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ABSTRACT

The problem of distributed representation learning is one in which multiple sources of
information X1, . . . , XK are processed separately so as to extract useful information about
some statistically correlated ground truth Y . We investigate this problem from information-
theoretic grounds. For both discrete memoryless (DM) and memoryless vector Gaussian
models, we establish fundamental limits of learning in terms of optimal tradeoffs between
accuracy and complexity. We also develop a variational bound on the optimal tradeoff that
generalizes the evidence lower bound (ELBO) to the distributed setting. Furthermore, we
provide a variational inference type algorithm that allows to compute this bound and in
which the mappings are parametrized by neural networks and the bound approximated by
Markov sampling and optimized with stochastic gradient descent. Experimental results
on synthetic and real datasets are provided to support the efficiency of the approaches and
algorithms which we develop in this paper.

1 INTRODUCTION

Let a measurable variable X ∈ X and a target variable Y ∈ Y with unknown joint distribution PX,Y be
given. In the classic problem of statistical learning, one wishes to infer an accurate predictor of the target
variable Y ∈ Y based on observed realizations of X ∈ X . That is, for a given class F of admissible predictors
φ : X → Ŷ and an additive loss function ` : Y → Ŷ that measures discrepancies between true values and their
estimated fits, one aims at finding the mapping φ? ∈ F that minimizes the expected risk

CPX,Y (φ, `) = EPX,Y [`(Y, φ(X))]. (1)

Because the joint distribution PX,Y is unknown, in practice the risk equation 1 (also called population risk)
cannot be computed directly; and, in the standard approach, one usually resorts to choosing the predictor with
minimal risk on a training dataset consisting of n labeled samples {(xi, yi)}ni=1 that are drawn independently
from the unknown joint distribution PX,Y . Also, it is important to restrict the set F of admissible predictors to a
low-complexity class to prevent overfitting. This leads to the abstract inference problem shown in Figure 1.

In this paper, we study a generalization of this problem in which the prediction is to be performed in a distributed
manner. The model is shown in Figure 2. Here, the prediction of the target variable Y ∈ Y is to be performed
on the basis of samples of statistically correlated random variables (X1, . . . , XK) that are observed each at a
distinct predictor. We investigate this problem in the case in which the loss function `(·) is the logarithmic-loss
fidelity measure, given by

`log(y, ŷ) = log
( 1

ŷ(y)

)
(2)

where ŷ(·) designates a probability distribution on Y and ŷ(y) is the value of this distribution evaluated for
the outcome y ∈ Y . The choice of a ‘good” loss function is often controversial in statistical learning theory,
and although a complete and rigorous justification of the usage of logarithmic loss as a fidelity measure in
learning theory is still awaited, partial explanations appeared in Jiao et al. (2015) and, especially in Painsky and
Wornell (2018) where it is shown that, for binary classification problems, by minimizing the logarithmic-loss
one actually minimizes an upper bound to any choice of loss function that is smooth, proper (i.e., unbiased and
Fisher consistent) and convex. Also, we constrain the complexity of the predictors by using mutual information
as a regularizer term. This is inline with recent works Xu and Raginsky (2017); Russo and Zou (2015) that show
that the generalization error can be upper-bounded using the mutual information between the input dataset and
the output of the predictor – see also Bousquet and Elisseeff (2002); Shalev-Shwartz et al. (2010) where the
stability of an algorithm is controlled by constraining the mutual information between its input and output.
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PX|YY ∈ Y φ ψ Ŷ ∈ Y
X ∈ X U = φ(X)

Figure 1: An abstract inference model for learning.
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Figure 2: A model for distributed, e.g., multi-view, learning.

1.1 AN EXAMPLE: MULTI-VIEW LEARNING

In many data analytics problems, data is collected from various sources of information or feature extractors;
and is intrinsically heterogeneous. For example, an image can be identified by its color or texture features;
and a document may contain text and images. Conventional machine learning approaches concatenate all
available data into one big row vector (or matrix) on which a suitable algorithm is then applied. Treating
different observations as a single source might cause overfitting and is not physically meaningful because each
group of data may have different statistical properties. Alternatively, one may partition the data into groups
according to samples homogeneity, and each group of data be regarded as a separate view. This paradigm, termed
multi-view learning Xu et al. (2013), has received growing interest; and various algorithms exist, sometimes
under references such as co-training Blum and Mitchell (1998); Dhillon et al. (2011); Kumar and Daumé (2011);
Gönen and Alpaydın (2011), multiple kernel learning Gönen and Alpaydın (2011) and subspace learning Jia
et al. (2010). By using distinct encoder mappings to represent distinct groups of data, and jointly optimizing over
all mappings to remove redundancy, multiview learning offers a degree of flexibility that is not only desirable in
practice but is likely to result in better learning capability. Actually, as shown in Vapnik (2013), local learning
algorithms produce less errors than global ones. Viewing the problem as that of function approximation, the
intuition is that it is usually non-easy to find a unique function that holds good predictability properties in the
entire data space.

1.2 INFORMAL SUMMARY OF RESULTS

In this paper, first we characterize the optimal tradeoff between accuracy and complexity for the distributed
learning model of Figure 2 for both discrete memoryless (DM) and memoryless vector Gaussian models. While
the result for the discrete data model (Theorem 1) is not difficult to establish using connections with Courtade
and Weissman (2014, Appendix B) which we explicit here, the result for the multivariate Gaussian data model
(Theorem 2), which provides a sharp analytic characterization of optimal tradeoffs, is new and non-trivial (the
proof of the converse part is not straightforward and was missing before this work in both theoretic learning and
information theoretic communities including in the scalar case). Second, we develop a variational bound on the
optimal tradeoff that can be seen as a generalization of the ELBO and the β-VAE criteria Higgins et al. (2016) to
the distributed setting. Furthermore, for both DM and Gaussian models, we also provide a variational inference
type algorithm which is parametrized by neural networks and allows to compute the developed variational bound
when the data distribution is not known. Specifically, the main contributions of this paper are:

• In Section 3.2, we find an explicit analytic characterization of optimal tradeoffs between accuracy
and complexity for the memoryless vector Gaussian model. The result generalizes the Gaussian
Information Bottleneck method of Globerson and Tishby (2004); Chechik et al. (Feb. 2005) to the
distributed learning scenario.

• In Section 3.3, we study the problem of maximizing accuracy under a constraint on the sum complexity
for which we establish a variational bound which generalizes the ELBO and the β-VAE criteria to the
distributed setting.

