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ABSTRACT

Deep generative models are generally categorized into explicit models and im-
plicit models. The former defines an explicit density form, whose normalizing
constant is often unknown; while the latter, including generative adversarial net-
works (GANs), generates samples without explicitly defines a density function.
In spite of substantial recent advances demonstrating the power of the two classes
of generative models in many applications, both of them, when used alone, suffer
from respective limitations and drawbacks. To mitigate these issues, we propose
Stein Bridging, a novel joint training framework that connects an explicit density
estimator and an implicit sample generator with Stein discrepancy. We show that
the Stein Bridge induces new regularization schemes for both explicit and implicit
models. Convergence analysis and extensive experiments demonstrate that the
Stein Bridging i) improves the stability and sample quality of the GAN training,
and ii) facilitates the density estimator to seek more modes in data and alleviate
the mode-collapse issue. Additionally, we discuss several applications of Stein
Bridging and useful tricks in practical implementation used in our experiments.

1 INTRODUCTION

Deep generative model, as a powerful unsupervised framework for learning the distribution of high-
dimensional multi-modal data, has been extensively studied in recent literature. Typically, there
are two types of generative models (Goodfellow et al., 2014). Explicit models define an explicit
(unnormalized) density function, while implicit models learn to sample from the distribution without
explicitly define a density function.

Explicit models have wide applications in undirected graphical models (LeCun et al., 2006;
Salakhutdinov & Hinton, 2009; Hinton et al., 2006; Ngiam et al., 2011), random graph theory
(Robins et al., 2007), energy-based reinforcement learning (Haarnoja et al., 2017), etc. However,
the unknown normalizing constant makes the model hard to train and sample from, and the ex-
plicit models might not be able to capture the complex structure of true samples while maintaining
tractability. In contrast, implicit models are more flexible in training and easy to sample from, and
in pariticular, generative adverarial networks (GANs) have shown great power in learning repre-
sentations of images, natural languages, graphs, etc. (Goodfellow et al., 2014; Radford et al., 2016;
Arjovsky et al., 2017; Brock et al., 2019). Nevertheless, due to the minimax game between generator
and discriminator/critic in GANs, the training process often suffers from instability, and produces
undesirable samples often associated with missing modes in data or generating extra modes out of
data. More discussion on related work is in Appendix A.

There are situations where we need both an explicit density and a flexible implicit sampler. For sam-
ple evaluation, it is not enough to merely distinguish samples from real to faked one, and one may
also expect to provide fine-grained evaluation on generated samples, where the energy values given
by the explicit models can be a good metric (Dai et al., 2017). Another situation is outlier detection.
Implicit models often leverage all true samples (possibly mixed with corrupted samples) as true ex-
amples for training. To make up for the issue, explicit models could help to detect out-of-distribution
samples via the estimated densities (Zhai et al., 2016). Also, when given insufficient observed sam-
ples, explicit models may fail to capture an accurate distribution, in which case implicit model may
help with data augmentation and facilitate training for density estimation. These situations motivate
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us to combine both of the worlds in an effective way so as to make the two models compensate and
reinforce each other.

In this work, we aim at jointly learning explicit and implicit generative models. In our framework,
an implicit energy model is used to estimate the unnormalized densities of true samples via mini-
mizing a Stein discrepancy; in the meantime, an explicit generator model is exploited to minimize
the Wasserstein metric (or Jensen-Shannon divergence) between distributions of true and generated
samples. On top of these, another Stein discrepancy, acting as a bridge between implicit generated
samples and explicit estimated densities, is introduced and pushes the two models to achieve a con-
sensus. We show that the Stein bridge allows the two generative models to reinforce each other
by imposing new regularizations on both models, which help the generator to output high-quality
samples and facilitate the energy model to avoid mode-collapse. Moreover, we show that the joint
training helps to stabilize GAN training via a convergence analysis. Extensive experiments on vari-
ous tasks verify our theoretical findings as well as demonstrate the superiority of proposed methods
compared with existing deep energy models and GAN-based models.

2 BACKGROUND

In this section, we briefly provide some technical background used in our model.

Energy Model. The energy model assigns each data x with a scalar energy value Eφ(x), where
Eφ(·) is called the energy function and is parameterized by φ. The model is expected to assign low
energy to true samples according to a Gibbs distribution pφ(x) = exp{−Eφ(x)}/Zφ, where Zφ is
a normalizing constant dependent on φ. The normalizing term Zφ is often hard to compute, making
the training intractable, and various methods are proposed to detour such term (see Appendix A).

Stein Discrepancy. Stein discrepancy (Gorham & Mackey, 2015; Liu et al., 2016; Chwialkowski
et al., 2016; Oates et al., 2017) is a measure of closeness between two probability distributions that
does not require the knowledge for the normalizing constant of one of the compared distributions.
Let P and Q be two probability distributions on X ⊂ Rd, and assume Q has a density q. The Stein
discrepancy S(P,Q) is defined as

S(P,Q) := sup
f∈F

Ex∼P[AQf(x)] := sup
f∈F
{Ex∼P[tr(∇x log q(x)f(x)> +∇xf(x))]}, (1)

where F is often chosen to be a Stein class (see, e.g., Definition 2.1 in Liu et al. (2016)), or a unit
ball in some reproducing kernel Hilbert space (RKHS) with a positive definite kernel k. The latter
is referred to as Kernel Stein Discrepancy (KSD). We refer to Appendix B for more details.

Wasserstein Metric. Wasserstein metric is suitable for measuring distances between two distri-
butions with non-overlapping supports (Arjovsky et al., 2017). The Wasserstein-1 metric between
distributions P and Q is defined asW(P,Q) := minγ E(x,y)∼γ [‖x− y‖], where the minimization
is over all joint distributions with marginals P and Q. By Kantorovich-Rubinstein duality, it has a
dual representation

W(P,Q) := max
D
{Ex∼P[D(x)]− Ey∼Q[D(y)]} , (2)

where the maximization is over all 1-Lipschitz continuous functions.

Sobolev space and Sobolev dual norm. Use L2 to denote the canonical Hilbert space on Rd
equipped with an inner product 〈u, v〉L2 :=

∫
Rd uvdx. The Sobolev space H1 is defined as the

closure of C∞0 , the set of smooth functions on Rd with compact support, with respect to the norm
‖u‖H1 :=

( ∫
Rd(u2 + ‖∇u‖22)dx

)1/2
. For v ∈ L2, its Sobolev dual norm ‖v‖H−1 is defined by

(Evans & Society, 2010)

‖v‖H−1 := sup
u∈H1

{
〈v, u〉L2 :

∫
Rd
‖∇u‖22 dx ≤ 1

}
.

Therefore, ‖·‖H−1 can be viewed as a measure of smoothness, which measures the similarity (in
terms of largest L2-norm) between v and a subset of smooth functions in H1.

3 PROPOSED MODEL

In this section, we formulate our model, Stein Bridging, and highlight its regularization effects.
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3.1 MODEL FORMULATION

We denote by Preal the underlying real distribution from which the data {x} are sampled. We
simultaneously learn two generative models – one explicit and one implicit – that represent esti-
mates of Preal. The explicit generative model has an explicit probability density PE proportional to
exp(−E(x)), where E is referred to as an energy function. The implicit generative model trans-
forms an easy-to-sample random noise z with distribution P0 via a generatorG to a generated sample
x̃ = G(z) with distribution PG. We use the Stein discrepancy as a measure of closeness between
the explicit density PE and the real distribution Preal, and use the Wasserstein metric as a measure
of closeness between the implicit distribution PG and Preal.

To jointly learn the two generative models PG and PE , arguably the most straightforward approach
is to minimize the sum of the Stein discrepancy and the Wasserstein metric:

min
E,G
W(Preal,PG) + λS(Preal,PE),

where λ ≥ 0 is a weight coefficient. However, this approach appears no different than learning the
two generative models separately. To better train the model, we incorporate the objective another
term S(PG,PE) – called the Stein bridge – that measures the closeness between the explicit density
PE and the implicit distribution PG:

min
E,G
W(Preal,PG) + λ1S(Preal,PE) + λ2S(PG,PE), (3)

where λ1, λ2 ≥ 0 are weight coefficients. Although the Stein bridge might seem redundant mathe-
matically, we show that it helps regularize the models in Section 3.2.

The Wasserstein term in (3) is implemented using its equivalent dual representation (2). The two
Stein terms in (3) can be implemented using (1) with either a Stein critic parameterized by a neural
network, or the Kernel Stein Discrepancy. To reduce the computational cost, the two Stein critics
share their parameters, namely, kernels or neural networks. A scheme of our framework is presented
in Fig. 1. We also discuss some related works that attempt to combine both of the worlds (such as
energy-based GAN, contrastive learning and cooperative learning) in Appendix A.3, and highlight
the difference between our method and theirs in terms of the objective in Table 1.

Remark. In general, we can also choose other statistical distances in (3) to measure closeness be-
tween probability distributions. For example, the Wasserstein metricW(Preal,PG) can be replaced
by other common choices for implicit generative models, such as Jensen-Shannon divergence used
in the original GAN paper (Goodfellow et al., 2014). If the normalizing constant of PE is known or
easy to calculate, one can replace the Stein discrepancy by the Kullback-Leibler divergence, which
is equivalent to the maximum likelihood estimation. We present details for model specifications in
various forms and training algorithm in Appendix E.2.

Figure 1: Model framework for Stein Bridging which
jointly train an implicit sample generator and an explicit
density estimator via a Stein bridge.

Model Objective

GAN D1

Energy Model D2

Energy-based GAN
(Zhao et al. (2017)) D1

Contrastive Learning
(Kim & Bengio (2017)) D2

Cooperative Learning
(Xie et al. (2018)) D2 +D3

Stein Bridging (ours) D1 +D2 +D3

Table 1: Comparison of objectives
between different generative mod-
els, where D1 := D1(Preal,PG),
D2 := D2(Preal,PE) and D3 :=
D3(PG,PE) denote general statistical
distances between two distributions.

3



Under review as a conference paper at ICLR 2020

3.2 REGULARIZATION EFFECTS BY VIRTUE OF THE STEIN BRIDGE

The intuitive motivation of the Stein bridge term in (3) is to push the two models to achieve a
consensus. In this subsection, we theoretically show that the Stein bridge allows the two models to
reinforce each other by imposing regularizations on the critics.

