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ABSTRACT

This work seeks the possibility of generating the human face from voice solely
based on the audio-visual data without any human-labeled annotations. To this
end, we propose a multi-modal learning framework that links the inference stage
and generation stage. First, the inference networks are trained to match the speaker
identity between the two different modalities. Then the trained inference networks
cooperate with the generation network by giving conditional information about the
voice. The proposed method exploits the recent development of GANs techniques
and generates the human face directly from the speech waveform making our sys-
tem fully end-to-end. We analyze the extent to which the network can naturally
disentangle two latent factors that contribute to the generation of a face image -
one that comes directly from a speech signal and the other that is not related to it -
and explore whether the network can learn to generate natural human face image
distribution by modeling these factors. Experimental results show that the pro-
posed network can not only match the relationship between the human face and
speech, but can also generate the high-quality human face sample conditioned on
its speech. Finally, the correlation between the generated face and the correspond-
ing speech is quantitatively measured to analyze the relationship between the two
modalities.

1 INTRODUCTION

Utilizing audio-visual cues together to recognize a person’s identity has been studied in various
fields from neuroscience (Hasan et al., 2016; Tsantani et al., 2019) to practical machine learning
applications (Nagrani et al., 2018b;a; Wen et al., 2018; Shon et al., 2019). For example, some neu-
rological studies have found that in some cortical areas, humans recognize familiar individuals by
combining signals from several modalities, such as faces and voices (Hasan et al., 2016). In con-
junction with the neurological studies, it is also a well known fact that a human speech production
system is directly related to the shape of the vocal tract (Mermelstein, 1967; Teager & Teager, 1990).

Inspired by the aforementioned scientific evidence, we would like to ask three related questions
from the perspective of machine learning: 1) Is it possible to match the identity of faces and voices?
(inference) 2) If so, is it possible to generate a face image from a speech signal? (generation) 3)
Can we find the relationship between the two modalities only using cross-modal self-supervision
with the data “in-the-wild”? To answer these questions, we design a two-step approach where the
inference and generation stages are trained sequentially. First, the two inference networks for each
modality (speech encoder and face encoder) are trained to extract the useful features and to compute
the cross-modal identity matching probability. Then the trained inference networks are transferred
to the generation stage to pass the information about the speech, which helps the generation network
to output the face image from the conditioned speech.

We believe, however, that it is impossible to perfectly reconstruct all the attributes in the image of
a person’s face through the characteristics of the voice alone. This is due to factors that are clearly
unrelated to one’s voice, such as lighting, glasses, and orientation, that also exist in the natural face
image. To reflect the diverse characteristics presented in the face images “in-the-wild”, we therefore
model the generation process by incorporating two latent factors into the neural network. More
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specifically, we adopted conditional generative adversarial networks (cGANs) (Mirza & Osindero,
2014; Miyato & Koyama, 2018) so that the generator network can produce a face image that is
dependent not only on the paired speech condition, but also on the stochastic variable. This allows
the latent factors that contribute to the overall facial attributes to be disentangled into two factors:
one that is relevant to the voice and the other that is irrelevant.

Adopting cGANs negligently still leaves a few problems. For example, the condition in a cGANs
framework is typically provided as embedded conditional vectors through the embedding look-up
table for one-hot encoded labels (Brock et al., 2018; Miyato & Koyama, 2018). The raw signals
such as speech, however, cannot be taken directly from the embedding look-up table, so an encoder
module is required. Therefore, the trained speech encoder from the inference step is reused to output
a pseudo conditional label that is used to extract meaningful information relevant to the correspond-
ing face. Then the generator and the discriminator are trained in an adversarial way by utilizing the
pseudo-embedded conditional vectors obtained from the trained speech encoder in the first step.

Another problem with applying the conventional cGANs for generating faces from voice arises from
the fact that the distinction between different speakers can be quite subtle, which calls for a need
for a more effective conditioning method. To mitigate this problem, we propose a new loss function,
relativistic identity cGANs (relidGANs) loss, with modification of the relativistic GANs (Jolicoeur-
Martineau, 2018), allowing us to generate the face with a more distinct identity.

Each step will be described in greater detail in Section 3.