• Section 3.4 is algorithmic-oriented. We develop a variational inference type algorithm which enables
to compute the bound. This algorithm is obtained by parametrizing the encoders, the decoder, and the
prior distributions via DNNs and using Monte-Carlo sampling. Also, it makes usage of Kingma et
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al.’s re-parametrization trick Kingma and Welling (2013) and can be seen as a generalization of the
variational information bottleneck algorithm in Alemi et al. (2017) to the distributed setting.

• Section 4 contains some experimental results on real datasets which show the efficiency of the
approaches and algorithms that we develop in this paper.

Most relevant to this paper is the single-encoder Information Bottleneck (IB) method of Tishby et al. (1999)
which readily and elegantly captures the above mentioned viewpoint of seeking the right balance between data
fit and generalization by using the mutual information both as a cost function and as a regularizer term. Thus,
the results of this paper can be seen as a generalization of those of Tishby et al. (1999) for the DM model
and Globerson and Tishby (2004); Chechik et al. (Feb. 2005) for the Gaussian model to the distributed learning
setting.

Remark: Due to space constraints, the proofs of the results of this paper are deferred to the appendices section,
which also contains additional experimental results.

1.3 NOTATION

Throughout, upper case letters denote random variables, e.g., X; lower case letters denote realizations of
random variables, e.g., x; and calligraphic letters denote sets, e.g., X . The cardinality of a set is denoted by
|X |. For a random variable X with probability mass function (pmf) PX , we use PX(x) = p(x), x ∈ X
for short. Boldface upper case letters denote vectors or matrices, e.g., X, where context should make the
distinction clear. For random variables (X1, X2, . . .) and a set of integers K ⊆ N, XK denotes the set of
random variables with indices in the set K, i.e., XK = {Xk : k ∈ K}. If K = ∅, XK = ∅. For k ∈ K we let
XK/k = (X1, . . . , Xk−1, Xk+1, . . . , XK), and assume that X0 = XK+1 = ∅. Also, for zero-mean random
vectors X and Y, the quantities Σx, Σx,y and Σx|y denote respectively the covariance matrix of the vector
X, the covariance matric of vector (X,Y) and the conditional covariance matrix of X, conditionally on Y.
Finally, for two probability measures PX and QX on the random variable X ∈ X , the relative entropy or
Kullback-Leibler divergence is denoted as DKL(PX‖QX).

2 FORMAL PROBLEM FORMULATION

Let K ≥ 2 and (X1, . . . , XK , Y ) be a tuple of random variables with a given joint probability mass function
(pmf) PX1,...,XK ,Y (x1, . . . , xK , y) for (x1, . . . , xK) ∈ X1 × . . . × XK and y ∈ Y , where Xk designates
the alphabet of Xk and Y that of Y . Throughout, we assume that the following Markov chain holds for all
k ∈ K := {1, . . . ,K},

Xk −
− Y −
−XK/k. (3)

The variable Y is a target variable; and we seek to characterize how accurate it can be predicted from a
measurable random vector (X1, . . . , XK) when the components of this vector are processed separately, each by
a distinct encoder. More specifically, let {(X1,i, . . . , XK,i, Yi)}ni=1 be a collection of n independent copies of
(X1, . . . , XK , Y ). Encoder k ∈ K only observes the sequence Xn

k ; and generates a description Jk = φk(Xn
k )

according to some mapping
φk : Xnk →M

(n)
k , (4)

whereM(n)
k is an arbitrary set of descriptions. The range of allowable description sets will be specified below.

A decoder ψ(·) collects all descriptions JK = (J1, . . . , JK) and returns an estimate Ŷ n of Y n as

ψ :M(n)
1 × . . .×M(n)

K → Ŷn. (5)

The accuracy of the estimation Ŷ n is measured in terms of the accuracy, defined here as the information
that the descriptions φ1(Xn

1 ), . . . , φK(Xn
K) collectively preserve about Y n, as measured by Shannon mutual

information 1

∆(n)(PXK,Y ) :=
1

n
IPXK,Y (Y n; Ŷ n), (6)

where Ŷ n = ψ(φ1(Xn
1 ), . . . , φK(Xn

K)) and the subscript PXK,Y indicates that the mutual information is
computed under the joint distribution PXK,Y .

1Alternatively, the accuracy could be defined in a more operational manner by the average logarithmic
loss distortion or error EPXK,Y [`log(Y n, Ŷ n)]. The equivalence between the two is observed by noting that

EPXK,Y [`log(Y n, Ŷ n)] = H(Y n|Ŷ n).

3



Under review as a conference paper at ICLR 2020

There are various ways to control the complexity of the encoding functions {φk}Kk=1. In this paper, we do so by
restricting their ranges. This is known as minimum description length complexity measure Hinton and van Camp
(1993). Specifically, the mapping φk(·) at Encoder k ∈ K needs to satisfy

Rk ≥
1

n
log |φk(Xn

k )| for all Xn
k ∈ Xnk . (7)

Definition 1 A tuple (∆, R1, . . . , RK) is said to be achievable if there exists an integer n, a family of encoding
mappings {φk}Kk=1 and a decoder mapping ψ such that

∆ ≤ 1

n
IPXK,Y

(
Y n;ψ(φ1(Xn

1 ), . . . , φK(Xn
K))
)

(8)

Rk ≥
1

n
log |φk(Xn

k )| for all k ∈ K. (9)

The accuracy-complexity region IRDIB is given by the closure of all achievable tuples (∆, R1, . . . , RK).

In some cases, for given RK = (R1, . . . , RK), for the ease of the exposition we will be content with the
accuracy-complexity function ∆(RK, PXK,Y ) defined as

∆(RK, PXK,Y ) = max
{φk}Kk=1

,ψ
∆(n)(PXK,Y ) (10)

where the maximization is subjected to equation 7.

3 MAIN RESULTS

3.1 DISCRETE MEMORYLESS DATA MODEL

The following theorem (the proof of which can be found in the appendices section) provides a computable
characterization of the accuracy-complexity region IRDIB. The result can be seen as a generalization of Tishby
et al. Tishby et al. (1999) single encoder IB to the distributed learning model with K encoders.

