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ABSTRACT

Previous ternarizations such as the trained ternary quantization (TTQ), which
quantized weights to three values (e.g., {−Wn, 0, +Wp}), achieved the small
model size and efficient inference process. However, the extreme limit on the
number of quantization steps causes some degradation in accuracy. To solve this
problem, we propose a hybrid weight representation (HWR) method which pro-
duces a network consisting of two types of weights, i.e., ternary weights (TW) and
sparse-large weights (SLW). The TW is similar to the TTQ’s and requires three
states to be stored in memory with 2 bits. We utilize the one remaining state to
indicate the SLW which is referred to as very rare and greater than TW. In HWR,
we represent TW with values while SLW with indices of values. By encoding
SLW, the networks can preserve their model size with improving their accuracy.
To fully utilize HWR, we also introduce a centralized quantization (CQ) process
with a weighted ridge (WR) regularizer. They aim to reduce the entropy of weight
distributions by centralizing weights toward ternary values. Our comprehensive
experiments show that HWR outperforms the state-of-the-art compressed models
in terms of the trade-off between model size and accuracy. Our proposed repre-
sentation increased the AlexNet performance on CIFAR-100 by 4.15% with only
1.13% increase in model size.

1 INTRODUCTION

Deep Neural Networks (DNN) has made considerable progress in various tasks such as image clas-
sification (LeCun et al. 1998, Simonyan & Zisserman 2014, Szegedy et al. 2015), object detection
(Ren et al. 2015, Liu et al. 2016), and speech recognition (Graves et al. 2013, Amodei et al. 2016).
However, outstanding neural networks usually require deeper and/or wider layers, thus making them
hard to deploy on mobile and embedded devices. In response to this problem, many studies set their
sights on more efficient networks. Various methods such as pruning (He et al. 2017), transformation
(Howard et al. 2017) and quantization (Li et al. 2016, Zhu et al. 2016) have been carried out to reduce
the model size and/or computation complexity effectively. Our paper concentrates on quantization
that aims to represent values as the finite number of states in a low bit-width by discretizing.

Figure 1: Comparison between conventional quantization and hybrid weight representation.
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The accuracy degradation is resulted from quantizing values in a limited range with only 2bits. The
ternary weights networks(TWN, Li et al. 2016) yields only three quantized values, which prohibits
the networks from utilizing high weight values. As known in Han et al. 2015b, large-valued weights
tend to have an important effect on the prediction. Therefore, the absence of large values can cause
the accuracy degradation. To solve this problem, our paper proposes a hybrid weight representation
(HWR), expressing networks with both ternary weights (TW) and sparse-large weights (SLW). By
taking the advantages of both the TW and SLW, the proposed HWR method can reduce computation
complexity and memory consumption as well as avoiding the accuracy degradation in networks.

To be specific, the large values of SLW help networks to improve their accuracy. Furthermore, SLW
can be encoded with one remaining state which is not used to store TW in a 2 bits representation.
It allows the networks to preserve their model size similarly to the trained ternary quantization
(TTQ, Zhu et al. 2016). The compression rate of the encoding method is affected by the entropy of
weight distributions. To train narrower distributions for the efficiency of HWR, we also introduce
a centralized quantization (CQ) process and a weighted ridge (WR) regularizer. Figure 1 shows the
differences between conventional quantization and HWR. As shown in Figure 1, there is only small
number of SLW and the indices of encoded SLW are allocated in storage, unlike TW.

We conduct various experiments, showing that HWR obtains better classification accuracy with
almost the same model size compared to the TTQ. The experiments are carried out on CIFAR-100
(Krizhevsky et al. 2009) and ImageNet (Russakovsky et al. 2015). We use AlexNet (Krizhevsky et al.
2012) and ResNet-18 (He et al. 2016) as baseline models. Our proposed representation increased
the AlexNet performance on CIFAR-100 by 4.15% with only 1.13% increase in model size.

The contributions of this paper are as follows:

• We propose a representation method, namely HWR, including both values (TW) and in-
dices of values (SLW). SLW allows the networks to improve their accuracy. Besides, the
model size can be preserved by encoding SLW with one remaining state of TW.

• We also propose a training process, namely CQ, to improve the efficiency of HWR. By CQ,
we can centralize most weights toward ternary values. The low entropy of centralization
increases compression rate in encoding.

