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ABSTRACT

High-dimensional data often lie in or close to low-dimensional subspaces. Sparse
subspace clustering methods with sparsity induced by `0-norm, such as `0-Sparse
Subspace Clustering (`0-SSC) Yang et al. (2016), are demonstrated to be more ef-
fective than its `1 counterpart such as Sparse Subspace Clustering (SSC) Elhamifar
& Vidal (2013). However, these `0-norm based subspace clustering methods are
restricted to clean data that lie exactly in subspaces. Real data often suffer from
noise and they may lie close to subspaces. We propose noisy `0-SSC to handle
noisy data so as to improve the robustness. We show that the optimal solution to
the optimization problem of noisy `0-SSC achieves subspace detection property
(SDP), a key element with which data from different subspaces are separated, under
deterministic and randomized models. Our results provide theoretical guarantee
on the correctness of noisy `0-SSC in terms of SDP on noisy data. We further pro-
pose Noisy-DR-`0-SSC which provably recovers the subspaces on dimensionality
reduced data. Noisy-DR-`0-SSC first projects the data onto a lower dimensional
space by linear transformation, then performs noisy `0-SSC on the dimensionality
reduced data so as to improve the efficiency. The experimental results demonstrate
the effectiveness of noisy `0-SSC and Noisy-DR-`0-SSC.

1 INTRODUCTION

Clustering is an important unsupervised learning procedure for analyzing a broad class of scientific
data in biology, medicine, psychology and chemistry. On the other hand, high-dimensional data,
such as facial images and gene expression data, often lie in low-dimensional subspaces in many
cases, and clustering in accordance to the underlying subspace structure is particularly important.
For example, the well-known Principal Component Analysis (PCA) works perfectly if the data are
distributed around a single subspace. The subspace learning literature develops more general methods
that recover multiple subspaces in the original data, and subspace clustering algorithms Vidal (2011)
aim to partition the data such that data belonging to the same subspace are identified as one cluster.
Among various subspace clustering algorithms, the ones that employ sparsity prior, such as Sparse
Subspace Clustering (SSC) Elhamifar & Vidal (2013) and `0-Sparse Subspace Clustering (`0-SSC)
Yang et al. (2016), have been proven to be effective in separating the data in accordance with the
subspaces that the data lie in under certain assumptions.

Sparse subspace clustering methods construct the sparse similarity matrix by sparse representation
of the data. Subspace detection property (SDP) defined in Section 4.1 ensures that the similarity
between data from different subspaces vanishes in the sparse similarity matrix, and applying spectral
clustering Ng et al. (2001) on such sparse similarity matrix leads to compelling clustering performance.
Elhamifar and Vidal Elhamifar & Vidal (2013) prove that when the subspaces are independent or
disjoint, SDP can be satisfied by solving the canonical sparse linear representation problem using
data as the dictionary, under certain conditions on the rank, or singular value of the data matrix and
the principle angle between the subspaces. SSC has been successfully applied to a novel deep neural
network architecture, leading to the first deep sparse subspace clustering method Peng et al. (2016).
Under the independence assumption on the subspaces, low rank representation Liu et al. (2010; 2013)
is also proposed to recover the subspace structures. Relaxing the assumptions on the subspaces to
allowing overlapping subspaces, the Greedy Subspace Clustering Park et al. (2014) and the Low-
Rank Sparse Subspace Clustering Wang et al. (2013) achieve subspace detection property with high

1



Under review as a conference paper at ICLR 2020

probability. The geometric analysis in Soltanolkotabi & Cands (2012) shows the theoretical results
on subspace recovery by SSC. In the following text, we use the term SSC or `1-SSC exchangeably to
indicate the Sparse Subspace Clustering method in Elhamifar & Vidal (2013).

Real data often suffer from noise. Noisy SSC proposed in Wang & Xu (2013) handles noisy data
that lie close to disjoint or overlapping subspaces. While `0-SSC Yang et al. (2016) has guaranteed
clustering correctness via subspace detection property under much milder assumptions than previous
subspace clustering methods including SSC, it assumes that the observed data lie in exactly in the
subspaces and does not handle noisy data. In this paper, we present noisy `0-SSC, which enhances `0-
SSC by theoretical guarantee on the correctness of clustering on noisy data. It should be emphasized
that while `0-SSC on clean data Yang et al. (2016) empirically adopts a form of optimization problem
robust to noise, it lacks theoretical analysis on the correctness of `0-SSC on noisy data. In this
paper, the correctness of noisy `0-SSC on noisy data in terms of the subspace detection property is
established. Our analysis is under both deterministic model and randomized models, which is also the
model employed in the geometric analysis of SSC Soltanolkotabi & Cands (2012). Our randomized
analysis demonstrates potential advantage of noisy `0-SSC over its `1 counterpart as more general
assumption on data distribution can be adopted. Moreover, we present Noisy Dimensionality Reduced
`0-Sparse Subspace Clustering (Noisy-DR-`0-SSC), an efficient version of noisy `0-SSC which also
enjoys robustness to noise. Noisy-DR-`0-SSC first projects the data onto a lower dimensional space
by random projection, then performs noisy `0-SSC on the dimensionality reduced data. Noisy-DR-`0-
SSC provably recovers the underlying subspace structure in the original data from the dimensionality
reduced data under deterministic model. Experimental results demonstrate the effectiveness of both
noisy `0-SSC and Noisy-DR-`0-SSC.

We use bold letters for matrices and vectors, and regular lower letter for scalars throughout this paper.
The bold letter with superscript indicates the corresponding column of a matrix, e.g. Ai is the i-th
column of matrix A, and the bold letter with subscript indicates the corresponding element of a
matrix or vector. ‖ · ‖F and ‖ · ‖p denote the Frobenius norm and the vector `p-norm or the matrix
p-norm, and diag(·) indicates the diagonal elements of a matrix. HT ⊆ Rd indicates the subspace
spanned by the columns of T, and AI denotes a submatrix of A whose columns correspond to the
nonzero elements of I (or with indices in I without confusion). σt(·) denotes the t-th largest singular
value of a matrix, and σmin(·) indicates the smallest singular value of a matrix. supp(·) is the support
of a vector, PS′ is an operator indicating projection onto the subspace S ′.

2 PROBLEM SETUP

2.1 NOTATIONS

We hereby introduce the notations for subspace clustering on noisy data considered in this paper. The
uncorrupted data matrix is denoted by Y = [y1, . . . ,yn] ∈ Rd×n, where d is the dimensionality and
n is the size of the data. The uncorrupted data Y lie in a union of K distinct subspaces {Sk}Kk=1 of
dimensions {dk}Kk=1. The observed noisy data isX = Y +N , whereN = [n1, . . . ,nn] ∈ Rd×n
is the additive noise. xi = yi + ni is the noisy data point that is corrupted by the noise ni.

Let Y (k) ∈ Rd×nk denote the data belonging to subspace Sk with
K∑
k=1

nk = n, and denote the

corresponding columns inX byX(k). The dataX are normalized such that each column has unit
`2-norm in our deterministic analysis. We consider deterministic noise model where the noise Z is
fixed and max ‖ni‖ ≤ δ. Note that our analysis can be extended to a random noise model which is
common and also considered by noisy SSC Wang & Xu (2013), and the random noise model assumes
that columns of Z are sampled i.i.d. and max ‖ni‖ ≤ δ with high probability. Note that such random
noise model does not require spherical symmetric noise as that in Wang & Xu (2013).