Theorem 1 The accuracy-complexity region IRDIB of the distributed learning problem with PXK,Y for which
the Markov chain equation 3 holds is given by the union of all tuples (∆, R1, . . . , RK) ∈ RK+1

+ that satisfy for
all S ⊆ K,

∆ ≤
∑
k∈S

[Rk−I(Xk;Uk|Y, T )] + I(Y ;USc |T ), (11)

for some set of pmfs P := {PUk|Xk,T , . . . , PUk|Xk,T , PT } with joint distribution of the form

PT (t)PY (y)

K∏
k=1

PXk|Y (xk|y)

K∏
k=1

PUk|Xk,T (uk|xk, t). (12)

Remark 1 In Theorem 1, the random variable T stands for a convexification of the region, i.e., convex
combination of achievable accuracy-complexity tuples is itself achievable. For given T = t, the result of
Theorem1 comprises the optimization over K conditional distributions {PUK |Xk,t}. For k ∈ K, the conditional
distribution PUK |Xk,t represents a stochastic encoding of the feature Xk into a latent variable Uk. Intuitively,
the latent variable Uk should capture all relevant information about Y that is contained in Xk and non
redundant with those carried out by {Ui}i6=k. The requirement of non-redundancy is mandated by the need
to operate at the minimum possible complexity at which a desired accuracy level is achievable (recall that
minimum complexity, as expressed by algorithm’s input-output mutual information, translates directly into a
better generalization capability). Collectively, however, the set of all latent variables (U1, . . . , UK) should be
expressive enough to reproduce the target variable Y to within the desired accuracy level. For given T = t and
(U1, . . . , UK) = (u1, . . . , uK) the optimal stochastic decoder is given by

PY |UK,T (yk|uK, t) =

∑
(y,x1,...,xK)∈Y,XK

PY (y)
∏K
k=1 PXk|Y (xk|y)PUk|Xk,T (uk|xk, t)∑

(x1,...,xK)∈XK

∏K
k=1 PUk|Xk,T (uk|xk, t)

. (13)

Remark 2 Like for the single-encoder IB problem of Tishby et al. (1999) and an increasing number of works
that followed, including Courtade and Weissman (2014, Section III-F), our approach here is asymptotic. In
addition to that it leads to an exact characterization, the result also readily provides a lower bound on the
performance in the non-asymptotic (e.g., one shot) setting. For the latter setting known approaches (e.g., the
functional representation lemma of Li and El Gamal (2018)) would lead to only non-matching inner and outer
bounds on the region of optimal tradeoff pairs, as this is the case even for the single encoder case Li et al. (2018).
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3.2 MEMORYLESS VECTOR GAUSSIAN DATA MODEL

We now turn to a continuous-alphabet setting. Here, (X1, . . . ,XK ,Y) is a zero-mean Gaussian random vector
such that

Xk = HkY + Nk for all k ∈ K, (14)

where Hk ∈ Cnk×ny models the linear model connecting the target variable Y ∈ Cny to the observation
at encoder k, and Nk ∈ Cnk , k = 1, . . . ,K, is the noise vector at encoder k, assumed to be Gaussian with
zero-mean and covariance matrix Σk, and independent from all other noises and the target variable Y. We
denote by Σy the covariance matrix of of the target vector Y ∈ Cny .

For this model, we find an explicit analytic characterization of optimal tradeoffs between accuracy and complexity.
The proof relies on deriving an outer bound on the region described by equation 11, and showing that it is
achievable with Gaussian pmfs, with no time-sharing. In doing so, we use techniques that rely on the de Bruijn
identity and the properties of Fisher information and minimum mean square error (MMSE).

Theorem 2 The accuracy-complexity region IRG
DIB for the vector Gaussian model is given by the union of all

tuples (∆, R1, . . . , RL) that satisfy for all S ⊆ K

∆ ≤
[
Rk + log

∣∣∣I−Σ
1/2
k ΩkΣ

1/2
k

∣∣∣]+ log

∣∣∣∣∣∑
k∈Sc

Σ1/2
y H†kΩkHkΣ

1/2
y + I

∣∣∣∣∣ ,
for some 0 � Ωk � Σ−1

k .

Proof: The proof of the direct part follows by evaluating the region of Theorem 1, which can be extended to the
case of continuous alphabets using standard discretization (quantization) arguments, with the choices T = ∅ and
p(uk|xk, t) = CN (xk,Σ

1/2
k (Ωk − I)Σ

1/2
k ). The main contribution in the proof is that of the converse part.

This proof is technical and rather lengthy and, for this reason, is deferred to the appendices section.

In the special case in which K = 1, the result of Theorem 2 recovers that by Globerson and Tishby (2004) (see
also Chechik et al. (Feb. 2005)) which establishes the optimal accuracy-complexity tradeoff of the single-encoder
Gaussian IB problem.

3.3 A VARIATIONAL BOUND

Recall the region IRDIB of optimal accuracy-complexity tradeoffs for the DM model as given by Theorem 1.
In this section, we consider the problem of learning encoders- and decoder mappings that maximize the accuracy
level for a given (fixed) complexity level, i.e., those that perform at the vicinity of the boundary of the region
IRDIB. First, we derive a parametrization of the accuracy-complexity region; and, then, we develop a variational
bound which expresses the optimal encoders’ and decoder mappings as the solution to an optimization problem –
(an algorithm for solving this problem in the case of unknown distributions is given in the next section).

Let Rsum :=
∑K
k=1Rk. Also, let IRsum

DIB denote the region of achievable (accuracy, sum-complexity) pairs,

IRsum
DIB :=

{
(∆, Rsum) ∈ R2

+ : ∃(R1, . . . , RK) ∈ RK+ s.t.

(∆, R1, . . . , RK) ∈ IRDIB and
K∑
k=1

Rk = Rsum

}
.

Applying Fourier-Motzkin Elimination (FME) El Gamal and Kim (2011) to successively project out the variables
R1, . . . , RK , and using equation 3, the region IRsum

DIB can be characterized as given in Proposition 1.

Proposition 1 The accuracy-complexity region under sum-complexity constraintRIsumDIB is given by the convex-
hull of all tuples (∆, Rsum) ∈ R2

+ satisfying ∆ ≤ ∆(Rsum, PXK,Y ) where

∆(Rsum, PXK,Y ) = max
P

min

{
I(Y ;UK), Rsum −

K∑
k=1

I(Xk;Uk|Y )

}
, (15)

and where the maximization is over the set of pmfs P := {PU1|X1
, . . . , PUK |XK} such that the joint pmf

factorizes as pY (y)
∏K
k=1 pXk|Y (xk|y)

∏K
k=1 pUk|Xk (uk|xk).