• In CQ, we introduce a new regularizer, namely WR, which gives penalty to large weights.
WR is utilized to centralize weights for narrower distributions and categorize the weights
into TW and SLW.

2 RELATED WORK

Quantization In low-precision networks, full precision weights (w) are represented with the finite
number of elements by a low bit-width. There is a perspective on the intervals between adjoining
quantum for quantization.

The first way is linear quantization, meaning that the quantized weights are within the same intervals.
For example, the binarized neural networks (BNN, Courbariaux & Bengio 2016) utilized a sign
function to quantize weights and activations to {-1, +1}. The binarized weights wb are defined as:

wb = sign(w)

If inputs and weights are all binarized (Rastegari et al. 2016), the multiplications and additions of
convolution layers can be compressed to XNOR and bit-count operations, respectively. Likewise,
the ternary weight networks (TWN, Li et al. 2016) pruned the weights of BNN by thresholding (∆).

wt =

{
+WE if w > ∆

0 if |w| ≤ ∆
−WE if w < −∆

,
∆ = 0.7 · E(|w|)

WE = E
i∈{i|∆<|w(i)|}

(|w(i)|)

DoReFa-Net (Zhou et al. 2016) carried out experiments in a wider bit-width and also quantize the
gradients. The quantized weights wq in DoReFa-Net are described as:

wq = 2 ·Qk( tanh(w)
2max(|tanh(w)|) + 0.5)− 1 , Qk(x) = round(x·(2k−1))

2k−1
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Figure 2: Overall processes of HWR. The weights are initialized from a full precision model trained
with ReLU1. First of CQ, the weights are quantized with WR as a regularizer. By WR, the quantized
weights are also centralized under threshold and categorized into TW and SLW by threshold. Sec-
ond, selective quantization (SQ) is applied to fine-tune the previous weights without WR. Finally,
SLW is encoded by the prefix that is one usable state of TW.

where Qk(·) is a quantization function. These discretized weights (wb, wt, wq) have derivatives that
take zero-valued output in almost all input ranges. These zero-value outputs can cause the vanishing
gradient problem. To solve this problem, the straight-through estimator (STE) method (Hinton et al.
2012, Bengio et al. 2013) is proposed where the derivative of w is replaced with the derivative of wq

instead of back-propagating zero gradients from discrete functions.

∂L
∂w = ∂L

∂wb
= ∂L

∂wt
= ∂L

∂wq

The same intervals make it possible to increase efficiency by replacing float operations to integer
operations.

The second way is non-linear quantization where the weights are quantized with irregular intervals.
For instance, the deep compression (Han et al. 2015a) quantized the weights through a clustering
method and fine-tuned the representative values in each clustering group. Another example, TTQ
(Zhu et al. 2016) quantized the weights to ternary values with two trainable scale coefficients for
negative and positive weight values, i.e., {−Wn, 0, +Wp}. In these cases, the parameter sizes can
be significantly reduced by replacing the weight values with the indices. However, the indices are
needed to be transformed as weight values, and make it difficult to utilize more efficient integer base
and/or bit-wise operations.

Entropy coding A Huffman coding (Van Leeuwen 1976) is a method to compress bit-streams in a
lossless manner by reducing bit-length of each element with an optimal prefix tree. The entropy of
weight distribution is one of the important factors that determine the compression rate in Huffman
coding. Deep compression (Han et al. 2015a) pruned weights to make lower entropy and saved more
storage by applying the Huffman coding.

Regularization Regularization is utilized to manipulate weights in artificial direction by imposing
penalties. There are two regularizers such as Ridge (L2) and Lasso (L1) (Han et al. 2015b). The
L2 weight decay usually prevents networks from being biased on the training dataset by restricting
weights from growing. The penalty of Lasso makes the weights to be close to zero value which
are unrelated to predict outputs during training-time. Moreover, the explicit loss of Zhou et al.
2018 makes it possible to quantize weights by controlling the strength of their regularizer. The
regularization can be utilized to change the entropy of weight distribution with its penalty.

