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ABSTRACT

We present BlockBERT, a lightweight and efficient BERT model that is designed
to better modeling long-distance dependencies. Our model extends BERT by in-
troducing sparse block structures into the attention matrix to reduce both memory
consumption and training time, which also enables attention heads to capture ei-
ther short- or long-range contextual information. We conduct experiments on sev-
eral benchmark question answering datasets with various paragraph lengths. Re-
sults show that BlockBERT uses 18.7-36.1% less memory and reduces the training
time by 12.0-25.1%, while having comparable and sometimes better prediction
accuracy, compared to an advanced BERT-based model, RoBERTa.

1 INTRODUCTION

Recent emergence of the pre-training and fine-tuning paradigm, exemplified by methods like
ELMo (Peters et al., 2018), GPT-2 (Radford et al., 2019), BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019) and RoBERTa (Liu et al., 2019), has drastically reshaped the landscape of the natural
language processing research. These methods first pre-train a deep model with language model ob-
jectives using a large corpus and then fine-tune the model using in-domain supervised data for target
applications. Despite its conceptual simplicity, this paradigm has reestablished the new state-of-
the-art baselines across various tasks, such as question answering (Devlin et al., 2019), coreference
resolution (Joshi et al., 2019b), relation extraction (Soares et al., 2019) and text retrieval (Lee et al.,
2019; Nogueira & Cho, 2019), to name a few.

Building such models in practice, however, is an extremely resource-intensive process. For instance,
the training of BERT-family models is notoriously expensive. Devlin et al. (2019) report that it takes
four days for pre-training BERT-Base/BERT-Large on 4/16 Cloud TPUs, respectively. In order to
reduce the pre-training time of RoBERTa to 1 day, Liu et al. (2019) use 1,024 V100 GPUs. One
crucial factor that contributes to the long training time is the memory consumption of these deep
models, as it directly affects the batch size. Although the fine-tuning stage is relatively inexpensive,
the memory issue still restricts the scenarios in which BERT can be used. For instance, “it is cur-
rently not possible to re-produce most of the BERT-Large results on the paper using a GPU with
12GB-16GB of RAM, because the maximum batch size that can fit in memory is too small.1”

Although one may think that model size is the main contributor to the large memory consump-
tion, our analysis (Section 2.1) shows that one of the main bottlenecks is actually dot-product self-
attention, operated in multiple layers of Transformers (Vaswani et al., 2017), the building block of
BERT. As the attention operation is quadratic to the sequence length, this fundamentally limits the
maximum length of the input sequence, and thus restricts the model capacity in terms of capturing
long-distance dependencies. As a result, downstream tasks have to either truncate their sequences
to leading tokens (Nogueira & Cho, 2019) or split their sequences with a sliding window (Joshi
et al., 2019a;b). Ad-hoc handling of long sequences is also required in the pre-training stage, such
as updating the model using only short sequences in the early stage (Devlin et al., 2019).

Common strategies for reducing memory consumption, unfortunately, do not work. For instance,
shrinking the model by lowering the number of layers L, attention heads A, or hidden units H
leads to significant performance degradation (Vaswani et al., 2017; Devlin et al., 2019) and does not
address the long sequence issue. Alternatively, general low-memory training techniques, such as

1https://github.com/google-research/bert
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microbatching (Huang et al., 2018) and gradient checkpointing (Chen et al., 2016) essentially trade
off training time for memory consumption, prolongs the already lengthy training process.

In this work, we explore a different strategy, sparsifying the attention layers, intending to design
a lightweight and effective BERT that can model long sequences in a memory-efficient way. Our
BlockBERT extends BERT by introducing sparse block substructures into the attention matrix to
reduce both memory consumption and the number of floating point operations (FLOPs), which also
enables attention heads to capture either short- or long-range contextual information. Compared
to the previous method that also enforces sparsity (e.g., Child et al. (2019)), our approach is much
simpler mathematically and very easy to implement. More importantly, the results of experiments
conducted on several benchmark question answering datasets with various paragraph lengths show
that BlockBERT performs comparably or even better than the original BERT-family models, while
enjoying an 18.7-36.1% reduction in memory usage and 12.0-25.1% reduction in training time.

The rest of the paper is organized as follows. Section 2 gives a brief introduction of the BERT
model, along with an in-depth analysis of its memory usage during training time. We describe our
proposed model in Section 3 and contrast it with existing methods that aim for creating a lighter
model. Section 4 presents the experimental results and ablation studies, followed by a short survey
of other related work in Section 5 and the conclusion in Section 6.