3.2.1 KERNEL SOBOLEV DUAL NORM REGULARIZATION ON THE WASSERSTEIN CRITIC

We first show the regularization effect of the Stein bridge on the Wasserstein critic. Fixing the energy
function E, consider the max-min problem over the Wasserstein critic D and the generator G:

max
D

min
G
{Ey∼PG [D(y)]− Ex∼Preal

[D(x)] + λ2S(PG,PE)} (4)

We define the kernel Sobolev dual norm as

‖D‖H−1(P;k) := sup
u∈C∞0

{
〈D,u〉L2(P) : Ex,x′∼P[∇u(x)>k(x,x′)∇u(x′)] ≤ 1

}
,

which can be viewed as a kernel generalization of the Sobolev dual norm defined in Section 2, which
reduces to the Sobolev dual norm when k(x,x′) = I(x = x′) and P being the Lebesgue measure.

Assuming that {PG}G exhausts all probability distributions, we have the following result.
Theorem 1. Formally, problem (4) is equivalent to

max
D

{
Ey∼PG [D(y)]− Ex∼Preal

[D(x)]− 1

2λ2
inf
t∈R
‖D − t‖H−1(PE ;k)

}
+O(1/λ2

2).

Note that if D is an optimal Wasserstein critic in (2), so does D− r, r ∈ R. This is consistent to the
penalty term inft∈R ‖D − t‖H−1(PE ;k), since the penalties are identical forD andD−r. According
to Section 2, the regularization term would penalize the non-smoothness of the Wasserstein critic
D, which is in the same spirit of gradient-based penalty (e.g., Gulrajani et al. (2017); Roth et al.
(2017)), but with a new way to encouraging smoothness.

Another way to interpret the Sobolev dual norm penalty is by observing that if k(x,x′) = I(x = x′),
and EPE [D − t] = 0 (Villani, 2008), then

‖D − t‖H−1(PE ;k) = lim
ε→0

W2((1 + ε(D − t))PE ,PE)

ε
,

whereW2 denotes the 2-Wasserstein metric. Therefore, the regularization ensures that D would not
change suddenly on the high-density region of PE , and the explicit model reinforces the learning of
the Wasserstein critic.

3.2.2 LIPSCHITZ REGULARIZATION ON THE STEIN CRITIC

We next investigate how the Stein bridge helps to regularize the Stein critic. Recall that the two
Stein terms in (3) share the same Stein critic. Fixing the energy function E, consider the max-min
problem over the Stein critic f and the generator G:

max
f

min
G
{λ1Ey∼Preal

[APE f(y)] + λ2Ey∼PG [APE f(y)] +W(Preal,PG)}. (5)

Assuming that {PG}G exhausts all probability distributions, we have the following result.
Theorem 2. Problem (5) is equivalent to

max
f
{(λ1 + λ2)Ey∼Preal

[APE f(y)] : Lip(APE f) ≤ 1/λ2},

where Lip(APE f) denotes the Lipschitz constant of the function APE f .

Theorem 2 shows that the Stein bridge, together with the Wasserstein metric W(Preal,PG), plays
as a smoothness regularization on the Stein critic f via the constraint Lip(tr(f>∇ logPE +∇f)) ≤
1/λ2. The regularization will penalize large variation of values given by Stein operators on adjacent
instances and further encourage the energy model to seek more modes in data instead of focusing
on some dominated modes, thus helping to alleviate the mode-collapse issue. To the best of our
knowledge, this suggests a novel regularization scheme for Stein-based GAN.
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4 CONVERGENCE ANALYSIS

In Section 3.2, we justify Stein Bridging by showing the regularization effects. In this section, we
further show that it could help to stabilize GAN training with local convergence guarantee. To this
end, we first compare the behaviors of WGAN, likelihood- and entropy-regularized WGAN, and our
Stein Bridging under SGD via an easy to comprehend toy example. Then we give a formal result
that interprets why the introduction of density estimator could stablize GAN training and help for
convergence.

4.1 ANALYSIS OF A LINEAR SYSTEM

The training for minimax game in GAN is difficult. When using traditional gradient methods, the
training would suffer from some oscillatory behaviors (Goodfellow (2017); Liang & Stokes (2019)).
In order to better understand the optimization behaviors, we first study a one-dimension linear sys-
tem that provides some insights on this problem. Note that such toy example (or a similar one) is also
utilized by Gidel et al. (2019); Nagarajan & Kolter (2017) to shed lights on the instability of WGAN
training1. Consider a linear critic Dψ(x) = ψx and generator Gθ(z) = θx. Then the Wasserstein
GAN objective can be written as a constrained bilinear problem: minθ max|ψ|≤1 ψE[x] − ψθE[z],
which could be further simplified as an unconstrained version (the behaviors could be generalized
to multi-dimensional cases (Gidel et al. (2019))):

min
θ

max
ψ

ψ − ψ · θ. (6)

Unfortunately, such simple objective cannot guarantee convergence by traditional gradient methods
like SGD with alternate updating2: θk+1 = θk − ηψk,, ψk+1 = ψk + ηθk+1. Such optimization
would suffer from an oscillatory behavior, i.e., the updated parameters go around the optimum point
([θ∗, ψ∗] = [1, 0]) forming a circle without converging to the centrality, which is shown in Fig. 2(a).
A recent study in Liang & Stokes (2019) theoretically show that such oscillation is due to the inter-
action term in (6).

One solution to the instability of GAN training is to add (likelihood) regularization, which has been
widely studied by recent literatures (Warde-Farley & Bengio (2017); Li & Turner (2018)). With
regularization term, the objective changes into minθ max|ψ|≤1 ψE[x] − ψθE[z] − λE[logµ(θz)],
where µ(·) denotes the likelihood function and λ is a hyperparameter. A recent study (Tao et al.
(2019)) proves that when λ < 0 (likelihood-regularization), the extra term is equivalent to maximiz-
ing sample evidence, helping to stabilize GAN training; when λ > 0 (entropy-regularization), the
extra term maximizes sample entropy, which encourages diversity of generator. Here we consider a
Gaussian likelihood function for generated sample x′, µ(x′) = exp(− 1

2 (x′ − b)2) which is up to a
constant, and then the objective becomes (see Appendix D.1 for details):

min
θ

max
ψ

ψ − ψ · θ − λ(θ2 − θ). (7)
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Figure 2: Numerical iterations for SGD training. (a) Comparison of WGAN,
likelihood-regularized WGAN (WGAN+LR), variational annealing for WGAN+LR
(WGAN+LR+VA), entropy-regularized WGAN (WGAN+ER) and our Stein Bridg-
ing. (b) Stein Bridging with different λ1 and λ2.

The above system would converge
with λ < 0 and diverge with
λ > 0 in gradient-based optimiza-
tion, shown in Fig. 2(a). Another
issue of likelihood-regularization is
that the extra term changes the op-
timum point and makes the model
converge to a biased distribution, as
proved by Tao et al. (2019). In this
case, one can verify that the optimum
point becomes [ψ∗, θ∗] = [−λ, 1], re-
sulting a bias. To avoid this issue, Tao
et al. (2019) proposes to temporally
decrease |λ| through training. However, such method would also be stuck in oscillation when |λ|
gets close to zero as is shown in Fig. 2(a).

1Our theoretical discussions focus on WGAN, and we also compare with original GAN in the experiments.
2Here, we adopt the most widely used alternate updating strategy. The simultaneous updating, i.e., θk+1 =

θk − ηψk and ψk+1 = ψk + ηθk, would diverge in this case.
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Finally, let us consider our proposed model. We also simplify the density estimator as a basic energy
model pφ(x) = exp(1

2x
2 + φx) whose score function is∇x log pφ(x) = x+ φ. Then if we specify

the two Stein discrepancies in (3) as KSD, we have the objective,

min
θ

max
ψ

min
φ
ψ − ψ · θ +

λ1

2
(1 + φ)2 +

λ2

2
(θ + φ)2. (8)

Interestingly, one can verify that for ∀λ1, λ2, the optimum point remains the same [ψ∗, θ∗, φ∗] =
[0, 1,−1]. Then we show that the optimization can guarantee convergence to [ψ∗, θ∗, φ∗].
Proposition 1. Using alternate SGD for (8) geometrically decreases the square normNt = |ψt|2 +
|θ − 1|2 + |φ+ 1|2, for any 0 < η < 1 with λ1 = λ2 = 1,

Nt+1 = (1− η2(1− η)2)Nt. (9)

In Fig. 2(a), we can see that Stein Bridging achieves a good convergence to the right optimum.
Compared with (6), the objective (8) adds a new bilinear term φ · θ, which acts like a connection
between the two generator and estimator, and two other quadratic terms, which help to push the
values to decrease through training. The added terms and the original terms in (8) cooperate to
guarantee convergence to a unique optimum. (More discussions in Appendix D.1).

We further generalize the analysis to multi-dimensional bilinear system F (ψ,θ) = θ>Aψ−b>θ−
c>ψ which is extensively used by researches for analysis of GAN stability (Goodfellow (2017);
Gemp & Mahadevan (2018); Liang & Stokes (2019); Gidel et al. (2019)). For any bilinear system,
with the added term H(φ,θ) = 1

2 (θ + φ)>B(θ + φ) where B = (AA>)
1
2 to the objective, we

can prove that i) the optimum point remains the same as the original system (Proposition 2) and ii)
using alternate SGD algorithm for the new objective can guarantee convergence (Theorem 4). The
results are given in Appendix D.3.

4.2 LOCAL CONVERGENCE FOR A GENERAL MODEL

To study the convergence for Stein Bridging, we proceed to consider a general optimization objective

min
θ

max
ψ

min
φ
L(θ,ψ,φ),

where L(θ,ψ,φ) = F (θ,ψ)+H(θ,φ), andωf = [θ,ψ] andωh = [θ,φ] (θ is a shared parameter
set). Use ω∗ = [θ∗,ψ∗,φ∗] to denote the optimum point of L and ω∗f = [θ∗,ψ∗], ω∗h = [θ∗,φ∗]
represent the optimum points of F and H respectively. Define Ωf = Ωθ ×Ωψ and Ωh = Ωθ ×Ωφ,
where Ωθ, Ωψ , Ωφ denote constraint sets for θ,ψ, φ respectively. FunctionH is µ-strongly convex,
and F is µ-strongly convex for θ and µ-strongly concave for ψ (see Appendix E.4 for definition of
strongly convex condition). Here we define h(ωh) = ∇θH +∇φH , f(ωf ) = ∇θF −∇ψF , and
then we have the following theorem.
Theorem 3. If F is µ-strongly convex-concave and H is µ-strongly convex, we can leverage the
alternate SGD algorithm, i.e.