Our contributions can be summarized as follows:

1. We propose simple but effective end-to-end inference networks trained on audio-visual
data without any labels in a self-supervised manner that perform a cross-modal identity
matching task.

2. A cGANs-based generation framework is proposed to generate the face from speech, to be
seamlessly integrated with the trained networks from inference stage.

3. A new loss function, so called a relidGANs loss, is designed to preserve a more consistent
identity between the voices and the generated images.

4. An extensive analysis is conducted on both inference and generation tasks to validate our
proposed approaches.

2 RELATED WORKS

There has been an increasing interest in the self-supervised learning framework within the machine
learning research community. While the focus of the many studies has been concentrated on appli-
cations of matching the audio-visual correspondence such as the presence or absence of objects in a
video or a temporal alignment between two modalities (Chung et al., 2017; Afouras et al., 2018b;a;
Ephrat et al., 2018), growing attention has come to matching the speaker identity between the human
face and voice.

Inference The cross-modal identity matching task between face and voice has been recently studied
in machine learning community. Nagrani et al. (2018b) proposed a convolutional-neural-network
(CNN) based biometric matching network by concatenating the two embedding vectors from each
modality and classifying them with an additional classifier network. Though showing promising
results, this style of training is limited as the model is not flexible in that the number of concatenated
vectors used in the training cannot be changed in the test phase. Next, Nagrani et al. (2018a) modeled
the concept of personal identity nodes (Bruce & Young, 1986) by mapping each modality into the
shared embedding space and using triplet loss to train the encoders to allow more flexible inference.
Lastly, Wen et al. (2018) proposed DIMNet where two independent encoders are trained to map the
speech and face into the shared embedding space, classifying each of them independently utilizing
the supervised learning signals from labels such as identity, gender and nationality.

Generation There have been a few concurrent works that tackled the similar problem of generating
a face image from speech, which we think are worth noting here. Duarte et al. (2019) proposed a
GANs-based framework to generate a face image from the speech. But the intention of their work
was not to generate a face from unseen speaker identity but more of seeking the possibility of cross-

2



Under review as a conference paper at ICLR 2020

modal generation between the speech and face itself. Oh et al. (2019) proposed a similar work called
speech2face. The pre-trained face recognition network and the neural parametric decoder were used
to produce a normalized face (Cole et al., 2017). After that, the speech encoder was trained to
estimate the input parameter of the face decoder directly. Lastly, the most similar work to ours
was recently proposed by Wen et al. (2019) where they utilized a pre-trained speech identification
network as a speech encoder, and used a GANs-based approach to produce the face conditioned on
the speech embedding.

Our proposed method differs from the abovementioned approaches in the following ways. First,
none of the previous approaches has tried to model the stochasticity in the generation process, but
we address this problem by incorporating the stochasticity in the latent space so that the different
face images can be sampled even when the speech condition is fixed. Second, modeling the image
is more challenging in our work as we aim to train our network to produce larger image size (128
× 128) compared to other GANs-based works. Also, we trained the model on the AVSpeech dataset
(Ephrat et al., 2018) which includes extremely diverse dynamics in the images. Finally, the important
scope of this work is to seek the possibility of training the whole inference and generation stages
only using the self-supervised learning method, which is the first attempt to our knowledge. The
whole pipeline of the proposed approach is illustrated in Fig. 1.
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Figure 1: Overview of the proposed inference and generation stages.

3 SELF-SUPERVISED INFERENCE AND GENERATION

3.1 CROSS-MODAL IDENTITY MATCHING

In order to successfully identify the speaker identity from the two audio-visual modalities, we trained
two encoders for each modality. First, a speech encoder is trained to extract the information related
to a person’s identity from a segment of speech. To this end, we use raw-waveform based speech
encoder that was shown to extract useful features in speaker verification task, outperforming con-
ventional feature such as mel-frequnecy-cepstal-coefficient (MFCC) even when trained using self-
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supervised learning in speech modality (Pascual et al., 2019)1. The first layer of the speech encoder
is SincNet where the parameterized sinc functions act as trainable band-pass filters (Ravanelli &
Bengio, 2018). The rest of the layers are composed of 7 stacks of 1d-CNN, batch normalization
(BN), and multi-parametric rectified linear unit (PReLU) activation. Next, we used a 2d-CNN based
face encoder with residual connections in each layer. Note that the network structure is similar to
the discriminator network of (Miyato & Koyama, 2018). The details of the networks are shown in
Appendix C.