The next proposition provides a characterization of the pairs (∆, Rsum) that lie on the boundary ofRIsumDIB in
terms of a nonnegative parameter s ≥ 0.
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Proposition 2 For every pair (∆, Rsum) ∈ R2
+ that lies on the boundary of the accuracy-complexity region

RIsumDIB there exist s ≥ 0 such that (∆, Rsum) = (∆s, Rs), where

∆s =
1

(1 + s)

[
(1 + sK)H(Y ) + sRs + max

P
Ls(P)

]
, (16)

Rs = I(Y ;U∗K) +

K∑
k=1

[I(Xk;U∗k )− I(Y ;U∗k )], (17)

and P∗ is the set of conditional pmfs P that maximize the cost function

Ls(P) := −H(Y |UK)− s
K∑
k=1

[H(Y |Uk) + I(Xk;Uk)]. (18)

Using Proposition 2 it is clear that the encoders {PUk|Xk}k∈K that achieve the accuracy-complexity pair
(∆s, Rs) can be computed by maximizing the regularized cost equation 18 for the corresponding value of
s ≥ 0. The corresponding optimal decoder PY |UK for these encoders can be found as in equation 13. Different
accuracy-complexity pairs (∆s, Rs) on the boundary of IRsum

DIB and encoders- and decoder mappings that
achieve it can be found by solving equation 18 for different values of s ≥ 0 and then evaluating equation 16
and equation 17 for the obtained solution.

The optimization of equation 18 generally requires to compute marginal distributions involving the descriptions
U1, . . . , UK , an aspect which can be non-easy computationally costly. To overcome this limitation, in the
following we derive a tight variational bound on Ls(P) which lower bounds the DIB cost function with respect
to some arbitrary distributions. Let us consider the arbitrary decoder QY |U1,...,UK (y|u1, . . . , uK) for y ∈ Y ,
u1 ∈ U1, . . . , uK ∈ UK , the K decoders QY |Uk (y|uk) for k ∈ K for y ∈ Y , uk ∈ Uk, and latent variable
priors QUk (uk), k ∈ K, uk ∈ Uk. For short, we denote

Q := {QY |U1,...,UK , QY |U1
, . . . , QY |UK , QU1 , . . . , QUK}.

Let us define the variational DIB cost function LVB
s (P,Q) as

LVB
s (P,Q) := E[logQY |UK(Y |UK)]︸ ︷︷ ︸

av. logarithmic-loss

+ s

K∑
k=1

(
E[logQY |Uk (Y |Uk)]−DKL(PUk|Xk‖QUk )

)
︸ ︷︷ ︸

regularizer

. (19)

The following lemma states that LVB
s (P,Q) is a lower bound to Ls(P) for all distributions Q.

Lemma 1 For fixed pmfs P, we have

Ls(P) ≥ LVB
s (P,Q), for all pmfs Q. (20)

In addition, there exists a unique Q that achieves the maximum maxQ LVB
s (P,Q) = Ls(P), and is given by

Q∗Uk = PUk , Q∗Y |Uk = PY |Uk , k = 1, . . . ,K, (21)

Q∗Y |U1,...,Uk
= PY |U1,...,UK , (22)

where PUk , PY |Uk and PY |U1,...,UK are computed from the pmfs P. �

Using the above, the optimization in equation 16 can be written in terms of the variational DIB cost function as

max
P
Ls(P) = max

P
max
Q
LVB
s (P,Q). (23)

We close this section by noting that the cost function equation 19 can be seen as a generalization of the evidence
lower bound (ELBO) as given in Rezende et al. (2014); Kingma and Welling (2013) for the single-encoder
learning setting to the distributed setting. Also, in the specific case in which Y = (X1, . . . , XK) the bound
generalizes the ELBO used for VAEs to the case of an arbitrary number of encoders.

3.4 CASE OF UNKNOWN DISTRIBUTIONS: VARIATIONAL DISTRIBUTED IB ALGORITHM

In practice only a set of training samples {(X1,i, . . . , XK,i, Yi)}ni=1 are available. In this section, we provide
a method to optimize equation 23 in this case by parametrizing the encoding and decoding distributions that
are to optimize using a family of distributions whose parameters are determined by Deep Neural networks
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(DNNs). This allows us to formulate equation 23 in terms of the DNN parameters and optimize it by using
the reparametrization trick Kingma and Welling (2013), Monte Carlo sampling, as well as stochastic gradient
descent (SGD) type algorithms.

Let Fe
NN,k denote the parametric family of encoding probability distributions PUk|Xk over Uk for each element

on Xk. Each member of this collection, PUk|Xk;γe
k

, is described by a parameter vector γe
k ∈ Γe

k ⊆ Rl
e
k , where

Γe
k ⊆ Rl

e
k denotes the set of allowable parameter vectors. The parameter vector γe

k is the output of a DNN
fθk : Xk → Γe

k, with network parameters θk ∈ Θk ⊆ Rd
e
k , e.g., the weights of the network at all layers. The

DNN fθk takes Xk as input and outputs the parameter vector γe
k, determining one of the probability members

PUk|Xk;γe
k

. We have

Fe
NN,k =

{
PUk|Xk;γe

k
(uk|xk), for uk ∈ Uk, xk ∈ Xk : γe

k = fθk (xk), θk ∈ Θk

}
. (24)

For example, the family of multivariate Gaussian distributions is parameterized by the mean µθk and covariance
matrix Σθ

k, i.e., γk := (µθk,Σ
θ
k). Therefore, given an observation Xk, γk := (µθk,Σ

θ
k) is determined by

the output of the DNN fθk and the corresponding family member of Fe
NN,k is given by PUk|Xk;γk (uk|xk) =

N (uk;µθk,Σ
θ
k).

Similarly, for decoders QY |Uk over Y , define the family of distributions parametrized by a vector in Γd
k ⊆ Rl

d
k

determined by the output of a DNN fφk : Uk → Γd
k, with parameters φk ∈ Φk ⊆ Rd

d
k , as

Fd
NN,k =

{
QY |Uk;γd

k
(y|uk), for y ∈ Y, uk ∈ Uk : γd

k = fφk (uk), φk ∈ Φk
}
, (25)

and for the distribution QY |UK over Y for each element in U1 × · · · × UK , define the family of distributions

parameterized by the output of the DNN fφK : U1 × · · · × UK → Γd
K, with φK ∈ ΦK ⊆ Rd

d
K , and Γd

K ⊆ Rd
d
K

Fd
NN,K =

{
QY |U1,...,UK ;γd

K
(y|u1, . . . , uK), y ∈ Y, uk ∈ Uk : γd

K = fφK(u1, . . . , uK), φK ∈ ΦK
}
. (26)

Finally, for the distributions Qϕk (uk) we define the family of distributions with parameter ϕk ∈ Ψk ⊆ Rl
p
k

Fp
NN,k =

{
QUk;ϕk (uk), for uk ∈ Uk : ϕk ∈ Ψk

}
.