2.2 METHOD

`0-SSC Yang et al. (2016) proposes to solve the following `0 sparse representation problem
min
Z
‖Z‖0 s.t.X = XZ, diag(Z) = 0, (1)

and it proves that the subspace detection property defined in Definition 1 is satisfied with the globally
optimal solution to (1). We resort to solve the `0 regularized sparse approximation problem below to

2



Under review as a conference paper at ICLR 2020

handle noisy data for `0-SSC, which is the optimization problem of noisy `0-SSC:

min
Z∈Rn×n,diag(Z)=0

L(Z) = ‖X −XZ‖2F + λ‖Z‖0. (2)

The definition of subspace detection property for noisy `0-SSC and noiseless `0-SSC, i.e. `0-SSC on
noiseless data, is defined in Definition 1 below.
Definition 1. (Subspace detection property for noisy and noiseless `0-SSC) Let Z∗ be the optimal
solution to (2). The subspaces {Sk}Kk=1 and the dataX satisfy subspace detection property for noisy
`0-SSC if Zi is a nonzero vector, and nonzero elements of Zi correspond to the columns ofX from
the same subspace as yi for all 1 ≤ i ≤ n.

Similarly, in the noiseless setting whereX = Y , let Z∗ be the optimal solution to (1). The subspaces
{Sk}Kk=1 and the data X satisfy the subspace detection property for noiseless `0-SSC if Zi is a
nonzero vector, and nonzero elements of Zi correspond to the columns of X that from the same
subspace as yi for all 1 ≤ i ≤ n.

We say that subspace detection property holds for xi if nonzero elements of Z∗i correspond to the
data that lie in the same subspace as yi, for either noisy `0-SSC or noiseless `0-SSC.

2.3 MODELS

Similar to Soltanolkotabi & Cands (2012), we introduce the deterministic, semi-random and fully-
random models for the analysis of noisy `0-SSC.

• Deterministic Model: the subspaces and the data in each subspace are fixed.
• Semi-Random Model: the subspaces are fixed but the data are independent and identically

distributed in each of the subspaces.
• Fully-Random Model: both the subspaces and the data of each subspace are independent and

identically distributed.

The data in the above definitions refer to clean data without noise. We refer to semi-random model
and fully-random model as randomized models in this paper. All the three models are extensively
employed to analyze the subspace detection property in the subspace learning literature Soltanolkotabi
& Cands (2012); Wang et al. (2013); Wang & Xu (2013); Yining Wang & Singh (2016).

3 THEORETICAL ANALYSIS FOR NOISY `0-SSC

The theoretical results on the subspace detection property for noisy `0-SSC are presented in this
section under deterministic model and randomized models.
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Figure 1: Illustration of an external subspace. All the data Y are normalized to have unit norm for
illustration purpose, so they lie on the surface of the sphere. S1 and S2 are two subspaces in the
three-dimensional ambient space. The subspace spanned by yi ∈ S1 and yj ∈ S2 is an external
subspace, and the intersection of this external subspace and S1 is a dashed line yiOA.

3.1 NOISY `0-SSC: DETERMINISTIC ANALYSIS

We introduce the definition of general position and external subspace before our analysis on noisy
`0-SSC.
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Definition 2. (General position) For any 1 ≤ k ≤ K, the data Y (k) are in general position if any
subset of L ≤ dk data points (columns) of Y (k) are linearly independent. Y are in general position
if Y (k) are in general position for 1 ≤ k ≤ K.

The assumption of general condition is rather mild. In fact, if the data points inX(k) are independently
distributed according to any continuous distribution, then they almost surely in general position.

Let the distance between a point x ∈ Rd and a subspace S ⊆ Rd be defined as d(x,S) = infy∈S ‖x−
y‖2, the definition of external subspaces is presented as follows. Figure 1 illustrates an example of
external subspace.

Definition 3. (External subspace) For a point y ∈ Y (k), a subspace H{yij
}Lj=1

spanned by a

set of linear independent points {yij}Lj=1 ⊆ Y is defined to be an external subspace of y if
{yij}Lj=1 6⊆ Y (k) and y /∈ {yij}Lj=1. The point y is said to be away from its external subspaces if
minH∈Hy,dk

d(y,H) > 0, where Hy,d are the set of all external subspaces of y of dimension no
greater than d for y, i.e. Hy,d = {H : H = H{yij

}Lj=1
,dim[H] = L,L ≤ d, {yij}Lj=1 6⊆ Y (k),y /∈

{yij}Lj=1}. All the data points in Y (k) are said to be away from the external subspaces if each of
them is away from the its associated external spaces.
Remark 1. (Subspace detection property holds for noiseless `0-SSC under the deterministic model)
It can be verified that the following statement is true. Under the deterministic model, suppose data is
noiseless, nk ≥ dk + 1, Y (k) is in general position. If all the data points in Y (k) are away from the
external subspaces for any 1 ≤ k ≤ K, then the subspace detection property for `0-SSC holds with
the optimal solution Z∗ to (1).

To present our theoretical results of the correctness of noisy `0-SSC, we also need the definitions of
the minimum restricted eigenvalue and the subspace separation margin, which are defined as follows.
In the following analysis, we employ β to denote the sparse code of datum xi so that a simpler
notation other than Zi is dedicated to our analysis.
Definition 4. The minimum restricted eigenvalue of the uncorrupted data is defined as

σY ,r , min
β:‖β‖0=r,rank(Yβ)=‖β‖0

σmin(Yβ) (3)

for r ≥ 1. In addition, the normalized minimum restricted eigenvalue of the uncorrupted data is
defined by

σ̄Y ,r ,
σY ,r√
r

(4)

We have the following perturbation bound for the distance between a data point and the subspaces
spanned by noisy and noiseless data, which is useful to establish the conditions when the subspace
detection property holds for noisy `0-SSC.
Lemma 1. Let β ∈ Rn and Yβ has full column rank. Suppose δ < σ̄Y ,r where r = ‖β‖0, thenXβ
is a full column rank matrix, and

|d(xi,HXβ )− d(xi,HYβ )| ≤ δ

σ̄Y ,r − δ
(5)

for any 1 ≤ i ≤ n.

The optimization problem of noisy `0-SSC (2) is separable. For each 1 ≤ i ≤ n, the optimization
problem with respect to the sparse code of i-th data point is

min
β∈Rn,βi=0

L(β) = ‖xi −Xβ‖22 + λ‖β‖0. (6)

Lemma 2 shows that the optimal solution to the noisy `0-SSC problem (6) is also that to a `0-
minimization problem with tolerance to noise.
Lemma 2. Let nonzero vector β∗ be the optimal solution to the noisy `0-SSC problem (6) for point
xi with ‖β∗‖0 = r∗ > 1. If λ > τ0 where τ0 is defined as

τ0 ,
2δ
√
r∗

σ∗X
+ τ1,
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where

τ1 ,
δ

σ̄∗Y − δ
, σ∗X , σmin(Xβ∗),

with δ < σ̄∗Y , and σ̄∗Y is defined as

σ̄∗Y , min
1≤r<r∗

σ̄Y ,r,

then β∗ is the optimal solution to the following sparse approximation problem with the uncorrupted
data as the dictionary:

min
β
‖β‖0 s.t. ‖xi − Y β‖2 ≤ c∗ +

2δ
√
r∗

σ∗X
, βi = 0. (7)

where c∗ , ‖xi −Xβ∗‖2.

