greedily assigning
nodes to communities, favoring local optimizations of modularity, and then repeating the algorithm
on a coarser network constructed from the communities found in the first step. These two steps are
repeated until no further modularity increasing reassignments are found.

‘SCDA’ (Scalable Community Detection Algorithm) (Prat-Pérez et al., 2014) detects disjoint com-
munities in networks by maximizing WCC, a recently proposed community metric Prat-Pérez et al.
(2012) based on triangle structures within a community. SCD implements a two-phase procedure
that combines different strategies. In the first phase, SCD uses the clustering coefficient as an heuris-
tic to obtain a preliminary partition of the graph. In the second phase, SCD refines the initial partition
by moving vertices between communities as long as the WCC of the communities increase.

Jiang & Singh (2010) proposed a scalable algorithm - ‘SPICi’ (‘Speed and Performance In Cluster-
ing’ and pronounced as ‘spicy’), which constructs communities of nodes by first greedily starting
from local seed sets of nodes with high degrees, and then adding those nodes to a cluster that maxi-
mize a two-fold objective of the density and the adjacency of nodes within the cluster. The underly-
ing principle of SPICi is similar to that of ‘DPClus’ (Altaf-Ul-Amin et al., 2006), the key differences
being SPICi exploits a simpler cluster expansion approach, uses a different seed selection criterion
and incorporates interaction confidences.

Newman (2006) proposed ‘LEADE’ (Leading Eigenvector) applies a spectral decomposition of the
modularity matrix M , defined as

Mvw = Avw −
kvkw
2|E|

. (2)

The leading eigenvector of the modularity matrix is used to split the graph into two sub-graphs so
as to maximize modularity improvement. The process is then recursively applied on each sub-graph
until the modularity value cannot be improved further.

‘LPA’ (Label Propagation Algorithm) (Raghavan et al., 2007) relies on the assumption that each node
of a network is assigned to the same community as the majority of its neighbours. The algorithm
starts with initialising a distinct label (community) for each node in the network. Each node, visited
in a random order, then takes the label of the majority of its neighbours. The iteration stops when
the label assignments cannot be changed further.

Rosvall & Bergstrom (2008) proposed the ‘InfoMap’ algorithm, which relies on finding the optimal
encoding of a network based on maximizing the information needed to compress the movement
of a random walker across communities on the one hand, whereas minimizing the code length to
represent this information. The algorithm makes uses of the core idea that random walks initiated
from a node which is central to a community is less likely to visit a node of a different community.
Huffman encoding of such nodes, hence, are likely to be shorter.

The ‘WalkTrap’ algorithm (Pons & Latapy, 2005) is a hierarchical agglomerating clustering (HAC)
algorithm using an idea similar to InfoMap that short length random walks tend to visit only the
nodes within a single community. The distance metric that the algorithm uses for the purpose of
HAC between two sets of nodes is the distance between the probability distributions of nodes visited
by random walks initiated from member nodes of the two sets.
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Different from the existing work in combinatorial approaches to community detection, in our work,
we propose a framework to integrate a combinatorial approach within the framework of an embed-
ding approach (specifically, node2vec).

EMBEDDING APPROACHES

In contrast to the combinatorial approaches which directly work on the discrete space (vertices and
edges) of a graph, G = (V,E), an embedding approach transforms each node of a graph, u, into a
real-valued vector, u, seeking to preserve the topological structure of the nodes. Formally,

θ : u 7→ u ∈ Rd, ∀u ∈ V. (3)
The transformation function θ is learned with the help of noise contrastive estimation, i.e., the ob-
jective is to make the similarity (inner product) between vectors for nodes u and v higher if v lies in
the neighborhood of u, and to be of a value small if v does not belong to the neighborhood of u (e.g.
v being a randomly sampled node from the graph). Formally,

J(θ) =
∑
u

∑
v∈N (u)

P (y = 1|u,v)−
∑
u

∑
v̄ 6∈N (u)

P (y = 1|u, v̄), (4)

where y denotes a binary response variable to train the likelihood function, where N (u) denotes
the neighborhood of node u, and the negative component in the likelihood function refers to the
randomly sampled noise.

Popular approaches to learn the transformation function of Equation 3 includes node2vec (Grover
& Leskovec, 2016) and DeepWalk (Perozzi et al., 2014), which differ in the way the neighborhood
function, N (u), is defined. While DeepWalk uses a uniform random walk to constitute the neigh-
borhood or context of a node, node2vec uses a biased random walk (with a relative importance to
depth-first or breadth-first traversals).

A transformation of the nodes as real-valued vectors then allows the application of relatively simple
(but effective) clustering approaches, such as K-means, to partition the embedding space of nodes
into distinct clusters. This is because in contrast to the discrete space, the vector space is equipped
with a metric function which allows to compute distance (or equivalently similarity) between any
pair of nodes (as opposed to the discrete case).