In the following, for brevity we use Pθk (uk|xk), Qψk (y|uk), QψK(y|uK) and Qϕk (uk) to denote the distribu-
tions parametrized by the DNNs fθk , fψk , fψK and ϕk, respectively.

By restricting the optimization of the variational DIB cost in equation 23 to the encoder, decoder and priors
within the families of distributions Fe

NN,k, Fd
NN,k, Fd

NN,K, Fp
NN,k we get

max
P

max
Q
LVB
s (P,Q) ≥ max

θ,φ,ϕ
LNN
s (θ,φ,ϕ), (27)

where we use the notation θ := [θ1, . . . , θK ], φ := [φ1, . . . , φK , φK] and ϕ := [ϕ1, . . . , ϕK ] to denote the
DNN and prior parameters and, the cost in equation 27 is given by

LNN
s (θ,φ,ϕ) := EPY,XE{Pθk (Uk|Xk)}

[
logQφK(Y |UK)

+ s
K∑
k=1

(
logQφk (Y |Uk)−DKL(Pθk (Uk|Xk)‖Qϕk (Uk))

)]
. (28)

Next, we train the DNNs to maximize a Monte Carlo approximation of equation 27 over θ,φ,ϕ using SGD.
We use the reparameterization trick Kingma and Welling (2013), to sample from Pθk (Uk|Xk). In particular,
we consider Fe

NN,k to consist of a parametric family of distributions that can be sampled by first sampling
a random variable Zk with distribution PZk (zk), zk ∈ Zk and then transforming the samples using some
function gθk : Xk × Zk → Uk parameterized by θk, such that Uk = gθk (xk, Zk) ∼ Pθk (Uk|xk). The
reparametrization trick reduces the original optimization to estimating θk of the deterministic function gθk
and allows to compute estimates of the gradient using backpropagation Kingma and Welling (2013). The
variational DIB cost in equation 27 can be approximated, by sampling m independent samples {uk,i,j}mj=1 ∼
Pθk (uk|xk,i) for each training sample (x1,i, . . . , xK,i, yi), i = 1, . . . , n. Sampling is performed by using
uk,i,j = gφk (xk,i, zk,j) with {zk,j}mj=1 i.i.d. sampled from PZk . We then have

Lemp
s,i (θ,φ,ϕ) :=

1

m

m∑
j=1

logQφK(yi|u1,i,j , . . . , uK,i,j)

+
s

m

m∑
j=1

K∑
k=1

(
logQφk (yi|uk,i,j)−DKL(Pθk (Uk,i|xk,i)‖Qϕk (Uk,i))

)
. (29)

7
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4 EXPERIMENTAL RESULTS

4.1 MULTIVIEW MNIST WITH ADDITIONAL NOISE AND RANDOM OCCLUSION

In this experiment, we test the robustness of our method against noise and random occlusion on the MNIST
dataset. Specifically, we combine two types of random occlusion: the first encoder observes a digit from the
MNIST that is occluded by a square which is rotated randomly (rotation angle uniformly distributed over
[−45o, 45o]); and the second encoder observes a noisy version of the same digit corrupted by additive noise
(the noise value is chosen random and uniformly between 0 and 3). The noisy pixels are clipped between 0
and 1, which results in a noisy version in which more than 60% of the pixels are occluded. These occlusions
makes the problem significantly more involved than the standard MNIST (for which application of our algorithm
leads to an accuracy of about 99.9%). To assess that, we have considered a CNN deterministic networks with
dropout which achieves a 99.8% for test data on the clean MNIST data. Then, we have trained the same CNN
architecture for each of the noisy inputs to the encoders, resulting in an accuracy of 92.1% from the input to
encoder 1 (randomly rotated occlusion) and 79.68% from the input to encoder 2 (noisy clipped image).
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Figure 3: View 1: occluded. View 2: noisy.

CNN Layers

Encoder k conv. ker. [5,5,32]-ReLu
maxpool [2,2,2]

conv. ker. [5,5,64]-ReLu
maxpool [2,2,2]

dense [1024]-ReLu
dropout 0.4

dense [256]-relu
Latent space k dense [256]-ReLu
Decoder 12 dense [256]-ReLu
Decoder k dense [256]-ReLu

Table 1: Used CNN architecture.
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Figure 4: Accuracy v.s. sum-complexity for
n = 50.000 and s ∈ [10−10, 1].

Accuracy (%)
1 shot avg.

D-VIB 96.16 97.24
D-VIB-noReg 96.04 96.72
C-VIB 96.01 96.68
Deterministic CNN 93.18 93.18
Independent CNNs 92.1 / 79.68 93.1 / 82.01

Table 2: Achievable accuracy levels.

We consider the application of the D-VIB algorithm to this model with the CNN architecture in Table 1, in which
Encoder k, k = 1, 2 is parametrized by a nuk = 256 dimensional multivariate Gaussian distributionN (µe

k,Σ
e
k)

determined by the output of a DNN fθk consisting of the concatenation of convolution, dense and maxpool
layers with ReLu activations and dropout. The output of the last layer is followed by a dense layer without
activation that generate µe

k and Σe
k. The prior is chosen as Qϕk (u) = N (0, I). Each decoder takes the samples

from Pθk (Uk|Xk) and processes its inputs with a dense layer DNN (fφK and fφk ) each with 256 neurons and
ReLu activation, which outputs a vector ŷi of size |Y| = 10 normalized with a softmax, corresponding to a
distribution over the one-hot encoding of the digit labels {0, . . . , 9} from the K observations,

Qφk (ŷk|uk) = Softmax(fφk (Uk)), k = 1, 2, and (30)

QφK(ŷ|uK) = Softmax(fφK(U1, U2))), (31)
where Softmax(p) for p ∈ Rd is a vector with i-th entry as [Softmax(p)]i = exp(pi)/

∑d
j=1 exp(pj).