From previous studies, we focus on that ternary weights, linearly quantized, only require three states
when to be stored in 2bits, and the remaining state has the potential to be utilized as a prefix of more
extended weights for increasing efficiency in quantization. Furthermore, we also draw a deduction
that regularization can help us to generate the lower entropy of the weight distribution, maximizing
the compression efficiency in encoding the extended weights.
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(a) L2 and pL1 (b) WR (c) the derivative of WR

Figure 3: Specifications of WR. (a) plots both a normal L2 and a part of L1 (pL1). WR is an addition
of them as in (b). (c) is the derivative of WR.

3 METHOD

In this section, we explain: i) how CQ can centralize weights toward ternary values and categorize
weights into TW and SLW; and ii) how the quantized weights are encoded to be expressed as HWR.
The detailed processes are illustrated in Figure 2.

3.1 BASIC QUANTIZATION METHOD

Our paper uses basic quantization (BQ) method, which start with a full precision model in which
weights are pre-trained with ReLU1(clip(x, 0, 1) or min(max(0, x), 1)). Equation 1 shows how
the weights (w) are quantized to wq by a layer-wise quantization function (Qw(·)). The range (rng)
of the wq is determined by the maximum absolute value of the pre-trained weights (max(|wp|)).
the w is clipped to wc by rng and entered into the Qw(·). Qw(·) also requires the total number of
quantization steps (s) ascertained by the number of bits. In Qw(·), the wc is scaled by a float value
to be discretized by a round function, then they are restored by the reciprocal to the float value. The
derivative of wc ( ∂L

∂wc
) is defined as ∂L

∂wq
. To take a saturation effect as in BNN (Courbariaux &

Bengio 2016), we restate w by clipping after updating gradients.

wq = Qw(wc, rng, s) = round(wc ·
s−1

2

rng
) · rngs−1

2

, wc = clip(w, −rng, rng) (1)

In DoReFa-Net, ReLU1 was exploited to restrict the activated values. In our experiments, we select
4 bits to quantize the activations. The reason for using 4 bits as activation precision is that the 4
bits for weights and activations are enough to reproduce the accuracy of full precision models (Jung
et al. 2019). The output (x) of ReLU1 can be quantized to aq by a round function in Equation 2.

aq = Qa(x) = round[x(24 − 1)] / (24 − 1) (2)

3.2 WEIGHTED RIDGE

We also introduce a new version of L2 weight decay, namely weighted ridge (WR), which aims
to achieve two objectives: i) centralizing almost all weights which are below threshold; and ii)
categorizing the weights into TW and SLW by threshold after re-training.

We quantize full precision weights by BQ method with WR as a regularizer. This step’s quantizer is
defined as:

wq = Qw(clip(w, −Mwp
, Mwp

), Mwp
, st + ssl) (3)

where the rng in Eq. 1 is fixed as the maximum absolute value of the pre-trained weights (Mwp
=

max(|wp|)). The s in Eq. 1 is derived from the number of bits of SLW (bsl). If bsl is 2, 3 or 4 bits,
then the number of quantization steps of SLW (ssl) is calculated as 4, 8 or 16 while the number of
bits and quantization steps of TW (bt, st) are fixed to 2 and 3.
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(a) mask(w) = TW (b) mask(w) = SLW

Figure 4: Two different quantization functions of SQ are applied for each category, TW and SLW.

Figure 3 (b) denotes WR which is a mixture of both, a normal L2 and a part of L1 (pL1) in (a).
The loss of pL1 is only proportionate to the absolute values of the weights which are greater than
threshold (thresh). In other words, the large weights receive more penalties compared to the weights
under the thresh in back-propagation as illustrated in Fig. 3 (c). This penalty allows us to sparsify
weights that do not have the necessity for keeping largeness. WR, pL1 and thresh are described as:

WR(w, λ1, λ2) = λ1(L2(w) + λ2 ·Mwp · pL1(w)) (4)

pL1(w) =

{
|w| − thresh if |w| > thresh

0 if |w| ≤ thresh , (thresh = Mwp
· st
st + ssl − 1

) (5)

There are two hyper-parameters (λ1, λ2) which are tools to control the intensity of WR. By adjusting
the greater λ2, more weights can be sparsified below thresh. Mwp is also one factor for applying
different intensity to each layer since some layers have large difference of Mwp from each other.