2 BACKGROUND: MEMORY BOTTLENECK IN TRAINING BERT

We briefly review BERT and introduce its memory profiling in this section. Following the paradigm
of language model pre-training and down-stream task fine-tuning, BERT (Devlin et al., 2019) con-
sists of multiple layers of bidirectional Transformers (Vaswani et al., 2017), where each Transformer
encoder has a multi-head self-attention layer and a position-wise feed-forward layer. Using the same
notation as in (Devlin et al., 2019), we denote the number of Transformer layers by L, the number
of hidden units by H , the number of attention heads by A, the sequence length by N and the batch
size by B. We also assume the feed-forward hidden unit size to be 4H .2

2.1 MEMORY PROFILING

Training BERT is a memory-intensive process. In order to identify the bottleneck, we follow the
memory model proposed by Sohoni et al. (2019), where the memory usage throughout neural net-
work training is categorized into three main types: (1) Model Memory is used to store model
parameters; (2) Optimizer Memory is the additional memory used by the specific learning algo-
rithm during the process; (3) Activation Memory consists of the outputs of each layer, which are
cached for reuse in backpropagation to compute gradients.

Take BERT-Base training as an example. The model has 110M parameters, so the model memory
uses 0.2 GB if stored in half-precision floating-point format (FP16). For Adam (Kingma & Ba,
2014), the optimizer needs additional memory to store the gradients, first moments, and second
moments of model parameters. If stored using the same precision, the optimizer memory should be
three times of model memory.3 To calculate the exact size of activation memory is not trivial because
it depends heavily on the implementation of the toolkit. Instead, we measure it empirically by train-
ing BERT-Base using Adam with a memory profiler (more details are provided in Appendix A.2).

We use 32 NVIDIA V100 GPUs for training. Each single GPU thus consumes a mini-batch
of size b = B/32 = 8. Figure 1a shows the profiling result for a single GPU, where the
model/optimizer/activation memory consumes 0.21/1.03/8.49 GB, resp. We can see that activa-
tion memory accounts for the vast majority of the total GPU memory (87.6%) and is clearly the
bottleneck. Notice that although our analysis is done on BERT-Base, it can be easily generalized to
BERT-Large and other models such as RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019).

2The default parameter settings for BERT-Base and BERT-Large can be found in Table 5 in Appendix A.1.
3In the current PyTorch Adam implementation, the first and second moments are stored in single precision.

Consequently, BERT’s optimizer memory (1 GB) is five times of model memory (0.2 GB).
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(b) Regression Analysis on Activation Memory

Figure 1: Memory Profiling for BERT

2.2 A REGRESSION ANALYSIS ON ACTIVATION MEMORY

For BERT, or more specifically, Transformer, the activation memory corresponds to intermediate
results of different layers It grows linearly in all the model hyper-parameters, except the sequence
length N , due to the attention layers. To quantify more clearly the O(N) and O(N2) components
in the activation memory, we conduct a regression analysis as follows. Assume that the activation
memory (in each GPU) is a polynomial a2bN2 + a1bN + a0, where b is the batch size in each
GPU. If we fix the total number of tokens in a GPU, i.e., b×N , to be constant (in our case, 4096),
we should have a linear function w.r.t. N , i.e., 4096a2N + 4096a1 + a0. We enumerate N from
{128, 256, 512, 1024} in our experiments, and plot the corresponding profiled activation memory in
Figure 1b. Using ordinary least squares (OLS), with b × N = 4096, the estimated linear function
for activation memory is 0.00715 × N + 4.83, where the first term is responsible for the O(N2)
component. When N = 512, we can see that for BERT-Base, the O(N2) component accounts for
3.66 GB and O(N) accounts for 4.83 GB. When the sequence length N increases to 1024, however,
the O(N2) component increases to 7.32 GB, while O(N) is unchanged.

2.3 GENERAL TECHNIQUES FOR REDUCING MEMORY USAGE IN MODEL TRAINING

Observing that activation memory is the bottleneck, we discuss the effectiveness of common mem-
ory reduction techniques for BERT training below.

Low Precision (Micikevicius et al., 2017): Low precision is to use half-precision or mixed-precision
for training neural networks. This technique has been widely used in Transformer training (Ott et al.,
2019; Liu et al., 2019). In this work, we already assume to use mixed-precision training by default,
as indicated in the aforementioned analysis.