Figure 4 shows the resulting relevance-complexity tradeoffs obtained using our D-VIB algorithm of Section 3.4,
with n = 50.000 and 15 distinct s-values randomly chosen in the range [10−10, 1]. The achieved accuracy is
reported in Table 2, with comparison to state of the art deterministic CNN as well as the case of independent CNN
encoding. Also shown for comparison purposes, the centralized IB limit (C-IB) evaluated for the unconstrained
case (i.e., Rsum →∞) for which ∆cIB(Rsum) = log 10. Similar results were obtained for other datasets. The
interested reader may refer to the appendices section.
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APPENDICES

PROOFS OF MAIN THEOREMS, PROPOSITIONS AND LEMMAS.
ADDITIONAL EXPERIMENTAL RESULTS

5 PROOFS OF MAIN THEOREMS, PROPOSITIONS AND LEMMAS

5.1 AUXILIARY LEMMAS

Lemma 2 Dembo et al. (1991); Ekrem and Ulukus (2014) Let (X,Y) be a pair of random vectors with pmf
p(x,y). We have

log |(πe)J−1(X|Y)| ≤ h(X|Y) ≤ log |(πe)mmse(X|Y)|,

where the conditional Fischer information matrix is defined as

J(X|Y) := E[∇ log p(X|Y)∇ log p(X|Y)†],

and the minimum mean squared error (MMSE) matrix is

mmse(X|Y) := E[(X− E[X|Y])(X− E[X|Y])†].

Lemma 3 Ekrem and Ulukus (2014) Let (V1,V2) be a random vector with finite second moments and
N∼CN (0,ΣN ) independent of (V1,V2). Then

mmse(V2|V1,V2 + N) = ΣN −ΣNJ(V2 + N|V1)ΣN .

5.2 PROOF OF THEOREM 1

If K = 1 the distributed learning problem that we study boils down to the well known Information Bottleneck
(IB) problem of Tishby et al. (1999). The single-encoder IB problem is essentially a remote point-to-point
source coding problem Dobrushin and Tsybakov (1962) in which distortion is measured under the logarithm
loss fidelity criterion Harremoes and Tishby (2007). In accordance with this analogy, for K ≥ 2 consider the
multiterminal source coding problem under logarithmic loss in which the sequence Y n models a remote source
that is observed by K spatially distributed agents; the agents observe noisy versions of the remote source and
communicate independently with a decoder or Chief Executive Officer (CEO) over rate-constrained noise-free
links. For instance, agent k, k ∈ K, observes Xn

k and uses Rk bits per sample to describe it to the decoder.
The decoder wants to reconstruct the remote source Y n to within a prescribed fidelity level, where incurred
distortion is measured using the logarithmic loss criterion, i.e.,

`log(yn, ŷn) =
1

n
log

1

P̂Y n|J(yn|φ1(xn1 ), . . . , φK(xnK))
, (32)

where J = (φ1(Xn
1 ), . . . , φK(Xn

K)).

Here, (Xn
1 , . . . , X

n
K , Y

n) is assumed to be distributed i.i.d. according to the n-product of the pmf PX1,...,XK ,Y ,
i.e., the Markov chain equation 3 holds.

Definition 2 A rate-distortion code (of blocklength n) for the CEO problem consists of K encoding functions

φ̃k : Xnk → {1, . . . ,M
(n)
k }, for k = 1, . . . ,K, (33)

11
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and a decoding function

ψ̃ : {1, . . . ,M (n)
1 } × . . .× {1, . . . ,M

(n)
K } → Ŷ

n.� (34)

A distortion-rate tuple (D,R1, . . . , RK) is achievable for the DM CEO source coding problem with side
information if there exist a blocklength n, encoding functions {φ̃k}Kk=1 and a decoding function ψ̃ such that

Rk ≥
1

n
logM

(n)
k , for k = 1, . . . ,K,

D ≥ E
[
`log
(
Y n, ψ̃(φ̃1(Xn

1 ), . . . , φ̃K(Xn
K))
)]
.

The distortion-rate region DRCEO of the CEO model is defined as the closure of all non-negative tuples
(D,R1, . . . , RK) that are achievable. �

Key to the proof of Theorem 1 is the following proposition which states that IRDIB andDRCEO can be inferred
from each other.

Proposition 3 (∆, R1, . . . , RK) ∈ IRDIB if and only if
(
H(Y )−∆, R1, . . . , RK

)
∈ DRCEO.

Proof: Let, for k = 1, . . . ,K, Jk = φk(Xn
k ) and J = (J1, . . . , JK). Then,

E[`log(Y n, Ŷ n)|J = j] =
∑

yn∈Yn
P (yn|j) log

(
1

P̂ (yn|j)

)
(35)

=
∑

yn∈Yn
P (yn|j) log

(
P (yn|j)
P̂ (yn|j)

)
+H(Y n|J = j) (36)

= DKL(P (yn|j)‖P̂ (yn|j)) +H(Y n|J = j) (37)

≥ H(Y n|J = j), (38)

where equation 38 is due to the non-negativity of the Kullback-Leibler divergence and the equality holds if and
only if for P̂ (yn|j) = P (yn|j) where P (yn|j) = Pr{Y n = yn|J = j} for all j and yn ∈ Yn.

Let an achievable tuple (∆, R1, . . . , RK) ∈ IRDIB be given. Then, there must exist functions {φk}Kk=1

such that equation 8 and equation 9 hold. Using equation 38 that by letting the decoding function ψ̃(JK) =
{PY n|JK(yn|JK)}, we have E[`log(Y n, Ŷ n)|JK] = H(Y n|JK), which implies (H(Y )−∆, R1, . . . , RK) ∈
DRCEO.

The result of Theorem 1 follows easily by combining (Courtade and Weissman, 2014, Theorem 10), which
provides a single-letter characterization of the rate distortion region DR?CEO of the CEO problem, and Proposi-
tion 3.

5.3 PROOF OF THEOREM 2

The proof of the direct part of Theorem 2 follows by evaluating the region of Theorem 1 with the choice T = ∅
and p(uk|xk, t) = CN (xk,Σ

1/2
k (Ωk − I)Σ

1/2
k ).

The proof of the converse part is as follows. Fix t ∈ T , S ⊆ K and a family of distributions {p(uk|xk, t)}Kk=1

such that the joint distribution factorizes as equation 12. Also, let 0 � Ωk,t � Σ−1
k and

mmse(Xk|Y,Uk,t, t) = Σk −ΣkΩk,tΣk. (39)

Such Ωk,t always exists since
0 � mmse(Xk|Y,Uk,t, t) � Σ−1

k . (40)

Then, we have

I(Xk; Uk|Y, t) ≥ log |Σk| − log |mmse(Xk|Y,Uk,t, t)|

= − log |I−Σ
1/2
k Ωk,tΣ

1/2
k |, (41)

where the inequality is due to Lemma 2; and equation 41 is due to equation 39.