At the end of applying WR, we classify the re-trained weights into TW and SLW. thresh is utilized
as a criterion for labeling them as Equation 6.

mask(w) =

{
TW if |w| ≤ thresh
SLW if |w| > thresh

(6)

An observation is that WR tends to avoid overfitting as effectively as L2-regularizer. By adjusting
WR, we can obtain better accuracy than L2 weight decay in some experiments.

3.3 SELECTIVE QUANTIZATION

A selective quantization (SQ), the second step of CQ, aims to fine-tune the previous step’s weights
which are restricted by the additional penalty of pL1. By removing pL1, the restricted weights can
grow again and be more optimized for classification. In SQ, two different quantization functions
are applied for each category. As shown in Figure 4 (a), the weights in TW category are always
ternarized and the percentage of TW is guaranteed during fine-tuning. Otherwise, the weights in
SLW category can be quantized to both ternary values and large values by Fig. 4 (b). The quantizer
of each category is based on Qw so SQ can be expressed as Equation 7. Finally, the fine-tuned
weights are re-categorized in the same way as Eq. 6. Additionally, if the result of SQ yields only
slight difference compared to WR, this fine-tuning step can be skipped.

Qs(w) =

{
Qw(w, thresh, st + 1) if mask(w) = TW
Qw(w, Mwp

, st + ssl) if mask(w) = SLW
(7)

Specifically, we use the stochastic gradient descent optimizer (SGD, Bottou 2010) for fine-tuning
and the momentum optimizer (Sutskever et al. 2013) can misrepresent gradients since the weights
are clipped after updating gradients.
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(a) bt = 2, bsl = 2
st = 3, ssl = 4

(b) bt = 2, bsl = 3
st = 3, ssl = 8

Figure 5: Two examples for HWR encoding trees. In HWR, we represent TW with values while
SLW with indices of values. The number of bits and quantization steps of TW (bt, st) are fixed to 2
and 3. In contrast, them of SLW (bsl, ssl) can be changed to (2, 4), (3, 8) or (4, 16).

Figure 6: Before add operations in ResNet, the outputs of last convolution layers from each block
are scaled by a scale factor r, derived from the maximum absolute values of convolution layers.

3.4 ENCODING SPARSE-LARGE WEIGHTS

The distributions of centralized-quantized models have low entropy since only small number of
SLW. It allows achieving a higher compression rate with encoding method. Moreover, we utilize
one remaining state of TW as a prefix to encode SLW as shown in Figure 5. As a result, HWR
represents both values (TW) and indices (SLW) when they are allocated in memory. There are some
advantages of using HWR. The model size can be maintained similar to TTQ since SLW is very rare.
Furthermore, the restoration of SLW is not that difficult. The value of SLW can be restored by taking
the first sign bit of bsl and adding 2 to the rest of bsl. The remaining TW still has the potential to
keep some benefits of ternary weights such as replacing multiplication operations to sign assignment
operations (Rastegari et al. 2016) and utilizing gates for skipping zero weights (Deng et al. 2018).

3.5 THE MEDIATION OF QUANTUM INTERVALS IN ADD OPERATIONS

In our quantization method, the weights and activations are quantized in the same intervals (wq =
iw · Iw, aq = ia · Ia). The Iw and Ia are fixed float intervals while the iw and ia are integer
variables. Therefore, convolution and fully-connected layers can be inferred by integer operations
as Equation 8. Other operations such as batch normalization (BN, Ioffe & Szegedy 2015), ReLU1
and the Qa(·) also can be integrated and compressed by integer comparators (Lahoud et al. 2019)
since the coefficients of BN and boundaries of ReLU1 and Qa(·) are fixed so can be prearranged.

oq = layer(aq, wq) =
∑∑

aqwq = IaIw ·
∑∑

iaiw (8)

However, ResNet (He et al. 2016) has identity mappings and add operations that prevent the data
streams from keeping the same quantum intervals due to the layer-wise intervals. To deal with this
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Table 1: The results of WR in full precision models with ReLU activation.

Model
Name

Quantizaton
Plan (bt/bsl)

Activation
function λ1 λ2

Top-1
Accuracy

AlexNet - ReLU 0.02 - 75.06%
AlexNet 2 / 3 ReLU 0.02 1.2 75.32%

ResNet-18 - ReLU 0.0002 - 76.07%
ResNet-18 2 / 2 ReLU 0.0002 1 76.49%
ResNet-18 2 / 3 ReLU 0.0002 1 76.28%
ResNet-18 2 / 4 ReLU 0.0002 1 76.88%

Table 2: The results of applying the scaling factor r on ResNet-18 in full precision.