Define B(xi, c0) = {x : ‖x − xi‖ ≤ c0} be the ball centered at xi with radius c0. If B(xi, c0) is
away from the corresponding confusion area, i.e. all the external subspaces inHyi,dk , then subspace
detection property holds with the solution to a proper sparse approximation problem where xi is
approximated by the uncorrupted data, as shown in the following Lemma.
Lemma 3. Suppose Y is in general position and yi ∈ Sk for some 1 ≤ k ≤ K. For positive number
c0 such that c0 ≥ d(xi,Sk), suppose B(xi, c0) ∩H = ∅ for any H ∈ Hyi,dk . Then the subspace
detection property holds for xi with the optimal solution to the following sparse approximation
problem, denoted by β∗, i.e. nonzero elements of β∗ correspond to the columns ofX from the same
subspace as yi.

min
β
‖β‖0 s.t. ‖xi − Y β‖2 ≤ c0, βi = 0. (8)

Now we use the above results to present the main result on the correctness of noisy `0-SSC.
Theorem 1. (Subspace detection property holds for noisy `0-SSC) Let nonzero vector β∗ be the
optimal solution to the noisy `0-SSC problem (6) for point xi with ‖β∗‖0 = r∗ > 1, and c∗ ,
‖xi −Xβ∗‖2. Suppose Y is in general position, yi ∈ Sk for some 1 ≤ k ≤ K, δ < σ̄∗Y , λ > τ0,
B(yi, δ + c∗ + 2δ

√
r∗

σ∗X
) ∩H = ∅ for any H ∈ Hyi,dk . Then the subspace detection property holds

for xi with β∗. Here τ0, τ1, σ̄∗Y and σ∗X are defined in Lemma 2.
Remark 2. When δ = 0 and there is no noise in the data X , the conditions for the correctness of
noisy `0-SSC in Theorem 1 almost reduce to that for noiseless `0-SSC. To see this, the conditions
are reduced to B(yi, c

∗) ∩H = ∅, which are exactly the conditions required by noiseless `0-SSC,
namely data are away from the external subspaces by choosing λ→ 0 and it follows that c∗ = 0.

While Theorem 1 establishes geometric conditions under which the subspace detection property holds
for noisy `0-SSC, it can be seen that these conditions are often coupled with the optimal solution
β∗ to the noisy `0-SSC problem (6). In the following theorem, the correctness of noisy `0-SSC is
guaranteed in terms of λ, the weight for the `0 regularization term in (6), and the geometric conditions
independent of the optimal solution to (6).

Let Mi > 0 be the minimum distance between yi ∈ Sk and its external subspaces when yi is away
from its external subspaces, i.e.

Mi , min{d(yi,H) : H ∈ Hyi,dk}, (9)

The following two quantities related to the spectrum of clean and noisy data, µr and σX,r, are defined
as follows with r > 1 for the analysis in Theorem 2.

µr ,
δ

min1≤r′<r σ̄Y ,r − δ
, (10)

σX,r , min{σmin(Xβ) : 1 ≤ ‖β‖0 ≤ r} (11)

Theorem 2. (Subspace detection property holds for noisy `0-SSC under deterministic model, with
conditions in terms of λ) Let nonzero vector β∗ be the optimal solution to the noisy `0-SSC problem
(6) for point xi with ‖β∗‖0 = r∗, nk ≥ dk + 1 for every 1 ≤ k ≤ K, and there exists 1 < r0 ≤ d
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such that 1 < r∗ ≤ r0. Suppose Y is in general position, yi ∈ Sk for some 1 ≤ k ≤ K,
δ < min1≤r<r0 σ̄Y ,r, and Mi,δ ,Mi − δ. Suppose

Mi,δ >
2δ

σX,r0
, (12)

and

µr0 < 1− 2δ

σX,r0
. (13)

Then if

λ0 < λ < 1, (14)

where λ0 , max{λ1, λ2} and

λ1 , inf{0 < λ < 1:
√

1− λ+
2δ

σX,r0
√
λ
< Mi,δ}, (15)

λ2 , inf{0 < λ < 1: λ− 2δ

σX,r0

1√
λ
> µr0}, (16)

the subspace detection property holds for xi with β∗. Here Mi, µr0 and σX,r0 are defined in (9),
(10) and (11) respectively.
Remark 3. The two conditions (12) and (13) are induced by the conditions that B(yi, δ + c∗ +
2δ
√
r∗

σ∗X
) ∩H = ∅ for any H ∈ Hyi,dk , and λ > τ0 in Theorem 1. Note that when (12) and (13) hold,

λ1 and λ2 can always be chosen in accordance with (15) and (16).
Remark 4. It can be observed from condition (14) that noisy `0-SSC encourages sparse solution by
a relatively large λ so as to guarantee the subspace detection property. This theoretical finding is
consistent with the empirical study shown in the experimental results.

3.2 NOISY `0-SSC: RANDOMIZED ANALYSIS

In this subsection, the correctness of noisy `0-SSC is analyzed when the clean data in each subspace
are distributed at random. We assume that the data in subspace S(k) are i.i.d. isotropic samples on
sphere of radius

√
dk centered at the origin according to some continuous distribution, for 1 ≤ k ≤ K.

A random variable y ∈ Sk is isotropic if E[yy>] = Idk , where Idk is the dk × dk identity matrix
(with y represented as a vector in Rdk ). In addition, for each 1 ≤ k ≤ K, we assume that the
following condition holds:

(a) There exists a constant M ≥ 1 such that for any t > 0, any y ∈ Y (k), and any vector v with unit
`2-norm,

Pr[|〈y,v〉| > t] ≤ M

t4
. (17)

Intuitively, condition (a) requires that the projection of any data point onto arbitrary unit vector is
bounded from both sides with relatively large probability. This condition is also required in Yaskov
(2014) to derive lower bound for the least singular value of a random matrix with independent
isotropic columns. In order to meet the conditions in Theorem 2 so as to guarantee the subspace
detection property under randomized models, the following lemma is presented and it provides the
geometric concentration inequality for the distance between a point y ∈ Y (k) and any of its external
subspaces. It renders a lower bound for Mi, namely the minimum distance between yi ∈ Sk and its
external subspaces.