Cavallari et al. (2017) proposed an expectation-maximization (EM) based approach to iteratively
refine a current community assignment (initialized randomly) using node embeddings. The objec-
tive was to ensure that the embedded vectors of each community fits a Gaussian mixture model,
or in other words, the embedded space results in relatively disjoint convex clusters. In contrast to
(Cavallari et al., 2017), our method does not involve a feedback-based EM step.

Wang et al. (2016) proposed to include an additional term in the objective of the transformation
function (Equation 3) corresponding to the second order similarity between the neighborhoods of
two nodes. Different to (Wang et al., 2016), which seeks to obtain a general purpose embedding of
graphs, we rather focus only on the community detection problem.

MAXIMAL-ENTROPY BIASED RANDOM WALK

Let P ∈ R|V |×|V | denote the stochastic transition matrix of a graphG = (V,E), where Puv denotes
the probability of visiting node v in sequence after visiting node u. In a standard uniform random
walk (URW), this probability is given by

Puv =
Auv

ku
, ku = |{w : (u,w) ∈ V }|, (5)

where ku denotes the degree of node u. In other words, Equation 5 indicates that there is a equal
likelihood of choosing a node v as the next node in sequence from the neighbors of node u.

Maximal-entropy random walk (MERW) is characterized by a stochastic matrix that maximises
entropy of a set of paths (node sequences) with a given length and end-points (Ochab & Burda,
2013). It leads to the following stochastic matrix.

Puv =
Auv

λ

ψv

ψu
, (6)
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where λ denotes the largest eigenvalue of the adjacency matrix A, and ψv and ψu refer to the
vth and the uth components of the corresponding eigenvector. Parry (1964) applied the Frobenius-
Perron theorem to prove that the probability of visiting a node un after n time steps starting from
node u1 depends only on the number of steps and the two ending points, but is independent of the
intermediate nodes, i.e.

P (u1, . . . un) =

n−1∏
i=1

Pui,ui+1
=

1

λn
ψu1

ψun

. (7)

Consequently, the choice of the next node to visit in MERW is based on uniformly selecting the
node from alternative paths of a given length and end-points.

Delvenne & Libert (2011) shows that the stationary distribution attained by MERW better preserves
centrality than URW, thus resulting in random walks that tend to be more local as shown in (Burda
et al., 2009). In the context of our problem, MERW based random walk initiated from a node of a
community is more likely to remain within the confinements of the same community, as compared
to URW.

Standard node embedding approaches, such as node2vec, uses URW to construct the set of contexts
for a node for the purpose of learning its representation. We hypothesize that replacing the URW
based neighborhood function to a MERW one results in less likelihood of including a node v in the
neighborhood of u, i.e.N (u). This results in a low likelihood of including the term P (y = 1|u,v) of
Equation 4, which corresponds to associating nodes across two different communities, as a positive
example while training node representations.

MODULARITY BASED NODE EMBEDDING

In this section, we describe a two-step approach to node embedding that is likely to preserve the
community structure of the discrete space of an input graph in the output embedded space as well.
The first step involves applying a combinatorial community detection algorithm that operates on the
discrete input space to obtain an optimal partition, as per the objective function of the combinatorial
approach, e.g. modularity (Clauset et al., 2004) or InfoMap (Rosvall & Bergstrom, 2008). Formally,

C : G = (V,E) 7→ {Vi}pi=1, s.t. ∪
p
i=1 Vi = V (8)

EXPERIMENT SETUP

DATASETS

Real-world networks with ground-truth communities The experiments are performed over
three small scale standard networks, viz., Zacharys karate club network, bottlenose dolphin net-
work, and American college football network. Along with We have also tested the experiments on
three real world networks viz. Amazon, Youtube and DBLP Yang & Leskovec (2015); Harenberg
et al. (2014); Leskovec & Krevl (2014). These networks are undirected and unweighted and they are
selected from different application domains. The overview of these networks are presented Table 1.

Amazon1 is an online commercial network for purchasing products. Here nodes represent products
and an edge exists between two products, if they are frequently purchased together. Each product
(i.e. node) belongs to one or more product categories. Each ground-truth community is defined using
hierarchically nested product categories that share a common function Yang & Leskovec (2015).

Youtube is a website to share videos and considered as a social network. Each user in the Youtube
network is considered as a node and the friendship between two users is denoted as edge. Moreover,
an user can create a group where other Youtube users can be a member through their friendship.
These user created groups are considered as ground-truth communities Yang & Leskovec (2015).