ωt+1
h = PΩh(ω

t+1/2
h − ηh(ω

t+1/2
h )), (10)

ωt+1
f = PΩf (ω

t+1/2
f − ηf(ω

t+1/2
f )), (11)

where ωt+1/2
h = [θt,ψt], ωt+1

h = [θt+1/2,ψt+1], ωt+1/2
f = [θt+1/2,φt], ωt+1

f = [θt+1,φt+1],
and PΩ(ω) = arg min

ω′∈Ω
‖ω − ω′‖22 denotes the projection mapping to Ω. Then we can achieve the

convergence by using 1
2µ < η < 1

µ .

Theorem 3 shows that Stein Bridging could converge to at least a local optimum. Due to the un-
known and intricate landscape of deep neural networks, the global optimization and convergence
analysis for GAN has remained as an unexplored problem. Despite the fact that strong convexity
assumption cannot be guaranteed with deep neural networks, the optimization could converge to
a stable point once there exists a local region that satisfies the strongly convex conditions. In the
experiments, we will empirically compare the training stability of each method on various datasets
to validate our theoretical discussions.
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(a) True (b) GAN (c) WGAN (d) DGM (e) Joint-JS (f) Joint-W

Figure 3: (a) True sam-
ples and (b)∼(f) gener-
ated samples produced
by the generators of
different methods on
Two-Circle (upper line)
and Two-Spiral (bottom
line) datasets.

(a) True (b) DEM (c) EGAN (d) DGM (e) Joint-JS (f) Joint-W

Figure 4: (a) True den-
sities and (b)∼(f) es-
timated densities given
by the estimators of
different methods on
Two-Circle (upper line)
and Two-Spiral (bottom
line) datasets.

5 EXPERIMENTS

In this section, we conduct experiments to verify the effectiveness of proposed method from multi-
faceted views. First, we select three tasks with different evaluation metrics in Section 5.1, 5.2 and
5.3. Then we further discuss some applications of joint training as well as some useful tricks in
Section 5.4, 5.5 and 5.6. The codes will be released later.

We consider two synthetic datasets with mixtures of Gaussian distributions: Two-Circle and Two-
Spiral. The first one is composed of 24 Gaussian mixtures that lie in two circles. Such dataset is
extended from the 8-Gaussian-mixture scenario which is widely used in previous GAN papers and
is more difficult, so that we can use it to test the quality of generated samples and mode coverage
of learned density. The second synthetic dataset consists of 100 Gaussian mixtures whose centers
are densely arranged on two centrally symmetrical spiral-shaped curves. This dataset can be used
to examine the power of generative model on complicated data distributions. The ground-truth
distributions and samples are shown in Fig. 3 (a) and Fig. 4 (a). Furthermore, we also apply the
methods to MNIST and CIFAR datasets which require the model to deal with high-dimensional
data. In each dataset, we use observed samples as input of the model and leverage them to train the
generators and the estimators. The details for each dataset are reported in Appendix E.1.

In our experiments, we also replace the Wasserstein metric in (3) by JS divergence. To well distin-
guish different specifications, we term the model Joint-W if using Wasserstein metric and Joint-JS
if using JS divergence in this section. We consider several competitors. First, for implicit genera-
tive models, we consider valina GAN, WGAN-GP (Gulrajani et al. (2017)), likelihood-regularized
GAN/WGAN-GP (short as GAN+LR/WGAN+LR), entropy-regularized GAN/WGAN-GP (short
as GAN+ER/WGAN+ER) and a recently proposed variational annealing regularization (Tao et al.
(2019)) for GAN (short as GAN+VA/WGAN+VA) to compare the quality of generated samples.
We employ the denoising auto-encoder to estimate the gradient for regularization penalty, which is
proposed by Alain & Bengio (2014) and utilized by Tao et al. (2019). Second, for explicit density
models, we consider Deep Energy Model (DEM) which is optimized based on Stein discrepancy,
and energy-based GAN (EGAN) (Dai et al. (2017)). Besides, we also compare with Deep Directed
Generative (DGM) Model (Kim & Bengio (2017)) which adopts contrastive divergence to unite
sample generator and density estimator. See Appendix A for brief introduction of these methods
and Appendix E.3 for implementation details for each method.

5.1 SAMPLE QUALITY OF IMPLICIT MODEL

Calibrating explicit density model with implicit generator is expected to improve the quality of gen-
erated samples. In Fig. 3 and Fig. 4 we show the results of different generators in Two-Circle and
Two-Spiral datasets. As we can see, in Two-Circle, there are a large number of generated samples
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MNIST (Conditional) MNIST (Unconditional) CIFAR-10 (Unconditional)

Method Score CEPC Method Score CEPC Method Score CEPC

DCGAN 8.43 0.168 WGAN-GP 7.71 0.256 WGAN-GP 6.80 0.153
DCGAN+LR 8.40 0.171 WGAN+LR 7.82 0.243 WGAN+LR 6.89 0.154
DCGAN+ER 8.33 0.179 WGAN+ER 7.75 0.252 WGAN+ER 6.99 0.156
DCGAN+VA 8.40 0.172 WGAN+VA 7.74 0.254 WGAN+VA 6.95† 0.154

DGM 8.15 0.201 DGM 6.87 0.372 DGM 4.79 0.146
Joint-JS(ours) 8.53 0.156 Joint-W(ours) 7.90 0.231 Joint-W(ours) 7.11 0.151

Table 2: Inception scores (higher is better) and conditional entropies (short as CEPC and lower is
better) on MNIST and CIFAR-10. †We directly use the best result reported in their paper.
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Figure 5: Learning curves of Joint-W (resp. Joint-JS) compared with WGAN (resp. GAN or DC-
GAN) and its regularization-based variants.

given by GAN, WGAN-GP and DGM (the worst one in this case) locating between two Gaussian
components, and the boundary for each component is not distinguishable. Since the ground-truth
densities of regions between two components are very low, such generated samples possess low-
quality, which depicts that these models capture the combinations of two dominated features (i.e.,
modes) in the data but such combination does not make sense in practice. By contrast, Joint-JS and
Joint-W could alleviate such issue, reduce the low-quality samples and produce more distinguish-
able boundaries for components. In Two-Spiral, similarly, the generated samples given by GAN
and WGAN-GP form a circle instead of two spirals while the samples of DGM ‘link’ two spirals.
Joint-JS manages to focus more on true high densities compared to GAN and Joint-W provides the
best results. To quantitatively measure the sample quality, we adopt two metrics: Maximum Mean
Discrepancy (MMD) and High-quality Sample Rate (HSR). The detailed definitions are given in
Appendix E.4 and we report the results in Table 5.

We visualize the generated digits/images on MNIST/CIFAR-10 datasets in Fig. 9 and Fig. 10 and
use Inception Score and conditional entropy of predicted classes (CEPC) to measure the sample
quality (See Appendix E.4 for details). As shown in Table 2, Joint-W (resp. Joint-JS) is superior
than WGAN-GP (resp. DCGAN), regularized WGAN (resp. DCGAN) and DGM. The CEPC char-
acterizes how well the picture can be distinguished by a pre-trained classifier, i.e., the quality of
picture, so the results depict that proposed method could give higher-quality generated pictures.

5.2 DENSITY ESTIMATION OF EXPLICIT MODEL

Another advantage of joint learning is that the generator could help the density estimator to capture
more accurate distribution. As shown in Fig 3, both Joint-JS and Joint-W manage to capture all
Gaussian components while other methods miss some of modes. In Fig 4, Joint-JS and Joint-W
exactly fit the ground-truth distribution. By contrast, DEM misses one spiral while EGAN degrades
to a uniform-like distribution. DGM manages to fit two spirals but allocate high densities to regions
that have low densities in the groung-truth distribution. To quantitatively measure the performance,
we introduce three evaluation metrics: KL & JS divergence between the ground-truth and estimated
densities and Area Under the Curve (AUC) for false-positive rate v.s. true-positive rate where we
select points with true high (resp. low) densities as positive (resp. negative) examples. The detailed
information and results are given in Appendix E.4 and Table 5 respectively. The values show that
Joint-W and Joint-JS could provide more accurate density estimation than other competitors.

We also rank the generated digits (and true digits) on MNIST w.r.t the densities given by the energy
model in Fig. 11, Fig. 12 and Fig. 13. As depicted in the figures, the digits with high densities (or
low densities) given by Joint-JS possess enough diversity (the thickness, the inclination angles as
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Figure 6: Generated digits (resp. images) given by the
same noise z in adjacent training epoches on MNIST
(reps. CIFAR) dataset.
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Figure 7: Joint-W with (a) noised data,
(b) insufficient data and (c) ‘warm up’
iterations before joint training.

well as the shapes of digits diverses). By constrast, all the digits with high densities given by DGM
tend to be thin and digits with low densities are very thick. Also, as for EGAN, digits with high
(or low) densities appear to have the same inclination angle (for high densities, ‘1’ keeps straight
and ‘9’ ’leans’ to the left while for low densities, just the opposite). Such phenomenon indicates
that DGM and EGAN tend to allocate high (or low) densities to data with certain modes and would
miss some modes that possibly possess high densities in ground-truth distributions. Fortunately, our
method overcomes the issue and manages to capture complicated distributions.

5.3 ENHANCING THE STABILITY OF GAN

Our discussions and analysis show that joint training helps to stabilize GAN training. In Fig. 5
we present the learning curves of Joint-W (resp. Joint-JS) compared with WGAN (resp. GAN or
DCGAN) and its regularization-based variants on different datasets. One can clearly see from the
curves that joint training could reduce the variance of metric values especially during the second half
of training. Furthermore, we visualize the generated pictures given by the same noise z in adjacent
epoches in Fig. 6. The results show that Joint-W outputs more stable generation in adjacent epoches
while the generated samples given by WGAN-GP and WGAN+VA exhibit an obvious variation.
Especially, some digits generated by WGAN-GP and WGAN+VA change from one class to another.
Such phenomenon is quite similar to the oscillatory behavior with non-convergence in optimization
that we discuss in Section 4.1.

Another issue discussed in Section 4.1 is the bias of model distribution for regularized GAN meth-
ods. To quantify this evaluation, we calculate l1 and l2 distances between the means of 50000
generated digits (resp. images) and 50000 true digits (resp. images) in MNIST (reps. CIFAR-10).
The results are shown in Table 3. The smaller distances given by Joint-W indicate that it converges
to a better local optimum with smaller bias from the original data distribution. Also, in Table 6 (resp.
Table 7), we report the distances for digits (resp. images) in each class on MNIST (resp. CIFAR).