Model
Name Scaling Activation

function λ1
Top-1

Accuracy
ResNet-18 - ReLU 0.0002 76.07%
ResNet-18 mshort

mconvb
ReLU 0.0002 75.80%

ResNet-18 r ReLU 0.0002 76.15%
ResNet-18 - ReLU1 0.0002 74.54%
ResNet-18 mshort

mconvb
ReLU1 0.0002 74.16%

ResNet-18 r ReLU1 0.0002 74.54%

problem, we scaled one input of add operations by a scale factor r as defined in Equation 9. The r is
derived from the maximum absolute values of the shortcut (mshort) and last convolution (mconvb )
layers from each block as in Figure 6. Since we use a log and floor function, r is always in the range
(0.5, 1] and it helps to keep the effect of identity mapping of ResNet. If r is zero, then nothing is
added in the add operation or if r is larger than 1, the shortcut can be perturbed by a large residual.

r = f(mshort,mconvb
) =

mshort

mconvb

· 2

⌊
log2

mconvb

mshort

⌋
, (0.5 < r ≤ 1) (9)

By adjusting r, two different intervals from jth (shortcut) and kth (convb) convolution layers can
be mediated and it will allow us to add two inputs with only shift operations as:

add(ojq, o
k
q ) = mshort · (2

−

log2

Ika I
k
w

IjaI
j
w


·
∑∑

ijai
j
w +

∑∑
ikai

k
w) (10)

4 EXPERIMENT

4.1 FULL PRECISION MODELS

We utilize AlexNet (Krizhevsky et al. 2012) and ResNet-18 (He et al. 2016) as baseline models,
implemented on Tensorflow (Abadi et al. 2016) framework. In AlexNet, we use a variant of it by
adding batch normalization (Ioffe & Szegedy 2015) layers instead of dropout layers and set the
learning rate to 0.01 with decay 0.1 after every 100 epochs until 300 epochs. In ResNet, we set
the learning rate to 0.1 with the same schedule. To estimate the performance, we select CIFAR-
100 Krizhevsky et al. 2009) and set the minibatch size as 128. We also use Nesterov Accelerated
Gradients (Sutskever et al. 2013) as an optimizer. To prevent the fluctuation of validation accuracy,
we take simple moving averages in 5 epochs during training-time and average it over four repetitions.
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Table 3: The results of the top-1 accuracy for CQ and the average bit length for HWR in multiple
bit-width. The complete experiments are in Appendices A.

Model
Name

Bit-W
(bt/bsl)

Bit-A λ2
Percentage

of SLW
Average

Bit Length
Top-1
Error Remarks

AlexNet 32 32 - - - 74.78% FP-ReLU1
AlexNet 2 / - 4 - 0% 2 70.57% TTQ
AlexNet 2 / 3 4 - 12.05% 2.362 73.54% BQ
AlexNet 2 / 3 4 1.2 1.39% 2.042 73.39% WR
AlexNet 2 / 3 4 - 0.83% 2.025 74.72% SQ

ResNet-18 32 32 - - - 74.54% FP-ReLU1
ResNet-18 2 / - 4 - 0% 2 72.79% TTQ
ResNet-18 2 / 2 4 - 0.59% 2.0118 73.92% BQ
ResNet-18 2 / 2 4 1.0 0.014% 2.0003 73.92% WR
ResNet-18 2 / 2 4 - 0.0015% 2.00003 74.22% SQ
ResNet-18 2 / 3 4 - 7.34% 2.2203 74.07% BQ
ResNet-18 2 / 3 4 1.0 0.434% 2.013 74.05% WR
ResNet-18 2 / 3 4 - 0.321% 2.0096 74.67% SQ
ResNet-18 2 / 4 4 - 28.80% 3.1521 74.54% BQ
ResNet-18 2 / 4 4 1.0 4.995% 2.2 74.32% WR
ResNet-18 2 / 4 4 - 4.145% 2.166 74.84% SQ

We perform experiments on full precision models with WR as a regularizer as shown in Table 1.
We adjust λ2 to 1 which is sufficiently large because the penalty Mwp is imposed on the weights
over threshold in Fig. 3 (c). The results of AlexNet and ResNet-18 with WR obtain 0.26% and
0.81% higher accuracy than state-of-the-art models. The additional penalty of pL1 also prevents the
networks from overfitting as effectively as L2 regularizer. We conjecture that the large weights also
can be biased toward training data. Thus, the restriction for large weights enables us to make more
generalized models.