Lemma 4. Under randomized models, given 1 ≤ k ≤ K and y ∈ Y (k), suppose H ∈ Hyi,dk is any
external subspace of y. Then for any t > 0,

Pr[d(y,H) ≥ 1− 2t
√
dk − 1− t2] ≥ 1− 8 exp(−dkt

2

2
). (18)

We then have the following results regarding to the subspace detection property of noisy `0-SSC
under randomized models.
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Theorem 3. (Subspace detection property holds for noisy `0-SSC under randomized models, with
conditions in terms of λ) Under randomized models, let nonzero vector β∗ be the optimal solution to
the noisy `0-SSC problem (6) for point xi with ‖β∗‖0 = r∗, nk ≥ dk + 1 for every 1 ≤ k ≤ K, and
there exists 1 < r0 ≤ d such that 1 < r∗ ≤ r0. Suppose the data in each subspace are i.i.d. isotropic
samples according to some continuous distribution that satisfies condition (a). Let dmax , maxk dk,
c , 1√

r0(
√
196Md+1+14

√
Md)

. For t > 0 such that 1− 2t
√
dmax − 1− t2 > 0, suppose

δ < c, (19)

δ +
2δ√

r0(c− δ) ≤ 1− 2t
√
dmax − 1− t2, (20)

δ

c− δ +
2δ√

r0(c− δ) < 1, (21)

and

λ′0 < λ < 1, (22)

where λ′0 , max{λ′1, λ′2} and

λ′1 , inf{0 < λ < 1:
√

1− λ+
2δ

√
r0(c− δ)

√
λ

< 1− 2t
√
dmax − 1− t2 − δ}, (23)

λ′2 , inf{0 < λ < 1: λ− 2δ√
r0(c− δ)

1√
λ
>

δ

c− δ }. (24)

Then with probability at least 1−K exp(−d)−8
K∑
k=1

nk exp(−dkt
2

2 ), the subspace detection property

holds for xi with β∗.
Remark 5. Note that there is no assumption on the distribution of subspaces in Theorem 3, so it is not
required that the subspaces should have uniform distribution, an is required in the geometric analysis
of `1-SSC Soltanolkotabi & Cands (2012) and its noisy version Wang & Xu (2013). In addition, while
Soltanolkotabi & Cands (2012); Wang & Xu (2013) require data in each subspace are i.i.d according
to uniform distribution on unit sphere, our randomized result requires data in each subspace are i.i.d.
isotropic random vectors on sphere of radius

√
dk. Note that i.i.d samples uniformly distributed on

sphere of radius
√
dk centered at the origin are in fact isotropic, our assumption is less restrictive

after scaling the data by a factor of
√
dk.

4 NOISY `0-SSC ON DIMENSIONALITY REDUCED DATA: NOISY-DR-`0-SSC

Albeit the theoretical guarantee and compelling empirical performance of noisy `0-SSC to be shown in
the experimental results, the computational cost of noisy `0-SSC is high with the high dimensionality
of the data. In this section, we propose Noisy Dimensionality Reduced `0-SSC (Noisy-DR-`0-SSC)
which performs noisy `0-SSC on dimensionality reduced data. The theoretical guarantee on the
correctness of Noisy-DR-`0-SSC under deterministic model as well as its empirical performance are
presented.

4.1 METHOD

Noisy-DR-`0-SSC performs subspace clustering by the following two steps: 1) obtain the dimension
reduced data X̃ = PX with a linear transformation P ∈ Rp×d (p < d). 2) perform noisy `0-SSC
on the compressed data X̃:

min
β̃∈Rn,β̃i=0

L(β̃) = ‖x̃i − X̃β‖22 + λ̃‖β̃‖0. (25)

If p < d, Noisy-DR-`0-SSC operates on the compressed data X̃ rather than on the original data, so
that the efficiency is improved.
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4.2 ANALYSIS

High-dimensional data often exhibits low-dimensional structures, which often leads to low-rankness
of the data matrix. Intuitively, if the data is low rank, then it could be safe to perform noisy `0-SSC on
its dimensionality reduced version by the linear projection P, and it is expected that P can preserve
the information of the subspaces contained in the original data as much as possible, while effectively
removing uninformative dimensions.

To this end, we propose to choose P as a random projection induced by randomized low-rank
approximation of the data. The key idea is to obtain an approximate low-rank decomposition
of the data. Using the random projection induced by such low-rank approximation as the linear
transformation P, the clustering correctness hold for Noisy-DR-`0-SSC with a high probability.

Randomized algorithms are efficient and they have been extensively studied in the computer science
and numerical linear algebra literature. They have been employed to accelerate various numerical
matrix computation and matrix optimization problems, including random projection for matrix
decomposition Frieze et al. (2004); Drineas et al. (2004); Sarlos (2006); Drineas et al. (2006; 2008);
Mahoney & Drineas (2009); Drineas et al. (2011); Lu et al. (2013).

Formally, a random matrix T ∈ Rn×p is generated such that each element Tij is sampled indepen-
dently according to the Gaussian distribution N (0, 1). QR decomposition is then performed onXT
to obtain the basis of its column space, namelyXT = QR where Q ∈ Rd×p is an orthogonal matrix
of rank p and R ∈ Rp×p is an upper triangle matrix. The columns of Q form the orthogonal basis for
the sample matrixXT. An approximation ofX is then obtained by projectingX onto the column
space of XT: QQ>X = QW = X̂ where W = Q>X ∈ Rp×n. In this manner, a randomized
low-rank decomposition ofX is achieved as follows:

X̂ = QW (26)

We present probabilistic result on the correctness of Noisy-DR-`0-SSC using the random projection
induced by randomized low-rank decomposition of the data X , namely P = Q>, in Theorem 4.
In the sequel, x̃ = Px for any x ∈ Rn. To guarantee the subspace detection property on the
dimensionality-reduced data X̃ , it is crucial to make sure that the conditions, such as (12) and (13) in
Theorem 2, still hold after the linear transformation.

We denote by β̃∗ the optimal solution to (25). We also define the following quantities in the analysis
of the subspace detection property, which correspond to Mi, σ̄Y ,r, σX,r and µr used in the analysis
on the original data:

M̃i , min{d(ỹi,H) : H ∈ Hỹi,d̃k
}, (27)

whereHỹi,d̃k
is all the external subspaces of ỹi with dimension no greater than d̃k in the transformed

space by P.

σ̄Ỹ ,r , min
β:‖β‖0=r,rank(Ỹβ)=‖β‖0

σmin(Ỹβ), (28)

σX̃,r , min{σmin(X̃β) : 1 ≤ ‖β‖0 ≤ r}, (29)

µ̃r ,
δ

min1≤r′<r σ̄Ỹ ,r − δ
. (30)

Theorem 4. (Subspace detection property holds for Noisy-DR-`0-SSC under deterministic model)
Let nonzero vector β∗ be the optimal solution to the noisy `0-SSC problem (6) for point xi with
‖β∗‖0 = r∗, nk ≥ dk + 1 for every 1 ≤ k ≤ K, and there exists 1 < r0 ≤ d such that 1 < r∗ ≤ r0.
Suppose Y is in general position, δ < min1≤r<r0 σ̄Y ,r, and M̃i,δ , M̃i − δ. Suppose the following
conditions hold:

(i)

Cp,p0 + 2δ

√
d̃max < min

k=1,...,K
σ
(k)
Y , (31)

where d̃max , maxk d̃k, σ(k)
Y , min{σmin(A) : A ⊆ Y (k),A ∈ Rd×n′ , n′ ≤ d̃k}.
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(ii) δ(1 + 2
√
r0) < min1≤r<r0 σ̄Y ,r − Cp,p0 ,

(iii) min1≤r≤d̃k σY ,r > Cp,p0 − 2δ
√
d̃k and

Mi − Cp,p0(1 +
1

min1≤r≤d̃k σY ,r − Cp,p0 − 2δ
√
d̃k

)

> δ +
2δ

σX,r0 − Cp,p0
, (32)

for all yi ∈ Sk and 1 ≤ k ≤ K.