Microbatching (Huang et al., 2018): Microbatching is to split a batch into small micro-
batches (which can be fit into memory), and then run forward and backward passes on them sep-
arately with gradients for each micro-batch accumulated. Because it runs forward/backward pass
multiple times for a single batch, it trades off time for memory.

Gradient Checkpointing (Chen et al., 2016): Gradient checkpointing saves memory by only
caching activations of a subset of layers. The un-cached activations will be recomputed during
backpropagation from the latest checkpoint. This strategy trades off time for memory by repeating
computations that require large memory and will obviously extend the model training time.

Knowledge Distillation (Hinton et al., 2015): Knowledge distillation aims to compress and transfer
knowledge from a teacher model to a simpler student model. However, knowledge distillation relies
on a teacher model (which is still expensive in training time) and usually suffers from a certain
degree of performance degradation.

As common techniques are limited in reducing both the training time and memory usage, we inves-
tigate how to optimize the dot-product attention layers and introduce our approach next.
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3 MODEL: BLOCKBERT

Following (Vaswani et al., 2017), the dot-product attention in Transformer is defined as:

Attention(Q,K,V ) = softmax

(
QK>√

d

)
V .

where Q,K,V ∈ RN×d with N to be the sequence length and d to be a hidden dimension. As we
can see, the inner product between Q and K consumes O(N2) memory. One simple way to reduce
memory consumption of attention is to sparsify the attention matrix. Suppose we have a masking
matrix M ∈ {0, 1}N×N . We define a masked version of attention as follows:

Attention(Q,K,V ,M) = softmax

(
QK>√

d
�M

)
V , (1)

with operator � defined by

(A�M)ij =

{
Aij if Mij = 1

−∞ if Mij = 0
.

In this work, we design M to be a sparse block matrix, which not only reduces memory and the
number of floating point operations (FLOPs) but also benefits from efficient dense matrix support
from deep learning frameworks, such as PyTorch and Tensorflow. More formally, we split the
length-N input sequence into n partitions, with each partition of length N

n .4 The N × N attention
matrix is then partitioned into n × n blocks, where each block matrix is of size N

n ×
N
n . A sparse

block matrix M can be defined by a permutation π of {1, 2, · · · , n}:

Mij =

{
1 if π

(
b (i−1)n

N
+ 1c

)
= b (j−1)n

N
+ 1c

0 otherwise.
(2)

By writing Q,K,V as be block matrices, such that Q = [Q>
1 · · · Q>

n ]
>
,K = [K>

1 · · · K>
n ]
>

and V = [V >
1 · · · V >

n ]
> and pluging them into Equation 1, we can formally define Blockwise

Attention as follows:

Blockwise-Attention(Q,K,V ,M) =


softmax

(
Q1K

>
π(1)√
d

)
Vπ(1)

...

softmax

(
QnK

>
π(n)√
d

)
Vπ(n)

 . (3)

As a result, it only needs to compute and store QiK
>
π(i) (i = 1, · · ·n), each of which has size

N
n ×

N
n . In other words, BlockBERT reduces the corresponding O(N2) memory consumption and

FLOPs by a factor of n, since N
n ×

N
n × n = N×N

n .

3.1 BLOCKWISE MULTI-HEAD ATTENTION

Analogous to Multi-head Attention (Vaswani et al., 2017), we allow queries, keys, and values to be
projected multiple times and perform blockwise attentions in parallel. Moreover, different block-
wise attention heads can use different masking matrices. The outputs of multiple heads are then
concatenated and aggregated with another linear projection. Let A be the number of attention heads
and H the number of hidden units. Blockwise multi-head attention is formally defined by:

Blockwise-Multi-head-Attention(Q,K,V ) = Concat(head1, · · · headA)WO

where headi = Blockwise-Attention(QWQ
i ,KWK

i ,V W V
i ,Mi),

with d = H
A ,W

Q
i ,W

K
i ,W

V
i ∈ RH×d and the projection matrix WO ∈ RH×H . Each masking

matrix Mi is determined by permutation πi according to Equation 2. In particular, we choose π
from permutations generated by shifting one position: σ = (2, 3, · · · , n, 1), i.e., we select π ∈
{σ, σ2, · · · , σn}. For example, with 12 attention heads (A = 12) and 2 blocks (n = 2), one

4We assume N can be divided by n. If not, we pad the input sequence to make N divisible.
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Figure 2: Architecture of Blockwise Multi-head Attention.
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Figure 3: Regression analysis on activation
memory for BERT and BlockBERT.