5.4 DETECTING OUT-OF-DISTRIBUTION SAMPLES

The explicit model estimates densities for each sample and one of its applications is to detect outliers
in the input data. Here, we adopt CIFAR-10 to measure the ability of our estimator to distinguish
the in-distribution samples and (true/false) out-of-distribution samples. We consider four situations
and in each case, we consider the test images of CIFAR-10 as positive set (expected to allocate high
densities) and construct a negative set (expected to allocate low densities). We let the model output
densities for images in two sets, rank them according to the densities and plot the ROC curve for
false-positive rate v.s. true-positive rate in Fig. 8. In the first case, we flip each image in the positive
set as negative set. Note that such flipped images are not out-of-distribution samples, so the model is
expected to allocate high densities to them, i.e., the ROC curve should be close to a straight line from
(0, 0) to (1, 1). The results show that Joint-W, EGAN and DEM give the exact results while DGM
assigns all flipped images with lower densities, which means that it fails to capture the semantics
in images. In the following three cases, we i) generate random noise, ii) average two images with
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MNIST CIFAR

Method l1 Dis l2 Dis l1 Dis l2 Dis

WGAN-GP 13.80 0.93 80.98 1.72
WGAN+LR 12.91 0.86 82.96 1.81
WGAN+ER 12.26 0.77 72.28 1.59
WGAN+VA 12.38 0.78 69.01 1.53

DGM 12.12 0.79 179.30 3.95
Joint-W 11.82 0.73 64.23 1.41

Table 3: Distances between means of generated digits
(resp. images) and ground-truth digits (resp. images)
on MNIST (resp. CIFAR-10).
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Figure 8: ROC curves for evaluation of out-
lier detection on CIFAR-10.

different CIFAR classes, and iii) adopt Lsun Bedroom dataset as the negative set, respectively. In
these situations, the model is expected to distinguish the images in two sets. The results in Fig. 8
show that DGM provides the best results while the performance of Joint-W is quite close to DGM
and much better than DEM and EGAN.

5.5 ADDRESSING DATA INSUFFICIENCY AND NOISY DATA

We proceed to test the model performance in some extreme situations where the observed samples
are mixed with noises or the observed samples are quite insufficient. The results are presented in
Fig. 7(a) where we add different ratios of random noise to the true samples in Two-Circle dataset
and Fig. 7(b) where we only sample insufficient data for training in Two-Spiral dataset. The details
are in Appendix E.1. The noise in data impacts the performance of WGAN and Joint-W, but com-
paratively, the performance decline for Joint-W is less insignificant than WGAN, which indicates
better robustness of joint training w.r.t noised data. In Fig. 7(b), when the sample size decreases from
2000 to 100, the AUC value of DEM declines dramatically, showing its dependency on sufficient
training samples. By contrast, the AUC of Joint-W exhibits a small decline when the sample size
is more than 500 and suffers from an obvious decline when it is less than 300. Such phenomenon
demonstrates lower sensitivity of joint training to observed sample size.

5.6 WHEN TO START JOINT LEARNING

In our experiment, we also observe an interesting phenomenon: the performance achieved at con-
vergence would be better if we start joint training after some iterations with independent training for
the generator and the estimator. In other words, at the beginning, we could set λ2 = 0 (or some very
small values) in (3) and after some iterations set it as a normal level. We report the inception scores
on MNIST with different numbers of iterations for independent training in Fig. 7(c) where we can
see that the score firstly goes up and then goes down when we increase iterations for independent
training. Such phenomenon is quite similar to the ‘warm up’ trick used for training deep networks
where one can use small learning rates at iterations in the begining and amplify its value for further
training. One intuitive reason behind this phenomenon is that at the beginning, both the genera-
tor and estimator are weak and if we minimize the discrepancy between them at this point, they
would possibly constrain each other and get limited in some bad local optima. When they become
strong enough after some training iterations, uniting them through joint training would help them
compensate and reinforce each other as our discussions.

6 CONCLUSIONS

In this paper, we aim at uniting the training for implicit generative model (represented by GAN) and
explicit generative model (represented by a deep energy-based model). Besides two loss terms for
GAN and energy-based model, we introduce the third loss characterized via Stein discrepancy be-
tween the generator in GAN and the energy-based model. Theoretically, we show that joint training
could i) help to stablize GAN training and facilitate its convergence, and ii) enforcing dual regu-
larization effects on both models and help to escape from local optima in optimization. We also
conduct extensive experiments with different tasks and application senarios to verify our theoretical
findings as well as demonstrate the superiority of our method compared with various GAN models
and deep energy-based models.

10



Under review as a conference paper at ICLR 2020

REFERENCES

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating
distribution. J. Mach. Learn. Res., 15(1):3563–3593, 2014.
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Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun. Energy-based generative adversarial net-
works. In ICLR, 2017.

Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its application
to texture modeling. Neural Computation, 9(8):1627–1660, 1997.

13



Under review as a conference paper at ICLR 2020

A LITERATURE REVIEWS

We discuss some of related literatures and shed lights on the relationship between our work with
others.

A.1 EXPLICIT GENERATIVE MODELS

Explicit generative models are interested in fitting each instance with a scaler density expected to
explicitly capture the distribution behind data. Such densities are often up to a constant and called as
energy functions which are common in undirected graphical models (LeCun et al. (2006)). Hence,
explicit generative models are also termed as energy-based models. An early version of energy-
based models is the FRAME (Filters, Random field, And Maximum Entropy) model (Zhu et al.
(1997); Wu et al. (2000)). Later on, some works leverage deep neural networks to model the energy
function (Ngiam et al. (2011); Xie et al. (2016b)) and pave the way for researches on deep energy
model (DEM) (e.g., Liu & Wang (2017); Kim & Bengio (2017); Zhai et al. (2016); Haarnoja et al.
(2017); Du & Mordatch (2019); Nijkamp et al. (2019)). Apart from DEM, there are also some other
forms of deep explicit models based on restricted Boltzmann machines like deep belief networks
(Hinton et al. (2006)) and deep Boltzmann machines (Salakhutdinov & Hinton (2009)).

The normalized constant under the energy function requires an intractable integral over all possible
instances, which makes the model hard to learn via Maximum Likelihood Estimation (MLE). To
solve this issue, some works propose to approximate the constant by MCMC methods (Geman &
Geman (1984); Neal (2011)). However, MCMC requires an inner-loop samples in each training,
which induces high computational costs. Another solution is to optimize an alternate surrogate loss
function. For example, contrastive divergence (CD) (Liu & Wang (2017)) is proposed to measure
how much KL divergence can be improved by running a small numbers of Markov chain steps to-
wards the intractable likelihood, while score matching (SM) (Hyvärinen (2005)) detours the constant
by minimizing the distance for gradients of log-likelihoods. Moreover, the intractable normalized
constant makes it hard to sample from. To obtain an accurate samples from unnormalized densities,
many studies propose to approximate the generation by diffusion-based processes, like generative
flow (Nguyen et al. (2017)) and variational gradient descent (Liu & Wang (2016)). Also, a recent
work (Hu et al. (2018)) leverages Stein discrepancy to design a neural sampler from unnormalized
densities. The fundamental disadvantage of explicit model is that the energy-based learning is dif-
ficult to accurately capture the distribution of true samples due to the low manifold of real-world
instances (Liu & Wang (2017)).

A.2 IMPLICIT GENERATIVE MODELS

Implicit generative models focus on a generation mapping from random noises to generated sam-
ples. Such mapping function is often called as generator and possesses better flexibility compared
with explicit models. Two typical implicit models are Variational Auto-Encoder (VAE) (Kingma
& Welling (2014)) and Generative Adversarial Networks (GAN) (Goodfellow et al. (2014)). VAE
introduces a latent variable and attempts to maximize the variational lower bound for likelihood of
joint distribution of latent variable and observable variable, while GAN targets an adversarial game
between the generator and a discriminator (or critic in WGAN) that aims at discriminating the gen-
erated and true samples. In this paper, we focus on GAN and its variants (e.g., WGAN (Arjovsky
et al. (2017)), WGAN-GP (Gulrajani et al. (2017)), DCGAN (Radford et al. (2016)), etc.) as the
implicit generative model and we leave the discussions on VAE as future work.

Two important issues concerning GAN and its variants are instability of training and local optima.
The typical local optima for GAN can be divided into two categories: mode-collapse (the model
fails to capture all the modes in data) and mode-redundance (the model generates modes that do
not exist in data). Recently there are many attempts to solve these issues from various perspectives.
One perspective is from regularization. Two typical regularization methods are likelihood-based and
entropy-based regularization with the prominent examples Warde-Farley & Bengio (2017) and Li &
Turner (2018) that respectively leverage denoising feature matching and implicit gradient approxi-
mation to enforce the regularization constraints. The likelihood and entropy regularizations could
respectively help the generator to focus on data distribution and encourage more diverse samples,
and a recent work (Tao et al. (2019)) uses Langevin dynamics to indicate that i) the entropy and
likelihood regularizations are equivalent and share an opposite relationship in mathematics, and ii)
both regularizations would make the model converge to a surrogate point with a bias from original
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data distribution. Then Tao et al. (2019) proposes a variational annealing strategy to empirically
unite two regularizations and tackle the biased distributions.

To deal with the instability issue, there are also some recent literatures from optimization perspec-
tives and proposes different algorithms to address the non-convergence of minimax game optimiza-
tion (for instance, Gemp & Mahadevan (2018); Liang & Stokes (2019); Gidel et al. (2019)). More-
over, the disadvantage of implicit models is the lack of explicit densities over instances, which
disables the black-box generator to characterize the distributions behind data.

A.3 ATTEMPTS TO COMBINE BOTH OF THE WORLDS

Recently, there are several studies that attempt to combine explicit and implicit generative models
from different ways. For instance, Zhao et al. (2017) proposes energy-based GAN that leverages
energy model as discriminator to distinguish the generated and true samples. The similar idea is
also used by Kim & Bengio (2017) and Dai et al. (2017) which let the discriminator estimate a
scaler energy value for each sample. Such discriminator is optimized to give high energy to gener-
ated samples and low energy to true samples while the generator aims at generating samples with
low energy. The fundamental difference is that Zhao et al. (2017) and Dai et al. (2017) both aim
at minimizing the discrepancy between distributions of generated and true samples while the moti-
vation of Kim & Bengio (2017) is to minimize the KL divergence between estimated densities and
true samples. Kim & Bengio (2017) adopts contrastive divergence (CD) to link MLE for energy
model over true data with the adversarial training of energy-based GAN. However, both CD-based
method and energy-based GAN have limited power for both generator and discriminator. Firstly, if
the generated samples resemble true samples, then the gradients for discriminator given by true and
generated samples are just the opposite and will counteract each other, and the training will stop
before the discriminitor captures accurate data distribution. Second, since the objective boils down
to minimizing the KL divergence (for Kim & Bengio (2017)) or Wasserstein distance (for Dai et al.
(2017)) between model and true distributions, the issues concerning GAN (or WGAN) like training
instability and mode-collapse would also bother these methods.