In Table 2, the experiments are conducted to observe the effects of r scaling on the accuracy of
ResNet-18. We compare three coefficients such as zero, r (Eq. 9) and mshort/mconvb

. We observe
that r performs as similar as non-scaled models. As mentioned in Section 3.5, the mshort/mconvb

,
with a value greater than 1, can perturb the shortcut connections. We apply r scaling for all following
quantization experiments on ResNet-18.

4.2 CENTRALIZED QUANTIZATION AND HYBRID WEIGHT REPRESENTATION

In this section, we compare the methods such as TTQ, BQ, WR and SQ. In quantization, we quantize
weights with multiple bit-width and activations in 4 bits precision. The activations of TTQ are also
quantized in the same bits. We keep the first and last layers as full precision. We show our evaluation
results in Table 3.

To observe the effect of the fixed range of our BQ method, we perform a particular experiment.
There are only two different conditions compared to TTQ: i) fixing the range of the weights during
initialization; and ii) using one coefficient as {-Ws, 0, +Ws}. By applying them, the accuracy of
AlexNet and ResNet-18 are rather improved by 1.47% and 0.76%. We believe that ReLU1 activation
can make it difficult to optimize the range of weights by training in TTQ.

The rows remarked as BQ denotes the results of basic quantization in multiple bit-width. As shown
in Table 3, BQ tends to perform better with the cost of additional bits. The BQ and TTQ are used as
baselines of quantization. Additionally, TTQ set a constant t to 0.05 for quantizing weights under
t ·max(|w|) as zero values. In our method, however, if bsl is 2, 3 or 4 bits then the t is derived as
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Table 4: The results of HWR and CQ on ImageNet dataset.

Model
Name

Bit-W
(bt/bsl)

Bit-A λ2
Percentage

of SLW
Average

Bit Length
Top-1
Error Remarks

ResNet-18 32 32 - - - 70.41% FP
ResNet-18 32 32 - - - 62.51% FP-ReLU1
ResNet-18 2 / 3 4 - 1.11% 2.033 56.12% BQ
ResNet-18 2 / 3 4 0.25 0.84% 2.025 55.73% WR
ResNet-18 2 / 3 4 - 0.54% 2.016 58.34% SQ

Figure 7: A trade-off between accuracy and model size in various λ2(2, 1, 1
2 ,

1
4 ,

1
8 ,

1
16 ).

1
6 , 1

10 or 1
18 . All our t are higher than 0.05 and it can cause worse results since L2 regularizer gives

more penalty to larger weights.

Other rows commented as WR, the weights which are over threshold are restricted by WR so the
model has a lower percentage of SLW than BQ after this step. The top-1 accuracy of WR tends to
show worse results than BQ, as dissimilar to Table 1. Thus, we deduce that the quantization can
weaken the generalization effect of the additional penalty of pL1.

The other rows tagged as SQ are the results of the last fine-tuning step, which also imply the results
of CQ. We use the same learning rate schedule from previous steps and use SGD (Bottou 2010)
optimizer. By removing pL1, the restricted weights can grow during fine-tuning. As a result, we
obtain better accuracy and compression rate than WR. Furthermore, after there encoding step, the
difference between the average bit length of SQ and TTQ becomes almost same. When bsl is 3 in
AlexNet, SQ reaches top 1 accuracy of 74.72%, which is 4.15% higher than TTQ with a 1.25%
increase in model size. In ResNet-18, if bsl is 3 then the classification accuracy of SQ is 1.88%
higher while the model size increases only 0.5% compared to TTQ.