Act. Mem. (GB)
N b Model O(N) O(N2)

512 8
BERT 4.83 3.66
BlockBERT n=2 4.84 1.83
BlockBERT n=3 4.87 1.22

1024 4
BERT 4.83 7.32
BlockBERT n=2 4.84 3.66
BlockBERT n=3 4.87 2.44

Table 1: EstimatedO(N2) andO(N) activation
memory for BERT and BlockBERT.

configuration can be assigning 10 heads to permutation (1, 2) and the other 2 heads to permutation
(2, 1). Figure 2 illustrates the blockwise multi-head attention with the block numbers n ∈ {2, 3}.
Blockwise sparsity captures both local and long-distance dependencies in a memory-efficiency way,
which is crucial for long-document understanding tasks. For instance, the identity permutation,
i.e., (1, 2, · · · , n), enables each token to attend its nearby tokens in self-attention. Tokens within
the same local group attend a long-distance group of tokens together in other permutations. Our
proposed BlockBERT essentially replaces the multi-head attention layers in Transformer/BERT with
blockwise multi-head attention.

3.2 ANALYSIS OF MEMORY USAGE REDUCTION

To validate our claim that BlockBERT with n×n blocks can reduce theO(N2) memory use by a fac-
tor of n, we perform the same memory profiling as described in sections 2.1 and 2.2. Again, We fix
the number of tokens in each GPU (b×N = 4096) and chooseN from {128, 256, 512, 1024, 2048}.5
As we can see from Figure 3 and Table 1, the empirical results align well with the theoretical values.
When we set block size to be 2 and 3 for BlockBERT, their estimated O(N2) activation memory
decreases to 1/2 and 1/3 of BERT’s O(N2) activation memory, resp. As shown in Table 2, for the
sequence length N = 512, BlockBERT with 2 / 3 blocks saves 18.7% / 23.8% overall memory,
resp. The saving is more significant for longer sequences. When N = 1024, the overall memory
reduction of BlockBERT with 2 / 3 blocks is 27.3% / 36.1%, resp.

4 EXPERIMENTS

We evaluate the pre-training and fine-tuning performance of BlockBERT. In particular, when n = 2,
we denote 10:2 to be the configuration which distributes 10 heads to permutation (1, 2) and 2 to
permutation (2, 1); when n = 3, we denote 8:2:2 to be the configuration which assigns 8, 2, 2 heads

5We use GPUs of 16 GB memory for profiling. BERT with N = 2048 fails due to an out-of-memory error.
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N Model Training Time (day) Memory (per GPU, GB) Heads Config. Valid. ppl

512
RoBERTa-1seq 6.62 9.73 - 3.58
BlockBERT n=2 5.83 (-12.0%) 7.91 (-18.7%) 10:2 3.56
BlockBERT n=3 5.80 (-12.5%) 7.32 (-23.8%) 8:2:2 3.71

1024
RoBERTa-1seq 9.66 13.39 - 3.60
BlockBERT n=2 7.51 (-22.3%) 9.73 (-27.3%) 9:3 3.57
BlockBERT n=3 7.23 (-25.1%) 8.55 (-36.1%) 8:2:2 3.63

Table 2: Pre-training Performance Analysis.

to permutation (1, 2, 3), (2, 3, 1), and (3, 1, 2), resp. We compare BlockBERT with the following
baselines:

Google BERT The pre-trained base model from Devlin et al. (2019).

RoBERTa-2seq and RoBERTa-1seq We compare with two versions of RoBERTa (Liu et al., 2019).
RoBERTa-2seq is trained with both masked language model (MLM) task and next sentence predic-
tion (NSP) task, while RoBERTa-1seq refers to the pre-training model with only MLM task.

SparseBERT We pre-train BERT models with its Transformer encoder replaced by a Sparse Trans-
former encoder (Child et al., 2019). We set its sparsity hyper-parameters stride ` = 128 and expres-
sivity c = 32. The attention masks used for Sparse Transformer encoder are illustrated in Figure 5.