DBLP is a bibliographic network of Computer Science publications. Here nodes represent authors
and an edge between two nodes represent co-authorship. Ground-truth communities are defined as
sets of authors who published in the same journal or conference Yang & Leskovec (2015).

1www.amazon.com
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Table 1: Overview of the Real World Networks

Data Sets NV1 NE MID NCM MaxCS MinCS MaxDeg AvgDeg AvgCS
KARATE 34 78 0.2288 2 18 16 17 4.588 17
DOLPHIN 62 159 0.1278 2 42 20 12 5.129 31

FOOTBALL 115 613 0.1101 12 13 5 12 10.66 9.583
AMAZON 16716 48739 0.0126 5000 328 3 51 5.831 13.49
YOUTUBE 39481 224235 0.0036 5000 2217 2 1575 11.26 14.59

DBLP 93432 335520 0.0011 5000 7556 6 213 7.182 22.45
2NV: number of vertices, NE: number of edges, NCM: number of communities, MID: Minimum In-
ternal Density, MaxCS: Maximum Community Size, MinCS: Minimum Community Size, MaxDeg:
Maximum Degree, AvgDeg:Average Degree, AvgCS:Average Community Size.

Table 2: Overview of the Artifical Networks

Name n3 m NCM kavg kmax cmin cmax AvgCS
LFR2000 2000 3893 198 4 15 5 20 10.11
LFR4000 4000 7712 380 4 15 5 20 10.526
LFR6000 6000 12391 360 4 20 10 40 16.666
LFR8000 8000 16750 504 4 20 10 40 15.873
LFR10000 10000 17457 274 4 50 20 80 36.496
LFR12000 12000 18983 339 4 50 20 80 35.398

3n: number of vertices, m: number of edges, kavg: average degree, kmax: maximum degree,
cmin: minimum community size, cmax: maximum community size, NCM: number of communi-
ties, AvgCS:Average Community Size.

The networks described above have several connected components and each connected component
consisting of more than 3 nodes are considered as a separate ground-truth community. Leskovec,
et al. observed that the average goodness metric of the top k communities first remain flat with
increasing k, but then after approximately 5000 communities, degrades rapidly Yang & Leskovec
(2015). Therefore they have implemented some community detection algorithms using different
goodness metrics on the top 5000 communities of some of the networks described above. Eventually,
they obtained nice results in terms of finding communities in those networks. Following the same
idea we have used only the top 5000 ground-truth communities of each of these networks in the
experimental evaluation.

Artificial networks with ground-truth communities Furthermore, we use the Lancichinetti-
Fortunato-Radicchi (LFR) networks Lancichinetti et al. (2008) with ground-truth to study the be-
havior of a proposed community detection algorithm and to compare the performance across var-
ious competitive algorithms. The LFR model involve with a set of parameters which controls the
network topology. In this model, degree distribution and community size distribution follow power
laws with exponents γ and β, respectively. Furthermore, we can also specify the other parameters
such as number of vertices n, average degree kavg, maximum degree kmax, minimum community
size cmin, maximum community size cmax, and mixing parameter µ. We vary these parameters
depending on our experimental needs. The critical parameter is the mixing parameter µ, which in-
dicates the proportion of relationships a node shares with other communities. Six artificial networks
are produced for experimental evaluations using the following parameter setting, γ = −2,β = −1
µ = 0.01 as mentioned by Lancichinetti et al. Lancichinetti et al. (2008). Table 2 provides the details
of the other parameters to produce these artificial networks. The results presented on these networks
are the average of 100 runs to reduce the effect of random assumptions.

EVALUATION METRICS

Omega Index. The Omega Index Collins & Dent (1988) is an Adjusted Rand Index (ARI) Hubert &
Arabie (1985) generalization applicable to overlapping clusters. It is based on counting the number
of pairs of elements occurring in exactly the same number of clusters as in the number of categories
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and adjusted to the expected number of such pairs. Formally, given the ground-truth clustering C ′

consisting of categories c
′

i ∈ C ′ and formed clusters ci ∈ C :

Omega(C ′, C) =
Obs(C ′, C)− Exp(C ′, C)

1− Exp(C ′, C)
The observed agreement is:

Obs(C ′, C) =

min(J′,J)∑
j=0

Aj

P
,

where J ′(J) is the is the maximal number of categories (clusters) in which a pair of elements oc-
curred,Aj is the number of pairs of elements occurring in exactly j categories and exactly j clusters,
and P = N(N −1)/2 is the total number of pairs given a total of N elements (nodes of the network
being clustered). The expected agreement is:

Exp(C ′, C) =

min(J′,J)∑
j=0

P
′

jPj

P 2

where P
′

j (Pj) is the total number of pairs of elements assigned to exactly j categories (clusters).