(iv) min1≤r<r0 σ̄Y ,r0 > Cp,p0 − 2δ
√
r0 − δ and

δ

min1≤r<r0 σ̄Y ,r0 − Cp,p0 − 2δ
√
r0 − δ

< 1− 2δ

σX,r0 − Cp,p0
. (33)

If

λ̃0 < λ̃ < 1, (34)

where λ̃0 = max{max{λ̃1, λ̃2, 1
r0
} and

λ̃1 = inf{0 < λ̃ < 1:

√
1− λ̃+

2δ

σX̃,r0

√
λ̃
< M̃i,δ}, (35)

λ̃2 = inf{0 < λ̃ < 1: λ̃− 2δ

σX,r0

1√
λ̃
> µ̃r0}, (36)

then with probability at least 1− 6e−p, the subspace detection property holds for x̃i with β̃∗. Here
M̃i, µ̃r and σ̃X̃,r0 are defined in (27), (30) and (29) respectively.

Table 1: Clustering results on various data sets, with the best two results in bold
Data Set Measure KM SC Noisy SSC Noisy DR-SSC SMCE SSC-OMP Noisy `0-SSC Noisy-DR-`0-SSC

COIL-20 AC 0.6554 0.4278 0.7854 0.7764 0.7549 0.3389 0.8472 0.8479
NMI 0.7630 0.6217 0.9148 0.9219 0.8754 0.4853 0.9428 0.9433

COIL-100 AC 0.4996 0.2835 0.5275 0.5013 0.5639 0.1667 0.7683 0.7039
NMI 0.7539 0.5923 0.8041 0.8019 0.8064 0.3757 0.9182 0.8706

Yale-B AC 0.0954 0.1077 0.7850 0.7255 0.3293 0.7789 0.8480 0.8231
NMI 0.1258 0.1485 0.7760 0.7311 0.3812 0.7024 0.8612 0.8533

Table 2: Clustering results on various data sets, with the best two results in bold
Data Set Measure KM SC Noisy SSC Noisy DR-SSC SMCE SSC-OMP Noisy `0-SSC Noisy-DR-`0-SSC

MPIE S1 AC 0.1164 0.1285 0.5892 0.3588 0.1721 0.1695 0.6741 0.6741
NMI 0.5049 0.5292 0.7653 0.6806 0.5514 0.3395 0.8622 0.8622

MPIE S2 AC 0.1315 0.1410 0.6994 0.4611 0.1898 0.2093 0.7527 0.7527
NMI 0.4834 0.5128 0.8149 0.7086 0.5293 0.4292 0.8939 0.7527

MPIE S3 AC 0.1291 0.1459 0.6316 0.4841 0.1856 0.1787 0.7050 0.7050
NMI 0.4811 0.5185 0.7858 0.7340 0.5155 0.3415 0.8750 0.8750

MPIE S4 AC 0.1308 0.1463 0.6803 0.5511 0.1823 0.1680 0.7246 0.7246
NMI 0.4866 0.5280 0.8063 0.7955 0.5294 0.3345 0.8837 0.8837

5 OPTIMIZATION OF NOISY `0-SSC AND NOISY-DR-`0-SSC

We employ Proximal Gradient Descent (PGD) to optimize the objective function of noisy `0-SSC
and Noisy-DR-`0-SSC. For example, in the k-th iteration of PGD for problem (6), the variable β is
updated according to

β(k+1) = T√2λs(β
(k) − s∇g(β(k))), (37)

9
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where g(β) , ‖xi −Xβ‖22, Tθ is an element-wise hard thresholding operator:

[Tθ(u)]j =

{
0 : |uj | ≤ θ

uj : otherwise
, 1 ≤ j ≤ n.

It is proved in Yang & Yu (2019) that the sequence {β(k)} generated by PGD converges to a critical
point of (6), denoted by β̂. Let β∗ be the optimal solution to (6). Theorem 5 in Yang & Yu (2019)
to problem (6) shows that the ‖β∗ − β̂‖2 is bounded. Theorem 5 establishes the conditions under
which β̂ is also the optimal solution to (6).

Define S∗ , supp(β∗), H∗ , max1≤j≤n dist(x,HXS∗\{j}), µ , max{H∗ + ‖xi −
Xβ∗‖2, 2‖xi −Xβ̂‖2, 2‖xi −Xβ∗‖2}, κ0 , σmin(XS∪S∗) > 0 where S , supp(β(0)). The
following theorem demonstrates that β̂ = β∗ if λ is two-side bounded and β̂min = mint:β̂t 6=0 |β̂t| is
sufficiently large.
Theorem 5. (Conditions that the sub-optimal solution by PGD is also globally optimal) If

β̂min ≥
µ

κ20
(38)

and
µ2

2κ20
≤ λ ≤ (β̂min −

µ

2κ20
)µ, (39)

then β̂ = β∗.

6 EXPERIMENTAL RESULTS

We demonstrate the performance of noisy `0-SSC and Noisy-DR-`0-SSC, with comparison to other
competing clustering methods including K-means (KM), Spectral Clustering (SC), noisy SSC, Sparse
Manifold Clustering and Embedding (SMCE) Elhamifar & Vidal (2011) and SSC-OMP Dyer et al.
(2013). With the coefficient matrix Z obtained by the optimization of noisy `0-SSC or Noisy-DR-`0-
SSC, a sparse similarity matrix is built by W = |Z|+|Z>|

2 , and spectral clustering is performed on
W to obtain the clustering results. Two measures are used to evaluate the performance of different
clustering methods, i.e. the Accuracy (AC) and the Normalized Mutual Information (NMI) Zheng
et al. (2004).

We use randomized rank-p decomposition of the data matrix in Noisy-DR-`0-SSC with p = min{d,n}
10 .

It can be observed that noisy `0-SSC and Noisy-DR-`0-SSC always achieve better performance than
other methods in Table 1, including the noisy SSC on dimensionality reduced data (Noisy DR-SSC)
Wang et al. (2015). Throughout all the experiments we find that the best clustering accuracy is
achieved whenever λ is chosen by 0.5 < λ < 0.95, justifying our theoretical finding claimed in
Remark 4 and (39) in Theorem 5. More experimental results on the CMU Multi-PIE data are shown
in Table 2. For all the methods that involve random projection, we conduct the experiments for
30 times and report the average performance. Note that the cluster accuracy of SSC-OMP on the
extended Yale-B data set is reported according to You et al. (2016). The time complexity of running
PGD for noisy `0-SSC and Noisy-DR-`0-SSC are O(Tnd) and O(Tpd) respectively, where T is
the maximum iteration number. The actual running time of both algorithms confirms such time
complexity, and we observe that Noisy-DR-`0-SSC is always more than 8.7 times faster than noisy
`0-SSC with the same number of iterations.

7 CONCLUSION

We present provable noisy `0-SSC that recovers subspaces from noisy data through `0-induced
sparsity in a robust manner, with the theoretical guarantee on its correctness in terms of subspace
detection property under both deterministic and randomized models. Experimental results shows the
superior performance of noisy `0-SSC. We also propose Noisy-DR-`0-SSC which performs noisy
`0-SSC on dimensionality reduced data and still provably recovers the subspaces in the original data.
Experiment results demonstrate the effectiveness of both noisy `0-SSC and Noisy-DR-`0-SSC.

10
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A APPENDIX

We provide proofs to the lemmas and theorems in the paper in this appendix.