4.1 PRE-TRAINING

All the models follow the base setting, i.e., L = 12, H = 768, A = 12 and are trained on the same
corpus — BooksCorpus and English Wikipedia with uncased word piece tokens. We fix the number
of tokens per batch B ×N = 131, 072, i.e., if sequence length N = 512 then batch size B = 256,
if sequence length N = 1024 then batch size B = 128. The detailed pre-training configuration
is listed in Table 6 in Appendix A.1. Moreover, the pre-training of SparseBERT and BlockBERT
follows the RoBERTa-1seq setting, i.e., we drop the NSP (Next Sentence Prediction) task, and an
input sequence is up to N tokens until it reaches a document boundary. A summary of the pre-
training performance comparison between BlockBERT and RoBERTa-1seq is shown in Table 2.
Besides memory saving, we also achieve a significant speedup. For example, when N = 1024,
BlockBERT (n = 2) reduces the training time from RoBERTa’s 9.7 days to 7.5 days.

4.2 FINE-TUNING TASKS

We evaluate BlockBERT on several question answering tasks, including SQuAD 1.1/2.0 (Rajpurkar
et al., 2018) and five other tasks from the MrQA shared task6 — HotpotQA (Yang et al., 2018),
NewsQA (Trischler et al., 2017), SearchQA (Dunn et al., 2017), TriviaQA (Joshi et al., 2017) and
NaturalQA (Kwiatkowski et al., 2019). Since MrQA does not have an official test set, we follow
Joshi et al. (2019a) who split the development set evenly to build a new development set and test set.

These QA datasets have different paragraph length distribution patterns and are thus ideal for test-
ing the effectiveness of BlockBERT. For example, SQuAD, NaturalQA, and HotpotQA consist of
mostly short paragraphs (shorter than 512), while paragraphs in SearchQA (average length 1,004)
and TriviaQA (average length 934) have around 1,000 tokens. This means that for SearchQA and
TriviaQA, a BERT model with sequence length N = 512 can only capture half of the context. The
detailed paragraph length distributions can be found in Figure 6.

For all the pre-trained models, we adopt the same fine-tuning QA setup from Devlin et al. (2019).
The tokenized paragraph (p1, · · · , ps) and question (q1, · · · , qt) are concatenated to be a sequence
[CLS]q1 · · · qt[SEP]p1 · · · ps[SEP]. The sequence is then fed into the pre-trained model with
two extra linear layers for predicting the start and end positions of the answer spans. The detailed
fine-tuning setting is listed in Appendix A.4. Table 3 and Table 4 report the experimental results.

6https://mrqa.github.io
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SQuAD 1.1 SQuAD 2.0
N Model EM F1 EM F1

- Humam Perf. 82.30 91.20 86.80 89.40

512

Google BERT 81.19 88.45 74.08 77.16
XLNet - - 78.46 81.33
RoBERTa-2seq 82.91 89.78 75.79 79.17
RoBERTa-1seq 84.43 91.48 79.22 82.27
SparseBERT 80.49 88.09 74.15 76.96
BlockBERT n=2, 10:2 84.08 90.77 78.34 81.46
BlockBERT n=3, 8:2:2 82.37 89.64 77.33 80.33

1024

RoBERTa-1seq 84.58 91.14 79.34 82.26
SparseBERT 81.02 88.37 74.51 77.57
BlockBERT n=2, 9:3 83.65 90.74 78.55 81.45
BlockBERT n=3, 8:2:2 82.74 90.05 76.79 79.84

Table 3: Dev set results on SQuAD 1.1/2.0. The result of XLNet(-Base) is from (Yang et al., 2019).

BlockBERT (n=2) v.s. RoBERTa-1seq Comparing BlockBERT (n = 2) with RoBERTa-1seq on
pre-trained model withN = 512, we observe an absolute F1 difference from 0.04 (in NaturalQA) to
1.18 (in NewsQA), with average difference to be 0.55. For N = 1024, BlockBERT achieves more
comparable or even better performance (in SearchQA, NewsQA, and HotpotQA) to RoBERTa-1seq.
The average difference on F1 reduces to 0.27.

BlockBERT v.s. SparseBERT ForN = 512, it is interesting that BlockBERT with 3 blocks (density
33.33%) performs better then SparseBERT (density 44.20%) in both SQuAD and MrQA tasks. Sim-
ilar patterns can be observed for N = 1024. These results show that off-diagonal masking matrices,
e.g., the masking matrix defined by permutation (2, 1), play crucial roles in BlockBERT.