Based on the speech encoder S(·) and the face encoder F(·), they are trained to correctly identify
whether the given face and speech is paired or not. Specifically, as a cross-modal identity matching
task, we consider two settings as in (Nagrani et al., 2018b), 1. V-F: given a segment of speech select
one face out of K different faces, 2. F-V: given an image of face select one speech segment out of
K different speech segments. The probability that the j-th face fj is matched to the given speech s
or vice versa is computed by the inner product of embedding vectors from each module followed by
the softmax function as follows:

1. V -F : p(y = j|{S(s),F(fj)}j=K
j=1 ) = p(y = j|{se,fej}j=K

j=1 ) =
e<se,fej>∑j=K

j=1 e<se,fej>
,

2. F -V : p(y = j|{S(sj),F(f)}j=K
j=1 ) = p(y = j|{sej ,fe}j=K

j=1 ) =
e<sej ,fe>∑j=K

j=1 e<sej ,fe>
,

(1)

where s denotes a speech segment, f denotes a face image, se denotes a speech embedding vector
and fe denotes a face embedding vector.

Note that using inner product as a means of computing similarity allows more flexible inference. For
example, the proposed method enables both F-V and V-F settings, no matter with which method the
model is trained. Also, it allows setting a different number of K in the test phase than the training
phase.

Finally, the two encoders are trained solely using the self-supervised learning signal from cross-
entropy error.

3.2 GENERATING FACE FROM VOICE

Although we aim to generate the human face from the speech, it is only natural to think that not all
attributes of the face image are correlated to the speech. Hence, we assume the latent space of the
face to be broken down into two parts, the deterministic variable from the speech encoder c and a
random variable z sampled from Gaussian distribution.

Such latent space is modeled using cGANs, a generative model that allows the sampling of face
images conditioned on speech. More specifically, randomly sampled Gaussian noise z ∈ R128

and speech condition c ∈ R128 are concatenated and used as input for the generator function
ffake = G(z, c) to sample the face image conditioned on the speech. In addition, adaptive in-
stance normalization (AdaIN) technique is applied as a more direct conditioning method for each
layer of the generator network (Huang & Belongie, 2017; Karras et al., 2019). The details of the
network are described in Appendix C.

In order to generate the face image that are not only close enough to the real face image distribution,
but matches with the given condition, the condition information must be properly fed into the dis-
criminator. Many studies have suggested such conditioning approaches for the discriminator (Reed
et al., 2016; Odena et al., 2017; Miyato & Koyama, 2018); among them, we adopted a recent condi-
tioning method, projection discriminator (Miyato & Koyama, 2018), which not only suggests a more
principled way of conditioning embeddings into the discriminator, but has also been widely used in
many successful GANs related works (Brock et al., 2018; Zhang et al., 2018; Miyato et al., 2018).
The study showed that, writing the discriminator function as D(f , c) := A(g(f , c)), the condition
information can be effectively provided to the discriminator using the inner-product of two vectors,
c and φ(f), as follows:

g(f , c) = cTφ(f) + ψ(φ(f)), (2)

1The speech encoder can be downloaded in the following link: https://github.com/santi-pdp/pase
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where A(·) denotes an activation function (sigmoid in our case), c denotes condition embedding,
φ(f) denotes output from the inner layer of discriminator and ψ(·) denotes a function that maps
input vector to a scalar value (fully-connected layer in our case). Here we focused on the fact that
the conditioning signals can be used as an inner-product of two vectors and replaced it with the
same inner-product operation used to compute the identity matching probability in the the inference
framework. Accordingly, we can rewrite the Eq. 2 by providing the condition with the trained speech
encoder c = S(s) and substituting φ(·) with a trained face encoder F(·) from the subsection 3.1 as
follows:

g(f , c) = cTφ(f) + ψ(φ(f)) = S(s)TF(f) + ψ(F(f)). (3)