4.3 IMAGENET

Table 4 shows the results of ResNet-18 on ImageNet (Russakovsky et al. 2015) dataset. We set the
minibatch size as 256 and the learning rate as 0.1 with decay by 0.1 at 25, 50, 75 and 80 epochs until
85 epochs. We take the best validation error during training. Compared to the full precision model,
using ReLU1 activation causes large degradation in accuracy. The results of BQ, WR and SQ shows
a similar tendency to Table 3. SQ reaches top1 accuracy of 58.34%, which is 2.22% higher than BQ,
while reducing the average bit length. Compared to CIFAR-100, the average bit length of ImageNet
is lower in the same condition. We can make an assumption that if the fixed range (Mwp

) is large,
then clipping of the range can be required for more optimized quantization.

5 DISCUSSION

5.1 TRADE OFF BETWEEN ACCURACY AND MODEL SIZE

We perform extended experiments in various λ2 to monitor the correlation between the percentage of
SLW and the accuracy of ResNet-18 on CIFAR-100. The complete results are listed in Appendices
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Figure 8: Layer-wise comparison of the percentage of SLW and the maximum absolute value.

A. Figure 7 shows that the intensity of pL1 (λ2) and classification accuracy are less related. In spite
of the greater λ2, some results show even better accuracy than the results of the lower λ2. Therefore
we can perceive that if the number of parameters in networks is already enough then most of the
large weights can be reduced with comparable accuracy, accompanied of generalization.

5.2 ANALYSIS OF QUANTIZATION METHOD.

In Table 3, we observe that there is a difference of the percentage of SLW between WR and SQ.
Some results of SQ shows two times lower percentage than WR. The forcibly restricted weights
from WR can grow in SQ step. Thus, we assume that when a weight grow and begin to contribute
more importantly for prediction then some other weights, which make a similar contribution to the
growing weight, become smaller during fine-tuning. Appendices B.1 illustrates a difference of the
weights distributions between BQ and SQ. The -2 and +2 weight values of WR are wide-spread
after SQ step. To make more flatten distributions from BQ, we suggest using another version of WR
which utilize a part of exponential lasso (Breheny 2015) instead of pL1 as shown in Appendices B.2.

Figure 8 displays the layer-wise maximum absolute value and percentage of SLW. The graph denotes
three: i) If a layer has many weights in SLW after BQ, then the layer still has a relatively higher
number of SLW after SQ; and ii) The maximum absolute values of CQ tend to be larger than BQ
since they have only small number of large weights; and iii) The maximum absolute values of BQ
are remarkably lower than the full precision model. We can infer that if the fixed range is too large,
then the L2 regularizer can prevent the quantized weights from growing. For this reason, clipping
the maximum absolute values can be a method for effective quantization.

6 CONCLUSION

We propose a hybrid weight representation (HWR), consisting of two types of weights such as
ternary weights (TW) and sparse-large weights (SLW). In HWR, we represent TW with values while
SLW with indices of values. To represent SLW as indices, we encode SLW by utilizing one usable
state as a prefix, which is not used to store TW in 2 bits. To maximize the effect of encoding, we
use a variant of L2 regularizer, namely weights ridge (WR), for making low entropy from narrower
distributions. We also propose a centralized quantization (CQ) training process, including both
applying WR and fine-tuning by a selective quantization (SQ) without WR. In other words, SLW
helps the networks to improve their accuracy while preserving their model size by encoding SLW
compared to a 2-bit representation. Additionally, we propose a scaling factor r to mediate two
different quantum intervals of add operations in ResNet. We increase the ResNet-18 performance
on CIFAR-100 by 1.88% with only 0.5% increase in model size and on ImageNet by 2.22% with
only 0.8% increase in model size. As a result, we can achieve more efficient networks in terms of
the trade-off between model size and accuracy.
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Table 5: The experimental results of HWR and CQ in multiple bit-width and various λ2.