Also, we have

I(Y; USc,t|t) ≤ log |Σy| − log |J−1(Y|USc,t, t)| (42)

12
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= log

∣∣∣∣∣∑
k∈Sc

Σ1/2
y H†kΩk,tHkΣ

1/2
y + I

∣∣∣∣∣ , (43)

where equation 42 follows by using Lemma 2; and equation 43 holds by using the following equality

J(Y|USc,t, t) =
∑
k∈Sc

H†kΩk,tHk + Σ−1
y . (44)

the proof of which uses a connection between MMSE and Fisher information as shown next.

For the proof of equation 44, first note that from the MMSE estimation of Gaussian random vectors El Gamal
and Kim (2011), we have

Y = E[Y|XSc ] + ZSc =
∑
k∈Sc

GkXk + ZSc , (45)

where Gk = Σy|xScH
†
kΣ
−1
k and ZSc ∼ CN (0,Σy|xSc ), with

Σ−1
y|xSc = Σ−1

y +
∑
k∈Sc

H†kΣ
−1
k Hk. (46)

Note that ZSc is independent of YSc due to the orthogonality principle of the MMSE and its Gaussian
distribution. Hence, it is also independent of USc,q . We have

mmse

(∑
k∈Sc

GkXk

∣∣∣Y,USc,t, t

)
=
∑
k∈Sc

Gkmmse (Xk|Y,USc,t, t) G†k (47)

= Σy|xSc
∑
k∈Sc

H†k
(
Σ−1
k −Ωk

)
HkΣy|xSc , (48)

where equation 47 follows since the cross terms are zero due to the Markov chain (Uk,t,Xk) −
− Y −
−
(UK/k,t,XK/k); and equation 48 follows due to equation 39 and Gk. Finally,

J(Y|USc,t, t) = Σ−1
y|xSc −Σ−1

y|xScmmse

(∑
k∈Sc

GkXk

∣∣∣Y,USc,t, t

)
Σ−1

y|xSc (49)

=Σ−1
y|xSc −

∑
k∈Sc

H†k
(
Σ−1
k −Ωk,t

)
Hk (50)

=Σ−1
y +

∑
k∈Sc

H†kΩk,tHk, (51)

where equation 49 is due to Lemma 3; equation 50 is due to equation 48; and equation 51 follows due to
equation 46.

Now, let Ω̄k :=
∑
t∈T p(t)Ωk,t. The rest of the converse proof follows by averaging over the time sharing

random variable to get

I(Xk; Uk|Y, T ) ≥ −
∑
t∈T

p(t) log |I−Σ
1/2
k Ωk,tΣ

1/2
k |

≥ − log |I−Σ
1/2
k Ω̄kΣ

1/2
k |, (52)

where equation 52 follows from the concavity of the log-det function and Jensen’s inequality. Similarly to
equation 52, from equation 43 and Jensen’s Inequality we have

I(Y; USc |T ) ≤ log

∣∣∣∣∣∑
k∈Sc

Σ1/2
y H†kΩ̄kHkΣ

1/2
y + I

∣∣∣∣∣ . (53)

Finally, using equation 52 and equation 53 in equation 11, noting that Ωk =
∑
t∈T p(t)Ωk,t � Σ−1

k since
0 � Ωk,t � Σ−1

k , and taking the union over Ωk satisfying 0 � Ωk � Σ−1
k , completes the proof of the

converse part; and, hence, that of Theorem 2.
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5.4 PROOF OF PROPOSITION 1

For simplicity of exposition, the proof is given for the case K = 2 encoders. The proof for K > 2 follows
similarly. By the definition of IRsum

DIB, the accuracy complexity tuple (∆, Rsum) ∈ R2
+ is achievable for some

random variables Y,X1, X2, U1, U2 with joint pmf satisfying equation 12, if it holds that

∆ ≤ I(Y ;U1, U2) (54)

∆ ≤ R1 − I(X1;U1|Y ) + I(Y ;U2) (55)

∆ ≤ R2 − I(X2;U2|Y ) + I(Y ;U1) (56)

∆ ≤ R1 +R2 − I(X1;U1|Y )− I(X2;U2|Y ) (57)

R1 +R2 ≤ Rsum. (58)

The application of the Fourier-Motzkin elimination to project out R1 and R2 reduces the system on inequalities
equation 54-equation 58 to the following system of inequalities

∆ ≤ I(Y ;U1, U2) (59)

∆ ≤ Rsum − I(X1;U1|Y )− I(X2;U2|Y ) (60)

2∆ ≤ Rsum − I(X1;U1|Y )− I(X2;U2|Y ) + I(Y ;U1) + I(Y ;U2) (61)

It follows due to the Markov chainU1−
−X1−
−Y −
−X2−
−U2 that we have I(Y ;U1, U2) ≤ I(Y ;U1)+I(Y ;U2).
Therefore, inequality equation 61 is redundant as it is implied by equation 59 and equation 60. This completes
the proof of Proposition 1.

5.5 PROOF OF PROPOSITION 2

Suppose that P∗ yields the maximum in equation 16. Then,

(1 + s)∆s = (1 + sK)H(Y ) + sRs + Ls(P∗) (62)

= (1 + sK)H(Y ) + sRs +

(
−H(Y |U∗K)− s

K∑
k=1

[H(Y |U∗k ) + I(Xk;U∗k )]

)
(63)

= (1 + sK)H(Y ) + sRs + (−H(Y |U∗K)− s(Rs − I(Y ;U∗K) +KH(Y ))) (64)

= (1 + s)I(Y ;U∗K) (65)

≤ (1 + s)∆(Rs, PXK,Y ), (66)

where equation 63 is due to the definition of Ls(P) in equation 18; equation 64 follows since we have∑K
k=1[I(Xk;U∗k ) +H(Y |U∗k )] = Rs − I(Y ;U∗K) +KH(Y ) from the definition of Rs in equation 17; and

equation 66 follows from the definition in equation 15.