Next, we adopted relativistic GANs (relGANs) loss which was reported to give stable image gener-
ation performance. See Jolicoeur-Martineau (2018) for more details. Combining the condition term
cTφ(f) and relGANs loss, g(f , c) can be modified to grel(freal,ffake, c) as follows:

grel(freal,ffake, c) = g(freal, c)− g(ffake, c)

= cTφ(freal)− cTφ(ffake) + ψ(φ(freal))− ψ(φ(ffake)),

grel(ffake,freal, c) = g(ffake, c)− g(freal, c)

= cTφ(ffake)− cTφ(freal) + ψ(φ(ffake))− ψ(φ(freal)).

(4)

Eq. 4 is formulated to produce a face from the paired speech, but it can cause catastrophic forget-
ting on the trained φ(·) because the discriminator is no longer trained to penalize the mismatched
face and voice. Thus, we again modify Eq. 4 so that the discriminator relativistically penalizes the
mismatched face and voice more than a positively paired face and voice as follows:

grelid(freal,ffake, c+, c−) = grel(freal,ffake, c+) + cT+φ(f
real)− cT−φ(f

real),

grelid(ffake,freal, c+, c−) = grel(ffake,freal, c+) + cT+φ(f
fake)− cT−φ(f

fake),
(5)

where freal and c+ denotes the paired face and speech condition from data distribution, ffake

denotes the generated face sample conditioned on c+, and c− denotes the speech condition with
mismatched identity to freal using negative sampling.

Finally, utilizing the non-saturating loss (Goodfellow et al., 2014; Jolicoeur-Martineau, 2018), the
proposed objective function (relidGANs loss) for discriminator LD and generator LG becomes as
follows:

LD = −E(freal,c+,c−)∼pdata,ffake∼pgen
[log(A(grelid(freal,ffake, c+, c−))],

LG = −E(freal,c+,c−)∼pdata,ffake∼pgen
[log(A(grelid(ffake,freal, c+, c−))],

(6)

4 EXPERIMENTS AND RESULTS

Dataset and Sampling Two datasets were used throughout the experiments. The first dataset is the
AVSpeech dataset (Ephrat et al., 2018). It consists of 2.8m of YouTube video clips of people actively
speaking. Among them, we downloaded about 800k video clips from a train set and 140k clips from
a test set. Out of 800k training samples, we used 50k of them as a validation set. The face images
included in the dataset are extremely diverse since the face images were extracted from the videos “in
the wild” (e.g., closing eyes, moving lips, diversity of video quality, and diverse facial expressions)
making it challenging to train a generation model. In addition, since no speaker identity information
is provided, training the model with this dataset is considered fully self-supervised. Because of the
absence of the speaker identity information, we assumed that each audio-visual clip represents an
individual identity. Therefore, a positive audio-visual pair was sampled only within a single clip
while the negative samples were randomly selected from any clips excluding the ones sampled by
the positive pair. Note that each speech and face image included in the positive pair was sampled
from different time frames within the clip. This was to ensure that the encoded embeddings of each
modality do not contain linguistic related features (e.g., lip movement or phoneme related features).

The second dataset is the intersection of VoxCeleb (Nagrani et al., 2017) and VGGFace (Parkhi et al.,
2015). VoxCeleb is also a large-scale audio-visual dataset collected on YouTube videos. VGGFace
is a collection of the images of public figures gathered from the web, which is less diverse and
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relatively easier to model compared to the images in AVSpeech dataset. Since both VGGFace and
VoxCeleb provide speaker identity information, we used the speakers’ included in the both datasets
resulting in 1,251 speakers. We used face images from both VoxCeleb and VGGFace, and used
speech audio from Voxceleb. Note that, this dataset provides multiple images and audio for a single
speaker; therefore, training a model with this dataset cannot be called a self-supervised training
method in a strict sense.

Implementation In every experiment, we used 6 seconds of audio. The speech samples that were
shorter or longer than 6 seconds were duplicated or randomly truncated so that they became 6 sec-
onds. At the inference stage, we trained the networks with stochastic gradient descent optimizer
(SGD). At the generation stage, we trained the networks with Adam optimizer (Kingma & Ba,
2014). The discriminator network was regularized using R1 regularizer (Mescheder et al., 2018).
More details are described in Appendix B.