Another way for combination is by cooperative training. Xie et al. (2016a) (and its improved version
Xie et al. (2018)) leverages the samples of generator as the MCMC initialization for energy-based
model. The synthesized samples produced from finite-step MCMC are closer to the energy model
and the generator is optimized to make the finite-step MCMC revise its initial samples. Also, a recent
work Du et al. (2018) proposes to regard the explicit model as a teacher net who guides the training of
implicit generator as a student net to produce samples that could overcome the mode-collapse issue.
The main drawback of cooperative training is that they indirectly optimize the discrepancy between
the generator and data distribution via the energy model as a ‘mediator’, which leads to a fact that
once the energy model gets stuck in a local optimum (e.g., mode-collapse or mode-redundance) the
training for the generator would be affected. In other words, the training for two models would
constrain rather than exactly compensate each other. In Table 1, we do a high-level comparison
among the above-mentioned generative models w.r.t the objectives. Different from other methods,
our model considers three discrepancies simultaneously as a triangle to jointly train the generator
and the estimator, enabling them to compensate and reinforce each other.

B BACKGROUND FOR STEIN DISCREPANCY

Assume q(x) to be a continuously differentiable density supported on X ⊂ Rd and f(x) a smooth
vector function. Define Aq[f(x)] = ∇x log q(x)f(x)> +∇xf(x) as a Stein operator. If f is a Stein
class (satisfying some mild boundary conditions) then we have the following Stein identity property:

Ex∼q[Aq[f(x)]] = Ex∼q[∇x log q(x)f(x)> +∇xf(x)] = 0.

Such property induces the Stein discrepancy between distributions P : p(x) and Q : q(x), x ∈ X :

S(Q,P) = sup
f∈F
{Ex∼q[Ap[f(x)]] = sup

f∈F
{Ex∼qtr(∇x log p(x)f(x)> +∇xf(x))}, (12)

where f is what we call Stein critic that exploits over function space F and if F is large enough then
S(Q,P) = 0 if and only if Q = P. Note that in (1), we do not need the normalized constant for p(x)
which enables Stein discrepancy to deal with unnormalized density.

IfF is a unit ball in a Reproducing Kernel Hilbert Space (RKHS) with a positive definite kernel func-
tion k(·, ·), then the supremum in (1) would have a close form (see Liu et al. (2016); Chwialkowski
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et al. (2016); Oates et al. (2017) for more details):
SK(Q,P) = Ex,x′∼q[up(x,x

′)], (13)
where up(x,x′) = log p(x)>k(x,x′) log p(x′) + log p(x)>∇xk(x,x′) +∇xk(x,x′)> log p(x′) +
tr(∇x,x′k(x,x′)). The (13) gives the Kernel Stein Discrepancy (KSD).

C PROOFS OF RESULTS IN SECTION 3.2

C.1 PROOF OF THEOREM 1

Proof. Fixing the Wasserstein critic D, we are going to solve for
min
G
{Ey∼PG [D(y)] + λ2S(PG,PE)} . (14)

By definition, if there exists a PE-measure zero set with positive supp(P)-measure, then S(P,PE) =
∞. Hence, to solve (14), it suffices to consider distributions whose support belongs to supp(PE).
Since C∞ is dense in L2, we can restrict to those P’s that are absolutely continuous with respect to
PE :

inf
P

{
EP[D] + λ2 · Ex∼P[∇ log(P(x)/PE(x))>k(x,x′)∇ log(P(x′)/PE(x′))]

}
.

Set h(x) := P(x)/PE(x)− 1, the problem above becomes
EPE [D] + min

h: EPE [h]=0

{
EPE [Dh] + λ2 · Ex∼P[∇ log(1 + h(x))>k(x,x′)∇ log(1 + h(x′))]

}
.

For the minimization problem above, invoking Lagrangian duality gives
sup
t∈R

min
h

{
EPE [(D − t)h] + λ2 · Ex∼P[∇ log(1 + h(x))>k(x,x′)∇ log(1 + h(x′))]

}
.

Applying the approximation log(1 + a) = a+O(a2) to the minimization problem above yields
inf
h

{
EPE [(D − t)h] + λ2 · Ex,x′∼PE [(1 + h(x)))∇h(x)>k(x,x′)∇h(x′)(1 + h(x′)]

}
.

Consider a further approximation
inf
h

{
EPE [Dh] + λ2 · Ex,x′∼PE [∇h(x)>k(x,x′)∇h(x′)]

}
. (15)

By definition of ‖D − t‖H−1(PE ;k), the inner infimum equals − 1
4λ2
‖D − t‖H−1(PE ;k), and hence

(15) equals

− 1

4λ2
inf
t∈R
‖D − t‖H−1(PE ;k) .

Formally, the gap between (14) and (15) is O(1/λ2
2), which completes the proof. We note that a

sufficient condition to make the above formal derivation hold is that X is compact and the kernel is
bounded, although this can be greatly weakened.

C.2 PROOF FOR THEOREM 2

Proof. Essentially the result is a consequence of distributionally robust optimization with Wasser-
stein metric (Gao & Kleywegt, 2016; Gao et al., 2017). Here we provide a simplified version for
completeness. Consider

min
G
{λ2Ey∼PG [APE f(y)] +W(Preal,PG)}.

By assumption, using the definition of Wasserstein metric, we write the problem above as
min
γ

E(x,y)∼γ [λ2APE f(y)] + ||x− y||] ,

where the minimization is over all joint distributions of (x,y) with x-marginal being Preal. Using
the law of total expectation, the problem above is equivalent to

min
{γx}x

Ex∼Preal
[Ey∼γx [λ2APE f(y) + ||x− y|| | x]]

= Ex∼Preal

[
min
γx

Ey∼γx [λ2APE f(y) + ||x− y|| | x]

]
where the minimization is over γx, all conditional distributions of y given x. If Lip(λ2APE f) <
1, then the minimal value equals −∞, otherwise the minimal value equals λ2Ey∼Preal

[APE f(y)].
Hence the proof is completed.
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D PROOFS AND MORE DISCUSSIONS IN SECTION 4

D.1 DETAILS FOR ONE-DIMENSIONAL CASE

For the analysis of 1-dim regularized WGAN in section 3.1.1, we assume a Gaussian likelihood
function for generated sample x′, µ(x′) = exp(− 1

2 (x′−b)2) which is up to a constant. Its parameter
can be estimated by b = E[x]. Then since x′ = θz, we have E(logµ(θz)) = − 1

2E[z2]θ2 +

E[z]E[x]θ − 1
2E[x]2. Like the case in WGAN, we consider E[x] = E[z] = 1. Assume Var[z] = 1

and we have E[z2] = 1 + E[z]. Hence, for the analysis on likelihood- (and entropy-) regularized
WGAN, we can study the following system:

min
θ

max
ψ

ψ − ψ · θ − λ(θ2 − θ).

When λ = 1, the above objective degrades to (6); when λ < 0 (likelihood-regularization), the
the gradient of regularization term pushes θ to shrink, which helps for convergence; when λ > 0
(entropy-regularization), the added term forms an amplifiying strength on θ and leads to divergence.

Interestingly, the added terms λ1

2 (1 + φ)2 + λ2

2 (θ + φ)2 in (8) and the original terms ψ − ψ · θ
in WGAN play both necessary roles to guarantee the convergence to the unique optimum points
[ψ∗, θ∗, φ∗] = [0, 1,−1]. If we remove the critic and optimize θ and φ with the remaining loss
terms, we would find that the training would converge but not necessarily to [ψ∗, θ∗] = [0, 1] (since
the optimum points are not unique in this case). On the other hand, if we remove the estimator, the
system degrades to (6) and would not converge to the unique optimum point [ψ∗, θ∗] = [0, 1]. If
we consider both of the world and optimize three terms together, the training would converge to a
unique global optimum [ψ∗, θ∗, φ∗] = [0, 1,−1].

D.2 PROOF FOR PROPOSITION 1

Proof. Instead of directly studying the optimization for (8), we first prove the following problem
will converge to the unique optimum,

min
θ

max
ψ

min
φ
θψ + θφ+

1

2
θ2 + φ2. (16)

Applying alternate SGD we have the following iterations:

ψt+1 = ψt + η ∗ θt,
φt+1 = φt − η ∗ (θt + 2φt) = (1− 2η)φt − ηθt,

θt+1 = θt − η(ψt+1 + φt+1 + θt) = −η(1− 2η)φt + (1− η)θt − ηψt.
Then we obtain the relationship between adjacent iterations:[

ψt+1

φt+1

θt+1

]
=

[
1 0 η
0 1− 2η −η
−η −η(1− 2η) 1− η

]
·

[
ψt
φt
θt

]
= M ·

[
ψt
φt
θt

]
We further calculate the eigenvalues for matrix M and have the following equations (assume the
eigenvalue as λ):

(λ− 1)3 + 3η(λ− 1)2 + 2η2(1 + η)(λ− 1) + 2η3 = 0.

One can verify that the solutions to the above equation satisfy |λ| <
√

(1− η + η2)(1 + η − η2).

Then we have the following relationship∥∥∥∥∥
[
ψt+1

φt+1

θt+1

]∥∥∥∥∥
2

2

=

∥∥∥∥∥[ψt φt θt] ·M>M ·

[
ψt
φt
θt

]∥∥∥∥∥
2

2

≤ λ2
m ·

∥∥∥∥∥
[
ψt
φt
θt

]∥∥∥∥∥
2

2

where λm denotes the eigenvalue with the maximum absolute value of matrix M . Hence, we have

ψ2
t+1 + φ2

t+1 + θ2
t+1 ≤ (1− η + η2)(1 + η − η2)[ψ2

t + φ2
t + θ2

t ].