Mean F1 Score. The Average F1 score (F1a) is a commonly used metric to measure the accuracy
of clustering algorithms Yang & Leskovec (2013; 2015); Prat-Pérez et al. (2014). F1a is defined as
the average of the weighted F1 scores of a) the best matching ground-truth clusters to the formed
clusters and b) the best matching formed clusters to the ground-truth clusters. Formally, given the
ground-truth clustering C ′ consisting of clusters c

′

i ∈ C ′ (called categories) and clusters ci ∈ C
formed by the evaluating clustering algorithm:

F1a(C ′, C) =
1

2
(FC′,C + FC,C′),

where
FX.Y =

1

|X|
∑
xi∈X

F1(xi, g(xi, Y ))

and g(xi, Y ) = {argmaxy F1(x, y)|y ∈ Y } in which F1(x, y) is the F1 score of the respective
clusters.

Normalized Mutual Information (NMI). Mutual Information (MI) is evaluated by taking all pairs
of clusters from the formed and ground-truth clustering respectively and counts the number of com-
mon elements in each pair. Formally, given the ground-truth clustering C ′ consisting of clusters
c′ ∈ C ′ and the formed clusters c ∈ C, mutual information is defined as:

I(C ′, C) =
∑
c′∈C

∑
c∈C

p(c′, c) log2
p(c′, c)

p(c′)p(c)
,

where p(c′, c) is the normalized number of common elements in the pair of (category, cluster), p(c′)
and p(c) is the normalized number of elements in the categories and formed clusters respectively.
The normalization is performed using the total number of elements in the clustering, i.e. the number
of nodes in the input network. There is no upper bound for I(C ′, C), so for easier interpretation and
comparisons a normalized mutual information that ranges from 0 to 1 is desirable. There are two
ways in which normalization is normally done Strehl & Ghosh (2002); Esquivel & Rosvall (2012).
In the first one, the mutual information is divided by the average of the entropies, while in the second
one, it is divided by the maximum of the entropies. These are defined as follows:

NMIsqrt =
I(C ′, C)√
H(C ′)H(C)

NMImax =
I(C ′, C)

max{H(C ′), H(C)}
,

where H(X) = −
∑

x∈X p(x) log2p(x) is the entropy of the clustering X .

Modularity. The modularity of a graph compares the presence of each intra-cluster edge of the
graph with the probability that that edge would exist in a random graph Newman & Girvan (2004);
Blondel et al. (2008). Although modularity has been shown to have a resolution limit Fortunato &
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Table 3: Comparison of Various Community Detection Methods on Karate Club Networks

Data K NMImax NMIsqrt Omega Index F1 Score
Sets Approaches (No. of Clusters) Modularity Function Modularity Function Modularity Function Modularity Function

CNM Louvain CNM Louvain CNM Louvain CNM Louvain CNM Louvain
Modularity Partitioning 4 4 0.4518 0.4426 0.6231 0.6100 0.4909 0.4619 0.751785 0.750677

KMeans-Node2Vec 4 4 0.5066 0.5278 0.6626 0.6859 0.5728 0.5982 0.799725 0.805801
KARATE KMeans-Mod-Node2Vec 4 4 0.5689 0.5650 0.6972 0.6902 0.6492 0.6581 0.838412 0.854334

KMeans-Node2Vec-Biased 4 4 0.5314 0.5279 0.6700 0.6786 0.6114 0.5956 0.820446 0.818937
KMeans-Mod-Node2Vec-Biased 4 4 0.5671 0.5673 0.7041 0.7066 0.6444 0.6451 0.841761 0.846761

IDEAL CASE
KMeans-Node2Vec 2 2 0.689118 0.719544 0.695934 0.726091 0.744408 0.764389 0.933834 0.940061

KARATE KMeans-Mod-Node2Vec 2 2 0.814953 0.822966 0.817697 0.825675 0.860193 0.871239 0.965374 0.968192
KMeans-Node2Vec-Biased 2 2 0.742158 0.724971 0.744238 0.727342 0.807011 0.793847 0.950372 0.947802

KMeans-Mod-Node2Vec-Biased 2 2 0.814703 0.819078 0.817368 0.822091 0.860198 0.871239 0.965374 0.968192

Barthelemy (2007), some of the most popular clustering algorithms use it as an objective function
Waltman & Van Eck (2013); Blondel et al. (2008). Modularity is defined as

∑
k(ekk−a2

k) where ekk,
the probability of intra-cluster edges in cluster Ck , and ak , the probability of either an intra-cluster
edge in cluster Ck or of an inter-cluster edge incident on cluster Ck.

The higher the values of the four performance indices, omega index, modularity, normalized mutual
information and average F1 score, the better the quality of the detected communities.

EXPERIMENTAL RESULTS
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