4.1 CROSS-MODAL INFERENCE EVALUATION RESULTS

Fully self-supervised inference accuracy results: Here we show the evaluation results of the in-
ference networks trained on the AVSpeech dataset. Again, the model was trained with no additional
information about speaker identity. The evaluations were conducted 5 times by selecting different
negative samples each time and reported using the average value of them.

Table 1: Accuracy (%) of cross-
modal identity matching task.

Test
Train V-F F-V

V-F 89.22 54.33 85.10 44.70
F-V 86.94 49.20 88.47 52.55

K-way 2 10 2 10

We trained our model in two settings (1. V-F and 2. F-V) and
both were trained in 10-way setting (1 positive pair and 9
negative pairs). Then the two trained models were tested on
both V-F and F-V settings, each of which were tested on 2-
way and 10-way settings. The top1-accuracy (%) results of
cross-modal identity matching task is shown in Table 1. The
results show that our network can perform the task of cross-
modal identity matching with a reasonable accuracy despite
being trained in a fully self-supervised manner. In addition,
our model can perform F-V inference with a reasonable accu-
racy even when it is trained in V-F setting, and vice versa.

Comparison results: We compared our model with two models - SVHFNet (Nagrani et al., 2018b)
and DIMNet (Wen et al., 2018). For fair comparisons, we trained our model with the intersection
of VoxCeleb and VGGFace datasets. Our model is trained in two train settings (1. V-F and 2. F-V)
with 10-way configuration.

Table 2: Comparison results in
terms of accuracy (%) of cross-
modal identity matching task.

Model
Train V-F F-V

SVHFNet 81.00 352 79.50 -
DIMNet-IG 84.12 402 84.03 -

Ours 79.90 55.66 80.83 54.84

K-way 2 10 2 10

The comparison results are shown in Table 2. The results show
that our model performs worse when tested in 2-way setting
compared to other models. Note that, SVHFNet used a pre-
trained speaker identification network and face recognition
network trained in a supervised manner with identity infor-
mation and DIMNet trained the network in a supervised man-
ner using the labels such as identity, gender, and nationality,
and therefore is not trainable without such labels, whereas our
model was trained from the scratch in a fully self-supervised
manner without any such labels. Under a more challenging
situation where K increases from two to ten, however, our
model shows significantly better performance, which may indicate the proposed method is capable
of extracting more informative and reliable features for the cross-modal identity matching task.

4.2 CROSS-MODAL GENERATION EVALUATION RESULTS

We conducted two qualitative analyses (QLA’s) and three quantitative analyses (QTA’s) to thor-
oughly examine the relationship between condition and the generated face samples.

QLA 1. Random samples from (z, c) plane: The generated face images from diversely sampled z
and fixed speech condition c is shown in Fig. 2. We can observe that each variable shows different

2The results are inferred from the graph of the paper DIMNet (Wen et al., 2018).
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characteristics. For example, it is observable that z controls the orientation of head, background
color, haircolor, hairstyle, glasses, etc. Alternatively, we observed that c controls gender, age, eth-
nicity and the details of the face such as the shape of the face and the shape of the nose.

Figure 2: The illustration of generated face images from interpolated speech conditions. Note that
the first column consists of the ground truth image of the speakers3.

QLA 2. Generated samples conditioned on interpolated speech: Next, we conducted the exper-
iment by exploring the latent variable c with z fixed. We sampled the speech segments from the
AVSpeech test set and linearly interpolated two speech conditions. After that we generated the face
images based on the interpolated condition vectors. The generated face images are shown in Fig. 3.

Figure 3: The illustration of generated face images from interpolated speech condition vectors. Note
that the images on the very left and right sides of each row are the ground truth face images of the
speakers.