We proceed to replace ψ, φ and θ in (16) by ψ′, φ′ and θ′ respectively and conduct a change of
variable: let θ′ = 1− θ and φ′ = −1− φ. Then we get the conclusion in the proposition.
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D.3 GENERALIZATION TO BILINEAR SYSTEMS

Our analysis in the one-dimension case inspires us that we can add affiliated variable to modify the
objective and stabilize the training for general bilinear system. The bilinear system is of wide interest
for researchers focusing on stability of GAN training (Goodfellow (2017); Liang & Stokes (2019);
Gidel et al. (2019); Gemp & Mahadevan (2018)). The general bilinear function can be written as

F (ψ,θ) = θ>Aψ − b>θ − c>ψ, (17)

where ψ,θ are both r-dimensional vectors and the objective is min
θ

max
ψ

F (ψ,θ) which can be

seen as a basic form of various GAN objectives. Unfortunately, if we directly use simultaneous
(resp. alternate) SGD to optimize such objectives, one can obtain divergence (resp. fluctuation).
To solve the issue, some recent papers propose several optimization algorithms, like extrapolation
from the past (Gidel et al. (2019)), crossing the curl (Gemp & Mahadevan (2018)) and consensus
optimization (Liang & Stokes (2019)). Also, Liang & Stokes (2019) shows that it is the interaction
term which generates non-zero values for∇θψF and∇ψθF that leads to such instability of training.
Different from previous works that focused on algorithmic perspective, we propose to add new
affiliated variables which modify the objective function and allow the SGD algorithm to achieve
convergence without changing the optimum points.

Based on the minimax objective of (17) we add affiliated r-dimensional variable φ (corresponding
to the estimator in our model) the original system and tackle the following problem:

min
θ

max
ψ

min
φ
F (ψ,θ) + αH(φ,θ), (18)

where H(φ,θ) = 1
2 (θ + φ)>B(θ + φ), B = (AA>)

1
2 and α is a non-negative constant.

Theoretically, the new problem keeps the optimum points of (17) unchanged. Let L(ψ,φ,θ) =
F (ψ,θ) + αG(φ,θ)

Proposition 2. Assume the optimum point of min
θ

max
ψ

F (ψ,θ) are [ψ∗,θ∗], then the optimum

points of (18) would be [ψ∗,θ∗,φ∗] where φ∗ = −θ∗.

Proof. The condition tells us that ∇θF (ψ∗,θ) = 0 and ∇ψF (ψ,θ∗) = 0. Then we derive the
gradients for L(ψ, φ, θ),

∇ψL(ψ∗,φ,θ) = ∇θF (ψ∗,θ) = 0, (19)

∇θL(ψ,φ,θ∗) = ∇θF (ψ,θ∗) +∇θH(φ,θ∗) =
1

2
(B + B>)(θ∗ + φ), (20)

∇φL(ψ,φ,θ) = ∇φH(φ,θ) =
1

2
(B + B>)(φ+ θ), (21)

Combining (20) and (21) we getφ∗ = −θ∗. Hence, the optimum point of (18) is [ψ∗,θ∗,φ∗] where
φ∗ = −θ∗.

The advantage of the new problem is that it can be solved by SGD algorithm and guarantees conver-
gence theoretically. We formulate the results in the following theorem.

Theorem 4. For problem min
θ

max
ψ

min
φ
L(ψ,φ,θ) using alternate SGD algorithm, i.e.,

ψt+1 = ψt + η∇ψL(θt,ψt,φt),

φt+1 = φt − η∇φL(θt,ψt+1,φt),

θt+1 = θt − η∇θL(θt,ψt+1,φt+1),

(22)

we can achieve convergence to [ψ∗,θ∗,φ∗] where φ∗ = −θ∗ with at least linear rate of (1− η1 +
η2

2)(1 + η2 − η2
1) where η1 = ησmin, η2 = ησmax and σmin (resp. σmax) denotes the maximum

(resp. minimum) singular value of matrix A.

To prove Theorem 3, we can prove a more general argument.
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Lemma 1. If we consider any first-order optimization method on (18), i.e.,

ψt+1 ∈ ψ0 + span(L(ψ0,φ,θ), · · · , F (ψt,φ,θ)),∀t ∈ N,
φt+1 ∈ ψ0 + span(L(ψ,φ0,θ), · · · , L(ψ,φt,θ)),∀t ∈ N,
θt+1 ∈ ψ0 + span(L(ψ,φ,θ0), · · · , L(ψ,φ,θt)),∀t ∈ N,

Then we have

ψ̃t = V>(ψt −ψ∗), φ̃t = U>(φt − φ∗), θ̃t = U>(θt − θ∗),
where U and V are the singular vectors decomposed by matrix A using SVD decomposition, i.e.,
A = UDV> and the triple ([ψ̃t]i, [φ̃t]i, [θ̃t]i)1≤i≤r follows the update rule with step size σiη as
the same optimization method on a unidimensional problem

min
θ

max
ψ

min
φ
θψ + θφ+

1

2
θ2 +

1

2
φ2, (23)

with step size η, where σi denotes the i-th singular value on the diagonal of D.

Proof. The proof is extended from the proof of Lemma 3 in Gidel et al. (2019). The general class
of first-order optimization methods derive the following updations:

ψt+1 = ψ0 +

t+1∑
s=0

ρst(A
>θs − c) = ψ0 +

t+1∑
s=0

ρstA
>(θs − θ∗),

φt+1 = φ0 +
1

2

t+1∑
s=0

δst(B + B>)(θs + φs),

θt+1 = θ0 +

t+1∑
s=0

µst[A(ψs −ψ∗) +
1

2
(B + B>)(θs + φs)],

where ρst, δst, µst ∈ R depend on specific optimization method (for example, in SGD, ρtt = δtt =
µtt remain as a non-zero constant for ∀t and other coefficients are zero).

Using SVD A = UDV> and the fact θ∗ = −φ∗, B = (UDD>U>) = D, we have

V>(ψt+1 −ψ∗) = V>(ψ0 −ψ∗) +

t+1∑
s=0

ρstD
>U>(θs − θ∗)

U>(φt+1 − φ∗) = U>(φ0 − φ∗) +

t+1∑
s=0

δstU
>D(θs − θ∗) + U>D(φs − φ∗),

U>(θt+1−θ∗) = U>(θ0−θ∗) +

t+1∑
s=0

ρst[DV>(ψs−ψ∗) +U>D(θs−θ∗) +U>D(φs−φ∗)],

and equivalently,

ψ̃t+1 = ψ̃0 +

t+1∑
s=0

ρstD
>θ̃t, φ̃t = φ̃0 +

t+1∑
s=0

δstD(θ̃t + φ̃t),

θ̃t+1 = θ̃0 +

t+1∑
s=0

ρstD(ψ̃t + θ̃t + φ̃t).

Note that D is a rectangular matrix with non-zero elements on a diagonal block of size r. Hence,
the above r-dimensional problem can be reduced to r unidimensional problems:

[ψ̃t+1]i = [ψ̃0]i +

t+1∑
s=0

ρstσi[θ̃t]i, [φ̃t]i = [φ̃0]i +

t+1∑
s=0

δstσi([θ̃t]i + [φ̃t]i),

[θ̃t+1]i = [θ̃0]i +

t+1∑
s=0

ρstσi([ψ̃t]i + [θ̃t]i + [φ̃t]i).

The above iterations can be conducted independently in each dimension where the optimization in
i-th dimension follows the same updating rule with step size σiη as problem in (23).

19



Under review as a conference paper at ICLR 2020

Furthermore, since problem (23) can achieve convergence with a linear rate of (1−η+η2)(1+η−η2)
using alternate SGD (the proof is similar to that of ((16))), the multi-dimensional problem in (18)
can achieve convergence by SGD with at least a rate of (1−η1+η2

2)(1+η2−η2
1) where η1 = ησmax,

η2 = ησmin and σmax (resp. σmin) denotes the maximum (resp. minimum) singular value of matrix
A. We conclude the proof for Theorem 4.

Theorem 4 suggests that the added term H(φ,θ) with affiliated variables φ could help the SGD
algorithm achieve convergence to the the same optimum points as directly optimizing F (ψ,θ).
Our method is related to consensus optimization algorithm (Liang & Stokes (2019)) which adds
a regularization term ‖∇θF (ψ,θ)‖ + ‖∇ψF (ψ,θ)‖ to (17) resulting extra quadratic terms for θ
and ψ. The disadvantage of such method is the requirement of Hessian matrix of F (ψ,θ) which
is computational expensive for high-dimensional data. By contrast, our solution only requires the
first-order derivatives.

D.4 STRONGLY CONVEXITY

In section 3.1.2, we assume H(θ,φ) as a µ-strongly convex function which indicates that it satisfies
the conditions:

(∇θH(θ, ·)−∇θH(θ′, ·))>(θ − θ′) ≥ µ‖θ − θ′‖22,∀θ,θ′ ∈ Ωθ,

(∇φH(·,φ)−∇φH(·,φ′))>(φ− φ′) ≥ µ‖φ− φ′‖22,∀φ,φ′ ∈ Ωφ.

Bedises, F (θ,ψ) is µ-strongly convex for θ and µ-strongly concave for ψ so it satisfies:

(∇θF (θ, ·)−∇θF (θ′, ·))>(θ − θ′) ≥ µ‖θ − θ′‖22,∀θ,θ′ ∈ Ωθ,

(∇ψF (·,ψ′)−∇ψF (·,ψ))>(ψ −ψ′) ≥ µ‖ψ −ψ′‖22,∀ψ,ψ′ ∈ Ωψ.

In section 3.1.2, we also define h(ωh) = ∇θH +∇φH and f(ωf ) = ∇θF −∇ψF , so the above
condition can be written in a more compact form,

(h(ωh)− h(ω′h))>(ωh − ω′h) ≥ µ‖ωh − ω′h‖22,∀ωh,ω′h ∈ Ωh,

(f(ωf )− f(ω′f ))>(ωf − ω′f ) ≥ µ‖ωf − ω′f‖22,∀ωf ,ω′f ∈ Ωf .

D.5 PROOF FOR THEOREM 2

The proof relies on two lemmas,

Lemma 2. For any ω ∈ Ω and ω+ = PΩ(ω + u), then we have

‖ω+ − ω‖22 ≤ u>(ω+ − ω).

Proof. Since ω+ is a projection of ω + u on a convex set Ω, we have

(ω+ − (ω + u))>(ω+ − ω) ≤ 0. (24)

Rearranging the above inequality one can easily get the lemma.

Lemma 3. If function Φ(ω) is µ-strongly convex, we have

µ‖ω − ω∗‖22 ≤ ∇Φ(ω)>(ω − ω∗).

Similarly, if Φ(ω) is µ-strongly concave, we have µ(ω − ω∗) ≤ ∇− Φ(ω)>(ω − ω∗).

Proof. By optimality of ω∗, we have

∇Φ(ω∗)>(ω − ω∗) ≥ 0.