Effect of Long Sequence Pre-training Our observations are twofold. (1) Long sequence pre-
training benefits long sequence fine-tuning. In TriviaQA and SearchQA, of which paragraph lengths
are around 1024, pre-training models with N = 1024 achieve significantly better performance. (2)
The heterogeneity of pre-training and fine-tuning sequence length may hurt performance. For ex-
ample, in SQuAD, we do not see significant performance gain by using pre-trained models with
N = 1024; in HotpotQA and NewsQA, longer sequence pre-training even hurts performance.

Effect of #Blocks It is not surprising that BlockBERT with 2 blocks (n = 2) performs better than
that with 3 blocks (n = 3), because it keeps more attention matrix entries. The biggest difference
is in SQuAD 2.0 and NewsQA with N = 1024, where we observe an absolute loss of 1.6 F1 by
increasing block number from 2 to 3.

In summary, not only BlockBERT saves training time and memory, but it also has competitive and
sometimes better performance, especially for tasks with longer sequences. This demonstrates the
effectiveness of our blockwise multi-head attention approach.

SearchQA TriviaQA NewsQA NaturalQA HotpotQA
N Model EM F1 EM F1 EM F1 EM F1 EM F1

512

Google BERT 74.94 80.37 70.18 75.35 51.27 66.25 66.13 78.29 60.50 77.08
RoBERTa-2seq 76.12 81.74 71.92 76.79 52.45 66.73 66.98 78.63 61.52 77.81
RoBERTa-1seq 77.09 82.62 73.65 78.22 56.13 70.64 67.14 79.07 62.77 79.28
SparseBERT 73.36 79.01 68.71 73.15 51.18 65.47 65.53 77.46 58.54 74.85
BlockBERT n=2, 10:2 76.68 82.33 72.36 77.53 54.66 69.46 66.94 79.03 62.13 79.15
BlockBERT n=3, 8:2:2 75.54 81.07 72.05 76.74 53.82 68.39 66.14 78.47 60.64 77.46

1024

RoBERTa-1seq 77.47 83.12 75.29 80.20 55.00 69.64 68.28 80.35 61.89 78.71
SparseBERT 74.83 80.54 70.56 75.34 51.67 67.16 65.07 77.31 59.65 76.02
BlockBERT n=2, 9:3 77.95 83.51 75.06 79.41 55.44 70.08 67.31 79.39 62.13 78.94
BlockBERT n=3, 8:2:2 76.98 82.76 74.78 79.28 53.48 68.50 65.91 78.20 61.89 78.18

Table 4: MrQA test results (Tasks are sorted decreasingly by average paragraph length).
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4.3 ABLATION STUDY

We discuss how the assignment of attention heads affects pre-training performance. We grid search
attention head assignments and plot their best validation performance in 1.2M training steps. Our
observations are threefold: (1) Identity permutation is important. As shown in Figure 4, all opti-
mal solutions assign considerable attention heads to block diagonal matrices, since those matrices
enable each token to attend its nearby tokens; (2) Non-identity permutations follow the rule of “vi-
tal few and trivial many.” Although diagonal matrices are important, assigning all attention heads to
them (corresponding to 12:0 and 12:0:0 in Figure 4) significantly hurts performance; (3) Pre-training
performance and fine-tuning performance are correlated but not always consistent. When n = 3,
pre-training performance suggests 10:1:1 to be the best head assignment, but we observe that the
configuration of 8:2:2 achieves better performance in fine-tuning tasks.
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(a) N = 512, n = 2
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(b) N = 1024, n = 2
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(c) N = 512, n = 3
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(d) N = 1024, n = 3

Figure 4: Ablation over blockwise attention heads assignment.

5 RELATED WORK

In this section, we review the related work of memory optimization for neural network training and
recent efforts to simplify Transformer and BERT. In recent years, there is an increasing interest in
training neural networks with low-memory (Sohoni et al., 2019). Mainstream techniques include
low-precision training (Micikevicius et al., 2017), microbatching (Huang et al., 2018), gradient
checkpointing (Chen et al., 2016). Another line of researches studies this problem from a theoreti-
cal perspective, including the recently proposed lottery ticket hypothesis (Frankle & Carbin, 2018).
Since the invention of Transformer (Vaswani et al., 2017; Dai et al., 2019) and its successful appli-
cation on language model pre-training (Devlin et al., 2019; Radford et al., 2019; Yang et al., 2019;
Liu et al., 2019), there have been several studies attempted to simplify it from different perspectives.
Most of them focus on the sparsification of attention matrix, such as Star Transformer (Guo et al.,
2019), Sparse Transformer (Child et al., 2019), Adaptive Sparse Transformer (Correia et al., 2019;
Sukhbaatar et al., 2019), Log-Sparse Transformer (Li et al., 2019), etc. However, due to limited
support for sparse tensor from current deep learning platforms, most of studies have to represent a
sparse matrix using a dense matrix with a binary mask or rely on customized CUDA kernels (Gray
et al., 2017). Another line of research focuses on knowledge distillation, including DistilBERT7