A.1 PROOF OF REMARK 1

Lemma A. (Subspace detection property holds for `0-SSC under the deterministic model) Under the determin-
istic model, suppose data is noiseless, nk ≥ dk + 1, Y (k) is in general position. If all the data points in Y (k)

are away from the external subspaces for any 1 ≤ k ≤ K, then the subspace detection property for `0-SSC
holds with the optimal solution Z∗ to (1).

Proof. Let xi ∈ Sk. Note that Z∗i is the optimal solution to the following `0 sparse representation problem

min
Zi
‖Zi‖0 s.t. xi = [X(k) \ xi X(−k)]Zi, Zii = 0, (40)

whereX(−k) denotes the data that lie in all subspaces except Sk. Let Z∗i =

[
α
β

]
where α and β are sparse

codes corresponding toX(k) \ xi andX(−k) respectively.

Suppose β 6= 0, then xi belongs to a subspace S
′

= HX
Z∗i

spanned by the projected data points corresponding

to nonzero elements of Z∗i, and S
′
6= Sk, dim[S

′
] ≤ dk. To see this, if S

′
= Sk, then the data corresponding

to nonzero elements of β belong to Sk, which is contrary to the definition ofX(−k). Also, if dim[S
′
] > dk,

then any dk points inX(k) can be used to linearly represent xi by the condition of general position, contradicting
with the optimality of Z∗i. Since the data points (or columns) inXZ∗i are linearly independent, it follows that
xi lies in an external subspace HX

Z∗i
spanned by linearly independent points inXZ∗i , and dim[HX

Z∗i
] =

dim[S
′
] ≤ dk. This contradicts with the assumption that xi is away from the external subspaces. Therefore,

12
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β = 0. Perform the above analysis for all 1 ≤ i ≤ n, we can prove that the subspace detection property holds
for all 1 ≤ i ≤ n.

A.2 PROOF OF LEMMA 1

The following proposition is used for proving Lemma 1.

Lemma B. (Perturbation of distance to subspaces) Let A, B ∈ Rm×n are two matrices and rank(A) = r,
rank(B) = s. Also, E = A−B and ‖E‖2 ≤ C, where ‖ · ‖2 indicates the spectral norm. Then for any point
x ∈ Rm, the difference of the distance of x to the column space of A and B, i.e. |d(x,HA)− d(x,HB)|, is
bounded by

|d(x,HA)− d(x,HB)| ≤ C‖x‖2
min{σr(A), σs(B)} . (41)

Proof. Note that the projection of x onto the subspace HA is AA+x where A+ is the Moore-Penrose
pseudo-inverse of the matrix A, so d(x,HA) equals to the distance between x and its projection, namely
d(x,HA) = ‖x−AA+x‖2. Similarly, d(x,HB) = ‖x−BB+x‖2.

It follows that

|d(x,HA)− d(x,HB)| = |‖x−AA+x‖2 − ‖x−BB+x‖2|
≤ ‖AA+x−BB+x‖2 ≤ ‖AA+ −BB+‖2‖x‖2. (42)

According to the perturbation bound on the orthogonal projection in Chen et al. (2016); Stewart (1977),

‖AA+ −BB+‖2 ≤ max{‖EA+‖2, ‖EB+‖2}. (43)

Since ‖EA+‖2 ≤ ‖E‖2‖A+‖2 ≤ C
σr(A)

, ‖EB+‖2 ≤ ‖E‖2‖B+‖2 ≤ C
σs(B)

, combining (42) and (43), we
have

|d(x,HA)− d(x,HB)| ≤ max{ C

σr(A)
,

C

σs(B)
}‖x‖2

=
C‖x‖2

min{σr(A), σs(B)} . (44)

So that (5) is proved.

Proof of Lemma 1. We have yi = xi − ni, and σmin(Y >β Yβ) =
(
σmin(Yβ)

)2 ≥ σ2
Y ,r .

By Weyl Weyl (1912), |σi(Yβ)−σi(Xβ)| ≤ ‖Nβ‖2 ≤ ‖Nβ‖F ≤
√
rδ. Since

√
rδ < σY ,r ≤ σmin(Yβ) ≤

σi(Yβ), σi(Xβ) ≥ σi(Yβ)−
√
rδ ≥ σY ,r −

√
rδ > 0 for 1 ≤ i ≤ min{d, r}. It follows that σmin(Xβ) ≥

σY ,r −
√
rδ > 0 andXβ has full column rank.

Also, ‖Xβ − Yβ‖2 ≤ ‖Xβ − Yβ‖F ≤
√
rδ. According to Lemma B,

|d(xi,HXβ )− d(xi,HYβ )|

≤
√
rδ

min{σmin(Xβ), σmin(Yβ)}

≤
√
rδ

σY ,r −
√
rδ

=
δ

σ̄Y ,r − δ
. (45)

A.3 PROOF OF LEMMA 2

Proof.

‖xi −Xβ∗‖22 + λ‖β∗‖0 ≤ ‖xi −X0‖22 + λ‖0‖0 = 1

⇒ c∗ = ‖xi −Xβ∗‖2 < 1.
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We first prove that β∗ is the optimal solution to the sparse approximation problem

min
β
‖β‖0 s.t. ‖xi −Xβ‖2 ≤ c∗, βi = 0. (46)

To see this, suppose there is a vector β′ such that ‖xi −Xβ′‖2 ≤ c∗ and ‖β′‖0 < ‖β∗‖0, then L(β′) <
c∗ + λ‖β∗‖0 = L(β∗), contradicting the fact that β∗ is the optimal solution to (6).

Note thatXβ∗ is a full column rank matrix, otherwise a sparser solution to (6) can be obtained as vector whose
support corresponds to the maximal linear independent set of columns ofXβ∗ .

Also, the distance between xi and the subspace spanned by columns ofXβ∗ equals to c∗, i.e. d(xi,HXβ∗ ) = c∗.
To see this, it is clear that d(xi,HXβ∗ ) ≤ c∗. If there is a vector y = Xβ̃ in HXβ∗ with supp(β̃) ⊆
supp(β∗), and ‖xi − y‖2 < c∗, then L(β̃) < L(β∗) which contradicts the optimality of β∗. Therefore,
d(xi,HXβ∗ ) ≥ c∗, and it follows that d(xi,HXβ∗ ) = c∗.

To prove that the subspace separation margin HS(xi,X,β∗) > 0, suppose HS(xi,X,β∗) ≤ 0, so there exists
β′ such that ‖β′‖0 < r∗, rank(Xβ′) = ‖β′‖0 and d(yi,HXβ′ ) ≤ d(yi,HXβ∗ ) ≤ c∗. Then β′ is sparser
than β∗ and it satisfies the constraint of problem (46), contradicting the optimality of β∗.