Since Φ is µ-convex, we can further derive

µ‖ω − ω∗‖22 ≤ ∇Φ(ω∗)>(ω − ω∗) + µ‖ω − ω∗‖22 ≤ ∇Φ(ω)>(ω − ω∗).
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Proof. (Proof for Theorem 3) We apply Lemma 2 to (11) with (ω,u,ω+) =

(ω
t+1/2
f ,−ηf(ω

t+1/2
f ),ωt+1

f ) and we have

‖ωt+1
f − ωt+1/2

f ‖ ≤ −ηf(ω
t+1/2
f )>(ωt+1

f − ωt+1/2
f ) (25)

Then we have

‖ωt+1
f − ω∗f‖22 = ‖ωt+1/2

f − ω∗f + ωt+1
f − ωt+1/2

f ‖22
≤ 2‖ωt+1/2

f − ω∗f‖22 + 2‖ωt+1
f − ωt+1/2

f ‖22 (by ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22)

≤ 2‖ωt+1/2
f − ω∗f‖22 − 2ηf(ω

t+1/2
f )>(ωt+1

f − ωt+1/2
f ).

(26)

According to Lemma 3, we have

2ηf(ω
t+1/2
f )>(ω

t+1/2
f − ω∗f ) ≥ 2ηµ‖ωt+1/2

f − ω∗f‖22. (27)

Plug (27) into (26) and we get

‖ωt+1
f − ω∗f‖22 ≤ (2− 2ηµ)‖ωt+1/2

f − ω∗f‖22. (28)

The above inequality is equivalent to

‖θt+1 − θ∗‖22 + ‖ψt+1 −ψ∗‖22 ≤ (2− 2ηµ)(‖θt+1/2 − θ∗‖22 + ‖ψt −ψ∗‖22). (29)

Similarly, one can obtain

‖ωt+1
h − ω∗h‖22 ≤ (2− 2ηµ)‖ωt+1/2

h − ω∗h‖22, (30)

i.e.,
‖θt+1/2 − θ∗‖22 + ‖φt+1 − φ∗‖22 ≤ (2− 2ηµ)(‖θt − θ∗‖22 + ‖φt − φ∗‖22). (31)

Combining (29) and (31) we have

‖ωt+1 − ω∗‖22 = ‖θt+1 − θ∗‖22 + ‖ψt+1 −ψ∗‖22 + ‖φt+1 − φ∗‖22
≤ (1− 2ηµ)‖θt − θ∗‖22 + (2− 2ηµ)‖ψt+1 −ψ∗‖22 + (2− 2ηµ)‖φt+1 − φ∗‖22
≤ (2− 2ηµ)‖ωt − ω∗‖22.

(32)

Hence, if 1
2µ < η < 1

µ we have 0 < 2− 2ηµ < 1 and ‖ωt − ω∗‖22 ≤ (2− 2ηµ)t‖ω0 − ω∗‖22

E DETAILS FOR EXPERIMENT SETUP

E.1 SYNTHETIC DATASETS

We provide the details for two synthetic datasets. The Two-Circle dataset consists of 24 Gaus-
sian mixtures where 8 of them are located in an inner circle with radius r1 = 4 and 16 of
them lie in an outer circle with radius r2 = 8. For each Gaussian component, the covari-

ance matrix is
(

0.2 0
0 0.2

)
= σ1I and the mean value is [r1 cos t, r1 sin t], where t = 2π·k

8 ,

k = 1, · · · , 8, for the inner circle, and [r2 cos t, r2 sin t], where t = 2π·k
16 , k = 1, · · · , 16 for the

outer circle. We sample N1 = 2000 points as true observed samples for model training. In sec-
tion 5.5, we consider noised data scenario. In this case, we randomly add n noise points sampled
from Gaussian distribution N (0, σ0I) where σ0 = 2 to the original true samples. Here we set
n = [40, 100, 160, 300, 400, 600, 800, 1000].

The Two-Spiral dataset contains 100 Gaussian mixtures whose centers locate on two spiral-shaped

curves. For each Gaussian component, the covariance matrix is
(

0.5 0
0 0.5

)
= σ2I and the mean

value is [−c1 cos c1, c1 sin c1], where c1 = 2π
3 + linspace(0, 0.5, 50) · 2π, for one spiral, and

[c2 cos c2,−c2 sin c2], where c2 = 2π
3 + linspace(0, 0.5, 50) · 2π for another spiral. We sample

N2 = 5000 points as true observed samples. In section 5.5, we consider insufficient data scenario.
In this case, the sample size N2 is reduced to [100, 200, 300, 500, 700, 1000, 2000].
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D1 D2 D3 Objective

W S S minθ minφ maxψ maxπ Ex∼Pdata [dψ(x)]− Ez∼p0 [dψ(Gθ(z))]
+λ1Ex∼Pdata [Apφ [fπ(x)]] + λ2Ez∼p0 [Apφ [fπ(Gθ(z))]]

W Sk Sk
minθ minφ maxψ Ex∼Pdata [dψ(x)]− Ez∼p0 [dψ(Gθ(z))]

+λ1Ex,x′∼Pdata [upφ(x, x′)] + λ2Ez,z′∼p0 [upφ(Gθ(z), Gθ(z
′))]

JS S S minθ minφ maxψ maxπ Ex∼Pr [log(dψ(x))] + Ez∼p0 [log(1− dψ(Gθ(z)))]
+λ1Ex∼Pdata [Apφ [fπ(x)]] + λ2Ez∼p0 [Apφ [fπ(Gθ(z))]]

JS Sk Sk
minθ minφ maxψ Ex∼Pr [log(dψ(x))] + Ez∼p0 [log(1− dψ(Gθ(z)))]

+λ1Ex,x′∼Pdata [upφ(x, x′)] + λ2Ez,z′∼p0 [upφ(Gθ(z), Gθ(z
′))]

Table 4: Objectives for different specifications of D1(Preal,PG), D2(Preal,PE) and D3(PG,PE).
We specifyD1 as Wasserstein distance or JS divergence in our paper and forD2 andD3 we consider
the general Stein discrepancy or kernel Stein discrepancy. Here we useW , JS to denote Wasser-
stein distance and JS divergence respectively, and S, Sk to represent general Stein discrepancy and
kernel Stein discrepancy respectively. We omit the gradient penalty term for Wasserstein distance
here but use it in experiments.

E.2 MODEL SPECIFICATIONS AND TRAINING ALGORITHM

In different tasks, we consider different model specifications in order to meet the demand of capacify
as well as test the effectiveness under various settings. Our proposed framework (3) adopts Wasser-
stein distance for the first term and two Stein discrepancies for the second and the third terms. We
can write (3) as a more general form

min
θ,φ
D1(Preal,PG) + λ1D2(Preal,PE) + λ2D3(PG,PE), (33)

where D1, D2, D3 denote three general discrepancy measures for distributions. As stated in our
remark, D1 can be specified as arbitrary discrepancy measures for implicit generative models. Here
we also use JS divergence, the objective for valina GAN. To well distinguish them, we call the model
using Wasserstein distance (resp. JS divergence) as Joint-W (resp. Joint-JS) in our experiments. On
the other hand, the two Stein discrepancies in (3) can be specified by KSD (as defined by Sk in
(13)) or general Stein discrepancy with an extra critic (as defined by S in (1)). Hence, the two
specifications for D1 and the two for D2 (D3) compose four different combinations in total, and we
organize the objectives in each case in Table 4.

In our experiments, we use KSD with RBF kernels for D2 and D3 in Joint-W and Joint-JS on two
synthetic datasets. For MNIST with conditional training (given the digit class as model input), we
also use KSD with RBF kernels. For MNIST and CIFAR with unconditional training (the class is
not given as known information), we find that KSD cannot provide desirable results so we adopt
general Stein discrepancy for higher model capacity.

The objectives in Table 4 appear to be comutationally expensive. In the worst case (using general
Stein discrepancy), there are two minimax operations where one is from GAN or WGAN and one
is from Stein discrepancy estimation. To guarantee training efficiency, we alternatively update the
generator, estimator, Wasserstein critic and Stein critic over the parameters θ, φ, ψ and π respec-
tively. Specifically, in one iteration, we optimize the generator over θ and the estimator over φ with
one step respectively, and then optimize the Wasserstein critic over ψ with nd steps and the Stein
critic over π with nc steps. Such training approach guarantees the same time complexity order of
proposed method as that of GAN or WGAN, and the training time for our model can be bounded
within constant times the time for training GAN model. In our experiment, we set nd = nc = 5 and
empirically find that our model Stein Bridging would be two times slower than WGAN on average.
We present the training algorithm for Stein Bridging in Algorithm 1.

E.3 IMPLEMENTATION DETAILS

We give the information of network architectures and hyper-parameter settings for our model as well
as each competitor in our experiments.
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Algorithm 1: Training Algorithm for Stein Bridging
1 REQUIRE: observed training samples {x} ∼ Preal.
2 REQUIRE: θ0, φ0, ψ0, π0, initial parameters for generator, estimator, Wasserstein critic and Stein

critic models respectively. αE = 0.0002, βE1 = 0.9, βE2 = 0.999, Adam hyper-parameters for
explicit models. αI = 0.0002, βI1 = 0.5, βI2 = 0.999, Adam hyper-parameters for implicit
models. λ1 = 1, λ2, weights for D2 and D3 (we suggest increasing λ2 from 0 to 1 through
training). nd = 5, nc = 5 number of iterations for Wasserstein critic and Stein critic, respectively,
before one iteration for generator and estimator. B = 100, batch size.

3 while not converged do
4 for n = 1, · · · , nd do
5 Sample B true samples {xi}Bi=1 from {x};
6 Sample B random noise {zi}Bi=1 ∼ P0 and obtain generated samples x̃i = Gθ(zi) ;
7 Ldis = 1

B

∑B
i=1 dψ(xi)− dψ(x̃i)− λ(‖∇x̂i

dψ(x̂i)‖ − 1)2 // the last term is for gradient
penalty in WGAN-GP where x̂i = εixi + (1− εi)x̃i, εi ∼ U(0, 1);

8 ψk+1 ← Adam(−Ldis, ψk, αI , βI1 , βI2)// update the Wasserstein critic;
9 for n = 1, · · · , nc do

10 Sample B true samples {xi}Bi=1 from {x};
11 Sample B random noise {zi}Bi=1 ∼ P0 and obtain generated samples x̃i = Gθ(zi) ;
12 Lcritic = 1

B

∑B
i=1 λ1Apφ [fπ(x)] + λ2Apφ [fπ(x̃i)];

13 πk+1 ← Adam(−Lcritic, πk, αE , βE1 , βE2 )// update the Stein critic;

14 Sample B random noise {zi}Bi=1 ∼ P0 and obtain generated samples x̃i = Gθ(zi) ;
15 Lest = 1

B

∑B
i=1 λ1Apφ [fπ(x)] + λ2Apφ [fπ(x̃i)];

16 φk+1 ← Adam(Lest, φk, αE , βE1 , βE2 )// update the density estimator;
17 Lgen = 1

B

∑B
i=1−dψ(x̃i) + λ2Apφ [fπ(x̃i)];

18 θk+1 ← Adam(Lgen, θk, αI , βI1 , βI2)// update the sample generator;
19 OUTPUT: trained sample generator Gθ(z) and density estimator pφ(x).