which distills BERT using a smaller BERT and Tang et al. (2019) which distills BERT with BiL-
STM (Hochreiter & Schmidhuber, 1997).

6 CONCLUSION

In this work, we study lightweight BERT model with the goal of achieving both efficiency and
effectiveness. We profile and analyze the memory bottlenecks of BERT, and focus on optimize dot-
product self-attention, which consumes quadratic memory with respect to the sequence length. To
reduce both training time and memory consumption, we present BlockBERT, which sparsifies the at-
tention matrices to be sparse block matrices. The proposed model achieves time and memory saving
without significant loss of performance. In the future, we would like to explore more applications
of BlockBERT on NLP tasks involving long sequences such as coreference resolution (Joshi et al.,
2019b) and document-level machine translation (Miculicich et al., 2018), and also non-NLP tasks
such as protein sequence modeling (Rives et al., 2019).

7https://github.com/huggingface/pytorch-transformers/tree/master/examples/distillation
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A APPENDIX

A.1 NOTATIONS AND PRE-TRAINING HYPER-PARAMETERS

The notations and pre-training hyper-parameters are listed in Table 5 and Table 6.

Description Base Large

B Batch size 256 256
A # Self-attention heads 12 16
L # Layers 12 24
H # Hidden units 768 1024
4H # Feed-forward hidden units 3072 4096
N Sequence length 512 512

Table 5: BERT notations.

Hyper-parameter Value

Dropout 0.1
Attention dropout 0.1
Warmup steps 10K
Weight decay 0.01
Max steps 2.4M
Initial learning rate 0.00025
Learning rate decay Linear
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0

Table 6: Pre-training hyper-
parameters.

A.2 PROFILER IMPLEMENTATION

Among the three types of training memory, model memory and optimizer memory is relatively
easy to profile (can be computed by enumerate each tenor and summing up tensor.numel()
* tensor.element size()). To calculate activation memory, Sohoni et al. (2019) traverse
PyTorch’s autograd graph and sum up necessary storage space. They find that the summation of
model memory, optimizer memory and activation memory matches PyTorch memory profiling tool
torch.cuda.max memory allocated. Based on their observation, we use

torch.cuda.max memory allocated−model memory− optimizer memory (4)

as an estimate to activation memory. When profiling BERT, we first pre-train it for 1000 steps, and
then compute its model and optimizer memory. Finally, we esitmate its activation memory according
to Equation 4.

A.3 SPARSEBERT

The sparse masking matrices we use for Sparse Transformer (Child et al., 2019) are shown in Fig-
ure 5. We adopt the implementation from Fairseq8.
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Figure 5: The sparse masking matrices we use in Sparse Transformer (fixed mode) encoder. White
color indicates attention values to be masked. (a) N = 512, ` = 128, c = 32, density 44.20%; (b)
N = 1024, ` = 128, c = 32, density 34.97%.

8https://github.com/pytorch/fairseq/blob/master/fairseq/modules/sparse multihead attention.py.
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Figure 6: Paragraph length (after tokenization) distribution. The distribution of SQuAD 2.0 is very
similar to SQuAD 1.1, so we only plot SQuAD 1.1 here.

A.4 FINE-TUNING SETTINGS

Our fine-tuning is implemented based on code base from HuggingFace9 and SpanBERT (Joshi
et al., 2019a). We use max sequence length=N , i.e., we allow fine-tuning task to in-
put sequences as long as the pre-training model. If the input sequence is too long to fit the
max sequence length=N constraints, we use a sliding window of size 128 to split it. We
grid search learning rate from {5e-6, 1e-5, 2e-5, 3e-5, 5e-5} and batch size from {16, 32}. The
fine-tuning is performed for 4 epoches.

9https://github.com/huggingface/pytorch-transformers
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