Since ‖xi −Xβ∗‖2 ≤ 1, ‖Xβ∗‖2 ≤ 2. Also,

σmin(X>β∗Xβ∗)‖β∗‖22 ≤ ‖Xβ∗‖22 ≤ 4,

it follows that ‖β∗‖22 ≤ 4
σ∗
X

2 . By Cauchy-Schwarz inequality, ‖β∗‖1 ≤ 2
√
r∗

σ∗
X

and ‖Nβ∗‖2 ≤ ‖β∗‖1δ ≤
2δ
√
r∗

σ∗
X

. Therefore,

‖xi − Y β∗‖2 = ‖xi −Xβ∗ +Nβ∗‖2

≤ ‖xi −Xβ∗‖2 + ‖Nβ∗‖2 ≤ c∗ +
2δ
√
r∗

σ∗X
,

so that β∗ is a feasible for problem (7). To prove that β∗ is also the optimal solution to (7), suppose this
is not the case, and the optimal solution to (7) is a vector β′ such that ‖xi − Y β′‖2 ≤ c∗ + 2δ

√
r∗

σ∗
X

and

‖β′‖0 = r < r∗. Yβ′ is a full column rank matrix, otherwise a sparser solution can be obtained as vector whose
support corresponds to the maximal linear independent set of columns of Yβ′ . We have

d(xi,HYβ′ ) ≤ ‖xi − Y β
′‖2 ≤ c∗ +

2δ
√
r∗

σ∗X
.

According to Lemma 1, we have

|d(xi,HXβ′ )− d(xi,HYβ′ )| ≤
√
rδ

σY ,r −
√
rδ

=
δ

σ̄Y ,r − δ
≤ δ

σ̄∗Y − δ

⇒ d(xi,HXβ′ ) ≤ c
∗ +

2δ
√
r∗

σ∗X
+

δ

σ̄∗Y − δ
= c∗ + τ0.

However, according to the optimality of β∗ in the noisy `0-SSC problem (6), we have

d(xi,HXβ′ )− c
∗ = d(xi,HXβ′ )− d(xi,HXβ∗ )

≥ (r∗ − r)λ ≥ λ > τ0

This contradiction shows that β∗ is the optimal solution to (7).

A.4 PROOF OF LEMMA 3

Proof. (8) is equivalent to the following problem

min
β
‖β‖0 s.t. y = Y β, ‖xi − y‖2 ≤ c0, βi = 0. (47)

We show that the points (columns) of Yβ∗ must come from subspace Sk. To see this, suppose some columns of
Yβ∗ come from different subspaces. We first have ‖β∗‖0 ≤ dk. To see this, we can choose some y′ ∈ Sk such
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that ‖y′ − xi‖2 ≤ c0 since c0 ≥ d(xi,Sk). Also, dk points in Y (k) can linearly represent y′ since Y (k) is in
general position, and it follows that ‖β∗‖0 ≤ dk due to the optimality of β∗.

Also, Yβ∗ has full column rank, so that subspace HYβ∗ ∈ Hyi,dk . Let y∗ = Y β∗, then y∗ ∈ HYβ∗ ∩
B(xi, c0) which contradicts the fact that B(xi, c0) ∩H = ∅ for any H ∈ Hyi,dk . Therefore, columns of Yβ∗
must come from Sk.

A.5 PROOF OF THEOREM 1

Proof. We first show that d(xi,Sk) ≤ c∗ + 2δ
√
r∗

σ∗
X

. To see this, σ∗X = σmin(Xβ∗) ≤ 1 as the columns ofX

have unit `2-norm. It follows that

c∗ +
2δ
√
r∗

σ∗X
≥ 2δ

√
r∗ ≤ 2δ > ‖xi − yi‖ ≤ d(xi,Sk) (48)

By Lemma 2, it can be verified that β∗ is the optimal solution to the following problem

min
β
‖β‖0 s.t. ‖xi − Y β‖2 ≤ c∗ +

2δ
√
r∗

σ∗X
, βi = 0. (49)

The subspace detection property holds which follows from applying Lemma 3 with c0 = c∗ + 2δ
√
r∗

σ∗
X

.

A.6 PROOF OF THEOREM 2

Proof. This theorem can be proved by checking that the conditions in Theorem 1 are satisfied.

A.7 PROOF OF LEMMA 4

Proof. Let H be a fixed subspace of dimension de ≤ dk, and y /∈ H. Since y ∈ Sk and y /∈ H. Let

USk =

[
Idk
0

]
∈ Rd×dk be the orthonormal basis of Sk under which the isotropic random vector y in

Sk satisfies E[yy>] =

[
Idk 0
0 0

]
. It follows that more columns vectors can be added to USk to form a

orthonormal basis U ∈ Rd×d
′

for the minimum subspace that contains Sk and H. It can be verified that
dk + 1 ≤ d′ ≤ min{dk + de, d} because H 6= Sk. Note that U can be represented as a block matrix as

U =

[
Idk 0
0 U′

]
where U′ ∈ R(d−dk)×(d′−dk) has orthonormal columns. It can be verified that the basis of

H can be represented as UH =

[
Ide−d′+dk 0

0 U′

]
. Note that if de − d′ + dk = 0, UH =

[
0
U′

]
. Then

PH(y) = UHU>Hy, and we have

E[‖PH(y)‖22] = E[y>UHU>HUHU>Hy]

= E[Tr(y>UHU>Hy)]

= E[Tr(U>Hyy>UH)]

= Tr(U>HE[yy>]UH)

= Tr
([

Ide−d′+dk 0
0 U′

]> [
Idk 0
0 0

] [
Ide−d′+dk 0

0 U′

])
= de − d′ + dk ≤ de − 1 ≤ dk − 1 (50)

According to the concentration inequality in section 5.2 of Aubrun & Szarek (2017), for any t > 0,

Pr[|‖PH(y)‖2 −
√
de − d′ + dk| ≥ t] ≤ 8 exp(−dkt

2

2
) (51)

Now let H be spanned by data from Y , i.e. H = H{yij
}dej=1

, where {yij}
de
j=1 are any de linearly independent

points that does not contain y. For any fixed points {yij}
de
j=1, (51) holds. Let A be the event that |PH(y)−√

de − d′ + dk| ≥ t, we aim to integrate the indicator function 1A with respect to the random vectors, i.e. y

and {yij}
de
j=1, to obtain the probability that A happens over these random vectors. Let y = yi, using Fubini

theorem, we have
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Pr[A] =

∫
×n

j=1S
(j)

1A⊗nj=1dµ
(j)

=

∫
×j 6=iS(j)

Pr[A|{yj}j 6=i]⊗j 6=idµ(j)

≤
∫
×j 6=iS(j)

8 exp(−dkt
2

2
)⊗j 6=idµ(j) = 8 exp(−dkt

2

2
) (52)

where S(j) ∈ {Sk}Kk=1 is the subspace that yj lies in, and µ(j) is the probabilistic measure of the distribution in
S(j). The last inequality is due to (51).

Note that for any y’s external subspace H = H{yij
}dej=1

, d(y,H) =
√
‖y‖22 − ‖PH(y)‖22 =√

dk − ‖PH(y)‖22. According to (52), we have

Pr[d(y,H) ≥ 1− 2t
√
dk − 1− t2] ≥ 1− 8 exp(−dkt

2

2
). (53)

A.8 PROOF OF THEOREM 3

Proof. According to Yaskov (2014) and condition (a), with probability at least 1 − exp(−d), σmin(Yβ ≥√
196Md+ 1 − 14

√
Md for any β ∈ Rn such that ‖β‖0 = r ≤ d, rank(Yβ) = ‖β‖0. It follows that

σY ,r ≥
√

196Md+ 1 − 14
√
Md. By Weyl Weyl (1912), |σmin(Xβ) − σmin(Yβ)| ≤ ‖Nβ‖2 ≤ δ

√
r0.