The energy function is often parametrized as a sum of multiple experts (Hinton (1999)) and each
expert can have various function forms depending on the distributions. If using sigmoid distribution,
the energy function becomes (see section 2.1 in Kim & Bengio (2017) for details)

Eφ(x) =
∑
i

log(1 + e−(Win(x)+bi)), (34)

where n(x) maps input x to a feature vector and could be specified as a deep neural network, which
corresponds to deep energy model (Ngiam et al. (2011))

For synthetic datasets, we set the noise dimension as 4. All the generators are specified as a three-
layer fully-connected (FC) neural network with neuron size 4−128−128−2, and all the Wasserstein
critics (or the discriminators in JS-divergence-based GAN) are also a three-layer FC network with
neuron size 2 − 128 − 128 − 1. For the estimators, we set the expert number as 4 and the feature
function n(x) is a FC network with neuron size 2 − 128 − 128 − 4. Then in the last layer we sum
the outputs from each expert as the energy value E(x). The activation units are searched within
[LeakyReLU, tanh, sigmoid, softplus]. The learning rate [1e − 6, 1e − 5, 1e − 4, 1e − 3, 1e −
2] and the batch size [50, 100, 150, 200]. The gradient penalty weight for WGAN is searched in
[0, 0.1, 1, 10, 100].

For MNIST dataset, we set the noise dimension as 100. All the critics/discriminators are im-
plemented as a four-layer network where the first two layers adopt convolution operations with
filter size 5 and stride [2, 2] and the last two layers are FC layers. The size for each layer is
1 − 64 − 128 − 256 − 1. All the generators are implemented as a four-layer networks where
the first two layers are FC and the last two adopt deconvolution operations with filter size 5 and
stride [2, 2]. The size for each layer is 100 − 256 − 128 − 64 − 1. For the estimators, we con-
sider the expert number as 128 and the feature function is the same as the Wasserstein critic ex-
cept that the size of last layer is 128. Then we sum the outputs from each expert as the energy
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Two-Cirlce Two-Spiral

Method MMD HSR KLD JSD AUC MMD HSR KLD JSD AUC

GAN 0.0033 0.772 - - - 0.0082 0.583 - - -
GAN+LR 0.0106 0.391 - - - 0.0068 0.821 - - -
GAN+ER 0.0103 0.428 - - - 0.0071 0.780 - - -
GAN+VA 0.0118 0.295 - - - 0.0085 0.761 - - -

WGAN-GP 0.0010 0.841 - - - 0.0090 0.697 - - -
WGAN+LR 0.0013 0.840 - - - 0.0095 0.607 - - -
WGAN+ER 0.0008 0.830 - - - 0.0182 0.730 - - -
WGAN+VA 0.0016 0.835 - - - 0.0159 0.618 - - -

DEM - - 2.036 0.431 0.683 - - 1.206 0.315 0.640
EGAN - - 3.350 0.474 0.616 - - 1.916 0.445 0.499
DGM 0.0040 0.774 2.272 0.445 0.600 0.0019 0.833 1.725 0.414 0.589

Joint-JS 0.0037 0.883 1.104 0.297 0.962 0.0031 0.717 0.655 0.193 0.808
Joint-W 0.0007 0.844 1.030 0.281 0.961 0.0003 0.909 0.364 0.110 0.810

Table 5: Quantitative results including MMD (lower is better), HSR (higher is better) as the metrics
for quality of generated samples and KLD (lower is better), JSD (lower is better), AUC (higher is
better) as the metrics for accuracy of estimated densities on Two-Circle and Two-Spiral datasets.

value. The activation units are searched within [ReLU,LeakyReLU, tanh]. The learning rate
[2e− 5, 2e− 4, 2e− 3, 2e− 2] and the batch size [32, 64, 100, 128]. The gradient penalty weight for
WGAN is searched in [1, 10, 100, 1000].

For CIFAR dataset, we adopt the same architecture as DCGAN for critics and generators. As for the
estimator, the architecture of feature function is the same as the critics except the last year where we
set the expert number as 128 and sum each output as the output energy value. The architectures for
Stein critic are the same as Wasserstein critic for both MNIST and CIFAR datasets.

E.4 EVALUATION METRICS

We adopt some quantitative metrics to evaluate the performance of each method on different tasks.
In section 4.1, we use two metrics to test the sample quality: Maximum Mean Discrepancy (MMD)
and High-quality Sample Rate (HSR). MMD measures the discrepancy between two distributionsX
and Y , MMD(X,Y ) = ‖ 1

n

∑n
i=1 Φ(xi)− 1

m

∑m
j=1 Φ(yi)‖ where xi and yj denote samples from

X and Y respectively and Φ maps each sample to a RKHS. Here we use RBF kernel and calculate
MMD between generated samples and true samples. HSR statistics the rate of high-quality samples
over all generated samples. For Two-Cirlce dataset, we define the generated points whose distance
from the nearest Gaussian component is less than σ1 as high-quality samples. We generate 2000
points in total and statistic HSR. For Two-Spiral dataset, we set the distance threshold as 5σ2 and
generate 5000 points to calculate HSR.

As for Inception Score and CEPC. For MNIST, we pre-train a classifier for 10 digits which can pro-
vide the test accuracy up to 99% for calculation of scores. The conditional entropy of predicted
classes (CEPC) for given samples is defined as H(y|x) ≈ 1

n

∑n
i=1

∑10
k=1 p(yk|xi) log p(yk|xi)

where x is a generated instance and y denotes the predicted class given x from a pre-trained classi-
fier. CEPC measures how well a given sample can be classfied into a right class, i.e. the quality of
such sample. For CIFAR, we use the Inception V3 Network in Tensorflow as pre-trained classifier.

In section 4.2, we use three metrics to characterize the performance for density estimation: KL diver-
gence, JS divergence and AUC. We divide the map into a 300 meshgrid, calculate the density values
of each point given by the estimators and compute the KL and JS divergences between estimated
density and ground-truth density. Besides, we select the centers of each Gaussian components as
positive examples (expected to have high densities) and randomly sample 10 points within a circle
around each center as negative examples (expected to have relatively low densities) and rank them
according to the densities given by the model. Then we obtain the area under the curve (AUC) for
false-positive rate v.s. true-positive rate.
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Class ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

WGAN-GP l1 20.3 11.4 14.3 14.8 13.5 13.3 13.8 11.0 13.0 12.3
l2 1.74 1.07 0.82 0.98 0.83 0.68 0.95 0.62 0.82 0.75

WGAN+LR l1 13.8 5.9 13.6 19.1 11.8 18.3 10.7 11.5 14.0 9.9
l2 0.80 0.34 0.84 1.81 0.65 1.37 0.62 0.70 0.90 0.57

WGAN+ER l1 16.1 8.9 11.7 14.2 12.3 10.8 13.9 11.4 12.1 10.9
l2 1.20 0.74 0.54 0.86 0.73 0.54 0.97 0.69 0.72 0.63

WGAN+VA l1 16.3 7.1 13.7 13.7 11.9 13.2 13.6 11.2 12.1 10.6
l2 1.12 0.35 0.81 0.85 0.69 0.76 1.04 0.71 0.74 0.71

DGM l1 22.2 10.9 12.7 10.2 10.8 9.0 9.5 10.9 12.7 11.7
l2 1.41 0.83 0.81 0.65 0.67 0.56 0.66 0.67 0.88 0.76

Joint-W l1 14.1 7.5 14.3 12.9 11.1 11.0 13.7 9.7 12.0 11.5
l2 0.89 0.47 0.93 0.73 0.55 0.51 1.06 0.53 0.70 0.97

Table 6: l1 and l2 distances between means of true digits and generated digits in each class on
MNIST.

Class ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

WGAN-GP l1 80.8 82.7 40.2 69.3 44.7 59.2 77.6 107.7 50.81 89.3
l2 1.75 1.84 0.92 1.57 1.04 1.40 1.78 2.32 1.78 1.92

WGAN+LR l1 78.4 79.2 73.8 86.0 75.8 77.2 106.7 103.0 56.5 92.3
l2 1.63 1.76 1.59 1.88 1.68 1.74 2.36 2.23 1.24 2.00

WGAN+ER l1 75.5 64.0 100.0 65.0 58.5 69.1 74.5 81.8 62.5 71.3
l2 1.56 1.45 2.04 1.43 1.35 1.57 1.67 1.82 1.40 1.58

WGAN+VA l1 60.9 70.0 79.4 62.7 63.0 73.9 76.2 77.2 59.8 66.4
l2 1.32 1.55 1.68 1.39 1.42 1.63 1.70 1.77 1.33 1.48

DGM l1 167.8 185.0 149.4 250.1 105.3 134.0 223.8 197.3 148.3 231.7
l2 3.67 4.14 3.15 5.41 2.39 3.04 4.68 4.51 3.24 5.25

Joint-W l1 59.3 58.1 77.3 54.8 58.1 65.1 63.9 82.8 59.1 63.2
l2 1.26 1.30 1.60 1.23 1.28 1.44 1.44 1.80 1.27 1.43

Table 7: l1 and l2 distances between means of true images and generated images in each class on
CIFAR. (Class ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’ and ‘9’ stand for ‘airplane’, ‘automobile’, ‘bird’,
‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’ and ‘truck’ respectively.)
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(a) Randomly sampled over all digits (b) Randomly sampled over digits with top 50% densi-
ties

Figure 9: Generated digits given by Joint-W on MNIST.

(a) Randomly sampled over all images (b) Randomly sampled over images with top 50% densi-
ties

Figure 10: Generated images given by Joint-W on CIFAR.

(a) Generated digits with highest densities (b) Generated digits with lowest densities

(c) Real digits with highest densities (d) Real digits with lowest densities

Figure 11: The generated digits (and real digits) with the highest densities and the lowest densities
given by Joint-W.
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(a) Generated digits with highest densities (b) Generated digits with lowest densities

(c) Real digits with highest densities (d) Real digits with lowest densities

Figure 12: The generated digits (and real digits) with the highest densities and the lowest densities
given by DGM.

(a) Generated digits with highest densities (b) Generated digits with lowest densities

(c) Real digits with highest densities (d) Real digits with lowest densities

Figure 13: The generated digits (and real digits) with the highest densities and the lowest densities
given by EGAN.
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