QTA 1. Correlation between the generated samples and speech conditions: We performed a
quantitative analysis to investigate the relationship between the speech condition and the face image
it generated. To this end, we first sampled two different random variables z1, z2 and two different
speech condition vectors c1, c2 of different speakers. Next, we generated two face images ffake

1 =

G(z1, c1), ffake
2 = G(z2, c2) using the generator network. Then the two generated samples were

3Speech samples: https://drive.google.com/open?id=1n9VTYm9Z–dxNpwS-ELiotmXES6COE4h
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encoded using the trained inference network F(·) to extract the face embeddings fe1 = F(ffake
1 ),

fe2 = F(ffake
2 ). We then calculated the cosine distance between the speech condition vectors

(CD(c1, c2)), and the cosine distance between the two face embeddings (CD(fe1,fe2)). Finally,
we computed the Pearson correlation between CD(c1, c2) and CD(fe1,fe2). this is to see if there
exists any positive correlation between the embedding spaces of the two different modalities; that
is, to see if closer speech embeddings help generate face images whose embeddings are also closer
even when the random variable z is perturbed.

Fig. 4 (a) shows the results using the test set of the AVSpeech. We can see a positive correlation be-
tween the CD(c1, c2) and CD(fe1,fe2) meaning that the generated face images are not randomly
sampled.

Furthermore, we examined whether the CD between two speech condition vectors gets closer when
controlling the gender of the speaker, and also the face images generated from the two speech con-
dition vectors. We tested this on VoxCeleb dataset as it provides gender labels for each speaker
identity. We compared the mean values of CD(c1, c2) and CD(fe1,fe2) in two cases; one setting
the gender of the two speakers different and the other one setting the gender the same. Fig. 4 (b)
shows a scatter plot of the CD when the two sampled speakers have different genders, and Fig. 4 (c)
shows a case where the genders are set the same. We found out that the mean value of CD(c1, c2)
gets smaller (0.46 → 0.28) when we set the gender of two speakers the same and accordingly the
CD(fe1,fe2) gets also smaller (0.27→ 0.15).
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Figure 4: The scatter plots of CD(c1, c2) and CD(fe1,fe2).

QTA 2. Testing the generated samples with the inference networks: Here we conducted two
inference experiments in V-F setting. In the first experiment, given a positive pair from the AVSpeech
test set (f , s), two face images (f and G(z,S(s))) are passed to the trained inference networks. The
inference networks are then used to determine which of the two images yields a greater cross-modal
matching probability with a given speech segment s as follows:

N∑
n=1

1[p(y = 1|{S(sn),F(fn,j)}j=2
j=1) > p(y = 2|{S(sn),F(fn,j)}j=2

j=1)]/N, (7)

where 1[·] denotes an identity function, n denotes a index of test sample, fn,1 denotes the generated
sample G(z,S(sn))), fn,2 denotes the ground truth image paired with the speech sn, andN denotes
the total number of test samples. Note that z was randomly sampled from Gaussian distribution for
each n.

Surprisingly, we found out that the inference networks tend to choose the generated samples more
than the ground truth face images with a chance of 76.65%, meaning that the generator is able to
generate a plausible image given the speech condition c. Note that, however, this result does not
necessarily say that the generator is capable of generating a more plausible image conditioned on
one’s voice than the paired face image as this experiment is bounded to the performance of the
inference network. In addition, we believe the distribution of real face image is much more diverse
than the generated samples, causing the inference network tend towards the generated samples more.

Our second experiment is similar to the first experiment, but this time we compared two generators;
one trained without mismatched identity loss (Eq. 4) and the other with the proposed relidGANs loss.
We found out that the inference networks selected the generated sample from the generator trained

8



Under review as a conference paper at ICLR 2020

with the proposed relidGANs loss with a chance of 79.68%, showing that the proposed loss function
helps to generate samples that reflect the identity information encoded in the speech condition.

Next, we conducted one additional experiment in F-V setting. Given a generated image G(z,S(s1))
from a speech segment s1, we measured the accuracy of inference network selecting s1 out of two
audio segments s1 and s2 as follows:

N∑
n=1

1[p(y = 1|{S(sn,j),F(fn)}j=2
j=1) > p(y = 2|{S(sn,j),F(fn)}j=2

j=1)]/N, (8)

where fn denotes a generated face image from a speech segment sn,1, and sn,2 denotes a nega-
tively selected speech segment. We found out that the inference networks select s1 with a chance
of 95.14%. Note that, the accuracy of inference networks in 2-way F-V setting is 88.47%, which
means the generator can faithfully generate a face image according to the given speech segment s1.