Therefore, σmin(Xβ) ≥
√

196Md+ 1 − 14
√
Md − δ√r0 > 0 if δ <

√
196Md+1−14

√
Md√

r0
= c. It can be

verified that (20), (21) and (22) guarantee (12), (13) and (14) in Theorem 2 respectively, therefore, the conclusion
holds.

A.9 PROOF OF THEOREM 4

It is proved that the low rank approximation X̄ is close toX in terms of the spectral norm Halko et al. (2011):

Lemma C. (Corollary 10.9 in Halko et al. (2011)) Let p0 ≥ 2 be an integer and p′ = p− p0 ≥ 4, then with
probability at least 1− 6e−p, the spectral norm ofX − X̂ is bounded by

‖X − X̂‖2 ≤ Cp,p0 (54)

where

Cp,p0 ,
(
1 + 17

√
1 +

p0
p′
)
σp0+1 +

8
√
p

p′ + 1
(
∑
j>p0

σ2
j )

1
2 (55)

and σ1 ≥ σ2 ≥ . . . are the singular values ofX .

Before proving Theorem 4, we present the following lemma on the perturbation bound for the distance between a
data point and a subspace before and after the projection P. Each subspace Sk is transformed into S̃k = P(Sk)

with dimension d̃k.

Lemma D. Let β ∈ Rn, ỹi = Pyi, HYβ is an external subspace of yi, Ỹβ = P(Yβ) and Ỹβ has full column
rank. Then

|d(yi,HYβ )− d(ỹi,HỸβ
)|

≤ Cp,p0(1 +
1

min1≤r≤d̃k σY ,r − Cp,p0 − 2δ
√
d̃k

) (56)

for any 1 ≤ i ≤ n and yi ∈ Sk.

Proof. This lemma can be proved by applying Lemma B.

Proof of Theorem 4. For any matrix A ∈ Rp×q , we first show that multiplying Q to the left of A would not
change its spectrum. To see this, let the singular value decomposition of A be A = UAΣV>A where UA
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and VA have orthonormal columns with U>AUA = V>AVA = I. Then QA = UQAΣVQA is the singular
value decomposition of QA with UQA = QUA and VQA = VA. This is because the columns of UQA are
orthonormal since the columns Q are orthonormal: U>QAUQA = U>AQ>QUA = I, and Σ is a diagonal
matrix with nonnegative diagonal elements. It follows that σmin(QA) = σmin(A) for any A ∈ Rp×q .

For a point xi = yi + ni, after projection via P, we have the projected noise ñi = Pni. Because

‖ñi‖2 = ‖Pni‖2 = ‖Q>ni‖2 ≤ ‖Q‖2‖ni‖2 ≤ ‖ni‖2 ≤ δ, (57)
the magnitude of the noise in the projected data is also bounded by δ. Also,

‖x̃i‖2 = ‖Q>xi‖2 ≤ ‖xi‖2 ≤ 1, (58)

Let β ∈ Rn, Ỹβ = PYβ with ‖β‖0 = r. Then σmin(QỸβ) = σmin(Ỹβ)). Since

|σmin(Ỹβ)− σmin(Yβ)| = |σmin(QỸβ)− σmin(Yβ)|
≤ ‖QỸβ − Yβ‖2
= ‖QQ>Yβ − Yβ‖2
= ‖QQ>Xβ −Xβ +Nβ −QQ>Nβ‖2
≤ Cp,p0 + ‖Nβ‖F + ‖QQ>Nβ‖F
≤ Cp,p0 + 2δ

√
r (59)

Therefore, it follows from (59) that if

Cp,p0 + 2δ

√
d̃max < min

k=1,...,K
σ
(k)
Y , (60)

then Ỹ is also in general position.

In addition, since λ ≥ 1
r0

, we have λ‖β̃∗‖0 ≤ L(0) ≤ 1, and it follows that ‖β̃∗‖0 ≤ 1
λ
≤ r0.

Based on (59) we have
|σ̄Ỹ ,r − σ̄Y ,r| ≤ Cp,p0 + 2δ

√
r0, (61)

it follows that δ < min1≤r<r0 σ̄Ỹ ,r because δ < min1≤r<r0 σ̄Y ,r − Cp,p0 − 2δ
√
r0.

Again, for β ∈ Rn with ‖β‖0 = r ≤ r0, we have

|σmin(X̃β)− σmin(Xβ)| = |σmin(QX̃β)− σmin(Xβ)|
≤ ‖QX̃β −Xβ‖2
= ‖QQ>Xβ −Xβ‖2 = ‖X̂ −Xβ‖2
≤ Cp,p0 (62)

It can be verified that
|σX̃,r − σX,r| ≤ Cp,p0 (63)

Combining (63) and Lemma D, noting that σX,r0 − Cp,p0 , since

Mi − Cp,p0(1 +
1

min1≤r≤d̃k σY ,r − Cp,p0 − 2δ
√
d̃k

)

> δ +
2δ

σX,r0 − Cp,p0
, (64)

we have

M̃i,δ , M̃i − δ >
2δ

σ̃X̃,r0
, (65)

where yi ∈ Sk.

Based on (61) and (63), we have

µ̃r0 < 1− 2δ

σX̃,r0
, (66)

because
δ

min1≤r<r0 σ̄Y ,r0 − Cp,p0 − 2δ
√
r0 − δ

< 1− 2δ

σX,r0 − Cp,p0
(67)
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A.10 SKETCH OF PROOF OF THEOREM 5

We first present Theorem 5 in Yang & Yu (2019). Let g(x) = ‖y −Dx‖22, y ∈ Rd, D is the design matrix of
dimension d× n. Let x∗ be the globally optimal solution to

min
x∈Rn

F (x) = ‖y −Dx‖22 + λ‖x‖0, (68)

S∗ = supp(x∗), x̂ be the suboptimal solution to (68) obtained by Proximal Gradient Descent (PGD), Ŝ =
supp(x̂). The following theorem presents the bound between x̂ and x∗.

Theorem A. (Theorem 5 in Yang & Yu (2019)) Suppose DS∪S∗ has full column rank with κ0 ,
σmin(DS∪S∗) > 0 where S is the support of the initialization for PGD on problem (68). Let κ > 0 such that
2κ2

0 > κ and b is chosen according to (69) as below:

0 < b < min{min
j∈Ŝ
|x̂j |,

λ

maxj /∈Ŝ |
∂g
∂xj
|x=x̂|

, min
j∈S∗

|x∗j |,
λ

maxj /∈S∗ | ∂g∂xj
|x=x∗ |

}. (69)

Let F = (Ŝ \ S∗) ∪ (S∗ \ Ŝ) be the symmetric difference between Ŝ and S∗, then

‖x̂− x∗‖2 ≤
1

2κ2
0 − κ

( ∑
j∈F∩Ŝ

(max{0, λ
b
− κ|x̂j − b|})2 +

∑
j∈F\Ŝ

(max{0, λ
b
− κb})2

) 1
2 (70)

Sketch of Proof of Theorem 5. It can be verified that max{0, λ
b
− κ|β̂j − b|} = 0 and max{0, λ

b
− κb} = 0

under the conditions (38) and (39), therefore, β̂ = β∗ by applying Theorem A.
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