Model
Name

Bit-W
(bt/bsl)

Bit-A λ2
Percentage

of SLW
Average

Bit Length
Top-1
Error Remarks

AlexNet 32 32 - - - 74.78% FP-ReLU1
AlexNet 2 / - 4 - 0% 2 70.57% TTQ
AlexNet 2 / 3 4 - 12.05% 2.362 73.54% BQ
AlexNet 2 / 3 4 1.2 1.39% 2.042 73.39% WR
AlexNet 2 / 3 4 - 0.83% 2.025 74.72% SQ

ResNet-18 32 32 - - - 74.54% FP-ReLU1
ResNet-18 2 / - 4 - 0% 2 72.79% TTQ
ResNet-18 2 / 2 4 - 0.59% 2.0118 73.92% BQ
ResNet-18 2 / 2 4 0.0625 0.373% 2.0075 73.57% WR (1)
ResNet-18 2 / 2 4 - 0.092% 2.0018 73.95% SQ (1)
ResNet-18 2 / 2 4 0.125 0.198% 2.004 73.93% WR (2)
ResNet-18 2 / 2 4 - 0.079% 2.0016 74.07% SQ (2)
ResNet-18 2 / 2 4 0.25 0.095% 2.002 73.73% WR (3)
ResNet-18 2 / 2 4 - 0.049% 2.001 73.73% SQ (3)
ResNet-18 2 / 2 4 0.5 0.023% 2.0004 74.11% WR (4)
ResNet-18 2 / 2 4 - 0.0068% 2.00013 73.95% SQ (4)
ResNet-18 2 / 2 4 1.0 0.014% 2.0003 73.92% WR (5)
ResNet-18 2 / 2 4 - 0.0015% 2.00003 74.22% SQ (5)
ResNet-18 2 / 2 4 2.0 0.0002% 2.000004 73.93% WR (6)
ResNet-18 2 / 2 4 - 0.0004% 2.0+8e-7 74.08% SQ (6)
ResNet-18 2 / 3 4 - 7.34% 2.2203 74.07% BQ
ResNet-18 2 / 3 4 0.0625 4.955% 2.149 74.19% WR (1)
ResNet-18 2 / 3 4 - 1.904% 2.057 74.23% SQ (1)
ResNet-18 2 / 3 4 0.125 3.393% 2.102 74.05% WR (2)
ResNet-18 2 / 3 4 - 1.563% 2.047 74.06% SQ (2)
ResNet-18 2 / 3 4 0.25 2.11% 2.063 74.28% WR (3)
ResNet-18 2 / 3 4 - 1.147% 2.034 74.52% SQ (3)
ResNet-18 2 / 3 4 0.5 0.967% 2.029 74.1% WR (4)
ResNet-18 2 / 3 4 - 0.7% 2.021 74.54% SQ (4)
ResNet-18 2 / 3 4 1.0 0.434% 2.013 74.05% WR (5)
ResNet-18 2 / 3 4 - 0.321% 2.0096 74.67% SQ (5)
ResNet-18 2 / 3 4 2.0 0.018% 2.0006 74.3% WR (6)
ResNet-18 2 / 3 4 - 0.016% 2.0005 74.11% SQ (6)
ResNet-18 2 / 4 4 - 28.80% 3.1521 74.54% BQ
ResNet-18 2 / 4 4 0.0625 20.67% 2.827 74.56% WR (1)
ResNet-18 2 / 4 4 - 11.749% 2.47 74.67% SQ (1)
ResNet-18 2 / 4 4 0.125 16.608% 2.664 74.28% WR (2)
ResNet-18 2 / 4 4 - 10.395% 2.416 74.57% SQ (2)
ResNet-18 2 / 4 4 0.25 12.38% 2.495 74.53% WR (3)
ResNet-18 2 / 4 4 - 8.462% 2.338 74.78% SQ (3)
ResNet-18 2 / 4 4 0.5 8.108% 2.324 74.26% WR (4)
ResNet-18 2 / 4 4 - 5.485% 2.219 74.45% SQ (4)
ResNet-18 2 / 4 4 1.0 4.995% 2.2 74.32% WR (5)
ResNet-18 2 / 4 4 - 4.145% 2.166 74.84% SQ (5)
ResNet-18 2 / 4 4 2.0 1.611% 2.064 74.06% WR (6)
ResNet-18 2 / 4 4 - 1.381% 2.055 74.73% SQ (6)
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(a) BQ (b) WR (c) SQ

Figure 9: The weights distributions of each step.

(a) L2 and the pEL1 (b) the version of WR (c) derivative of the version of WR

Figure 10: Another version of WR, using the part of elastic lasso (pEL1) instead of pL1. (a) denotes
both L2 and pEL1. The version of WR is addition of them as in (b). (c) is the derivative of the
version of WR.
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