QTA 3. Face image retrieval: Lastly, we conducted a face retrieval experiment in which the
goal was to accurately retrieve a real face image for the speaker using the generated im-
age from their speech segment as a query. To compose a retrieval dataset, we randomly sam-
pled 100 speakers from the test set of the AVSpeech. For each speaker, we extracted 50
face images from a video clip resulting in 5,000 images for the retrieval experiment in total.

Table 3: Face retrieval performance.

Models Metric Top-K

K = 1 K = 2 K = 5 K = 10

Speech2Face
L1 8.34 13.7 24.66 36.22
L2 8.28 13.66 24.66 35.84
CD 10.92 17.00 30.60 45.82

Ours
(w/o mil) )

L1 7.32 12.81 24.41 38.82
L2 7.21 12.83 24.34 39.24
CD 7.36 13.04 24.78 39.59

Ours
(w/ mil

(relidGANs))

L1 12.97 20.98 36.56 52.66
L2 12.90 21.5 36.84 52.49
CD 13.59 21.69 36.94 53.83

Note that this process of composing the re-
trieval dataset is same as that of Speech2Face
Oh et al. (2019). To retrieve the closest face im-
age out of the 5,000 samples, the trained face
encoder was used to measure the feature dis-
tance between the generated image and each of
the 5,000 images. We computed three metrics
as a feature distance (L1, L2, and cosine dis-
tance (CD)) and the results are reported in Ta-
ble 3.

Table 3 shows that our model can achieve
higher performance than that of Speech2Face
on all distance metrics. We also measured the
performance of the generator trained without
mismatched identity loss (mil) (Eq. 4). The re-
sults show that the proposed relidGANs loss function is crucial to generate the face images that
reflect the identity of the speakers. Examples of the top-5 retrieval results are shown in Fig. 5.

5 CONCLUSION AND FUTURE WORK

In this work, we proposed a cross-modal inference and generation framework that can be trained in a
fully self-supervised way. We trained cGANs by transferring the trained networks from the inference
stage so that the speech could be successfully encoded as a pseudo conditional embedding. We also
proposed relidGANs loss to train the discriminator to penalize negatively paired face and speech
so that the generator could produce face images with more distinguished identity between different
speakers. As a future work, we would like to address a data bias problem (e.g., ethnicity, gender,
age, etc.) that exists in many datasets. This is a significant problem as many publicly available
datasets have biased demographic statistics, consequently affecting the results of many algorithms
(Buolamwini & Gebru, 2018). We believe that this can be solved with the use of a better data
sampling strategy in an unsupervised manner such as (Amini et al., 2019). In addition, we would
like to expand the proposed methods to various multi-modal datasets by generalizing the proposed
concept to other modalities.
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voices in the brain: a modality-general person-identity representation in superior temporal sul-
cus. NeuroImage, 201:116004, 2019.

Yandong Wen, Mahmoud Al Ismail, Weiyang Liu, Bhiksha Raj, and Rita Singh. Disjoint mapping
network for cross-modal matching of voices and faces. arXiv preprint arXiv:1807.04836, 2018.

Yandong Wen, Bhiksha Raj, Changil Kim, and Rita Singh. Face reconstruction from voice using
generative adversarial networks. In Advances in neural information processing systems, 2019.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

APPENDIX

A DATA PREPROCESSING

Image processing: All video clips downloaded from the AVSpeech dataset were resampled to be
25FPS. If more than one face are detected in a frame, a face closer to the coordinates of the target
speaker in the first frame was selected. Note that the coordinates of the target speakers are provided
by the AVSpeech dataset. Because the size of the speaker’s face on the screen varies from video
to video, the image was resized to maintain interocular distance as 55 pixels, as described in Cole
et al. (2017). We used a publicly available software, Dlib (King, 2009), to detect and crop the face
images. The images were cropped to the size of 224 × 224 and resized to 128 × 128 for training.
We additionally applied horizontal flip method as a data augmentation strategy. These procedures of
cropping, resize, and flipping are adapted to all images in VGGFace and VoxCeleb, too.

Audio processing: All audio samples were resampled to 16kHz, and stereo audio samples were
converted to mono. We used 6 seconds of audio in both the inference and generation model. If
the audio is longer than 6 seconds, the audio was randomly truncated. If the audio is shorter than
6 seconds, the entire audio was duplicated until it becomes longer than 6 seconds. After then the
duplicated audio sample was randomly truncated to be 6 seconds. We applied root-mean-square
normalization to make the overall amplitude of speech signals to be consistent. The reference level
was selected as 0.01.

B IMPLEMENTATION DETAILS

We used stochastic gradient descent (SGD) with the momentum of 0.9 and weight decay of 5e − 4
to optimize inference networks (speech encoder and face encoder). The learning rate was initialized
to 0.001 and decayed by the factor of 10 if validation loss was not decreased for 1 epoch. Training
was stopped if learning rate decay occurred three times. Minibatch size was fixed to 32 and 12 for
V-F and F-V training configuration, respectively. For both training and test phase, negative samples
were randomly selected for every step while pre-defined negative samples for each positive sample
were used for validation phase to ensure stable learning rate decay scheduling.
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To train cGANs, we used Adam optimizer using β1 and β1 of 0.9 and 0.9, respectively. The learning
rate of generator and discriminator was fixed to 0.0001 and 0.00005 during training, respectively.
Each time the discriminator was updated twice, the generator was updated once. Batch size is 24 and
we trained the model about 500,000 iterations. Note that we adopted the truncation trick of Brock
et al. (2018) in subsection 4.2. The truncation threshold was set to 0.5 for QLA 1, QLA 2 and 1.0
for QTA 3. We did not use the truncation trick for QTA 1 and QTA 2.

C NETWORK STRUCTURES

Inference network consists of a speech encoder and a face encoder. The network structure of the
speech encoder is based on the problem agnostic speech encoder (PASE) (Pascual et al., 2019)
followed by an additional time pooling layer and a fully-connected layer (FC). PASE consists of
SincNet and 7 stacks convolutional-block (ConvBlock) copmosed of 1d-CNN, batch normalization,
and multi-parametric rectified linear unit (PReLU) activation. Following PASE, average pooling on
time dimension is applied to make the size of embedding time-invariant. The FC layer was used
as the last layer of the speech encoder. The details of the speech encoder is depicted in Fig. 6 For
face encoder, we used 2d-CNN based residual block (ResBlock) in each layer. Note that the network
structure is similar to the discriminator network of (Miyato & Koyama, 2018). The details of the
architecture is shown in Fig. 7.

For the generator, we followed the generator network structure of (Miyato & Koyama, 2018) with
some modifications, such as concatenating z and c as an input and adopting adaptive instance nor-
malization (AdaIN) for the direct conditioning method. The details of the discriminator are almost
the same as the face encoder except that it includes additional FC layer, projection layer, and sig-
moid as activation function. The details of the discriminator and generator are shown in Fig. 7 and
Fig. 8, respectively.

Conv1d (O, K, S)

BatchNorm1d

PReLU

(b) ConvBlock for Speech Encoder

SincNet, BatchNorm1d, PReLU

ConvBlock (64, 20, 10)

ConvBlock (128, 11, 2)

ConvBlock (128, 11, 1)

ConvBlock (256, 11, 2)

ConvBlock (256, 11, 1)

ConvBlock (512, 11, 2)

ConvBlock (512, 11, 2)

(a) Speech Encoder

Conv1d (100, 1, 1)

FC (128)

𝒔

Time pooling, ReLU

Figure 6: The structure of the speech encoder. O, K, S indicate the number of output channels, size
of the kernel and stride, respectively
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Figure 7: The structure of the discriminator network. The blue colored blocks indicate the network
structure of the face encoder F which is transferred to the discriminator network at the generation
stage. The numbers on each block denote the output channel. The GSP denotes a global sum pooling
along the spatial dimension.
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Figure 8: The structure of the generator network. The numbers on each block denote the output
channel.
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