Conversely, if P∗ is the solution to the maximization in the function ∆(Rsum, PXK,Y ) in equation 15 such that
∆(Rsum, PXK,Y ) = ∆s, then ∆s ≤ I(Y ;U∗K) and ∆s ≤ Rsum −

∑K
k=1 I(Xk;U∗k |Y ) and we have, for any

s ≥ 0, that

∆(Rsum, PXK,Y ) = ∆s

≤ ∆s − (∆s − I(Y ;U∗K))− s

(
∆s −Rsum +

K∑
k=1

I(Xk;U∗k |Y )

)

= I(Y ;U∗K)− s∆s + sRsum − s
K∑
k=1

I(Xk;U∗k |Y )

= H(Y )− s∆s + sRsum −H(Y |U∗K)− s
K∑
k=1

[I(Xk;U∗k ) +H(Y |U∗k )] + sKH(Y )

(67)

≤ H(Y )− s∆s + sRsum + L∗s + sKH(Y ) (68)

= H(Y )− s∆s + sRsum + sKH(Y )− ((1 + sK)H(Y ) + sRs − (1 + s)∆s) (69)

= ∆s + s(Rsum −Rs), (70)

where in equation 67 we have
∑K
k=1 I(Xk;Uk|Y ) = −KH(Y ) +

∑K
k=1 I(Xk;Uk) +H(Y |Uk) due to the

Markov chain Uk −Xk − Y − (XK\k, UK\k); equation 68 follows since L∗s is the maximum over all possible
distributions P (not necessarily P∗ maximizing ∆(Rsum, PXK,Y )); and equation 69 is due to equation 16.
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Finally, equation 70 is valid for any Rsum ≥ 0 and s ≥ 0. Given s, and hence (∆s, Rs), choosing R = Rs
yields ∆(Rs, PXK,Y ) ≤ ∆s. Together with equation 66, this completes the proof of Proposition 2.

5.6 PROOF OF LEMMA 1

The proof follows by deriving the following bounds. For any conditional pmf QY |Z(y|z), y ∈ Y and z ∈ Z ,
e.g., Z = UK or Z = Uk, proceeding similarly to equation 38 and averaging over Z, we have

H(Y |Z) = E[− logQY |Z(Y |Z)]−DKL(PY |Z‖QY |Z). (71)

Similarly, we have

I(Xk;Uk) = H(Uk)−H(Uk|Xk) (72)

= E[− logQUk (Uk)]−DKL(PUk‖QUk )−H(Xk|UK) (73)

= DKL(PY |Uk‖QUk )−DKL(PUk‖QUk ) (74)

Thus, we get

Ls(P) = LVB
s (P,Q) +DKL(PY |UK ||QY |UK) + s

K∑
k=1

(DKL(PY |Uk ||QY |Uk ) +DKL(PUk ||QUk ))

≥ LVB
s (P,Q), (75)

where equation 75 holds by the non-negativity of relative entropy: and the equality is met if and only if Q∗ is as
given by equation 21 and equation 22.

6 OTHER EXPERIMENTAL RESULTS (REGRESSION FOR UNKNOWN GAUSSIAN
MODEL)

6.1 D-VIB ALGORITHM FOR VECTOR GAUSSIAN MODEL

For the vector Gaussian data model equation 14 the optimal distributions P and Q in equation 23 lie within
the family of multivariate Gaussian distributions. Motivated by this observation, we consider the following
parameterization for k ∈ K:

Pθk (uk|xk) = N (uk;µe
k,Σ

e
k) (76)

QφK(ŷ|uK) = N (ŷ;µd
K,Σ

d
K) (77)

Qφk (ŷ|uk) = N (ŷ;µd
k,Σ

d
k) (78)

Qϕk (uk) = N (0, I). (79)

where µe
k,Σ

e
k are the output of a DNN fθk with input Xk that encodes the observations in a nuk -dimensional

Gaussian distribution, µd
K,Σ

d
K are the outputs of a DNN fφK with inputs U1, . . . ,UK , sampled from

Pθk (uk|xk), and µd
k,Σ

e
k are the output of a DNN fφk with input Uk, k = 1, . . . ,K.

With the above choice of parametric encoders and decoders, and using a single sample m = 1, the empirical
DIB cost in equation 29 is given for the sample (x1,i, . . . ,xK,i,yi) by

Lemp
s,i (θ,φ,ϕ) :=− 1

2

(
(yi − µd

12,i)
TΣd,−1

12,i (yi − µd
12,i) + log det(Σd

12,i)
)

− s
K∑
k=1

1

2

(
(yi − µd

k,i)
TΣd−1

k,i (yi − µd
k,i) + log det(Σd

k,i)
)

− s
K∑
k=1

1

2

(
(µe

k,i − I)T (µe
k,i − I) + log |Σe,−1

k,i | − nuk + tr{Σe
k,i}
)

− ny
2

(1 + sK) log(2π),

where (µd
12,i,Σ

d
12,i) denote the output of the DNN fφK for the i-th sample (x1,i, . . . ,xK,i,yi), and similarly

for the other mean and covariance terms; and where we have used that each term in the empirical DIB
cost equation 29 can be computed noting that for d-dimensional Gaussian pmfsN (y;µ,Σ) we have

logN (y;µ,Σ) = −1

2

(
(y − µ)TΣ−1(y − µ) + d log(2π) + log det(Σ)

)
,
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and the KL divergence between two multivariate Gaussian pmfs P1 ∼ N (µ1,Σ1) and P2 ∼ N (µ2,Σ2) in
Rd, is

DKL(P1‖P2) =
1

2

(
(µ1 − µ2)TΣ−1

2 (µ1 − µ2) + log |Σ2Σ
−1
1 | − d+ tr{Σ−1

2 Σ1}
)
. (80)

The multivariate Gaussian parametrization of the encoders, decoders and prior distribution as given by equa-
tion 76-equation 79 can be used for other data models that are not necessary Gaussian. For example, it is
particularly suitable for regression problems in which Y lies on a continuous space. Also, it is very often used in
conjunction with VAE generative problems Rezende et al. (2014); Kingma and Welling (2013).

6.2 REGRESSION FOR VECTOR GAUSSIAN DATA MODEL

Consider a distributed learning model withK = 2 encoders, each observing a noisy version of an ny-dimensional
Gaussian vector Y ∼ N (y; 0, I), as Xk = HkY + Nk, where Hk ∈ Rnk×ny and the noises are distributed
as Nk ∼ N (0, I) for k = 1, 2.

For this model, the optimal accuracy-complexity region can be computed using Theorem 2. In what follows,
we evaluate the performance of our D-VIB of the previous section for regression. The algorithm is trained
using a dataset of n i.i.d. samples {(X1,i,X2,i,Yi)}ni=1 form the described vector Gaussian data model. We
train the DNNs for various values of the parameter s. We use the multivariate Gaussian parameterization in
equation 76-equation 79 for the DNNs architecture shown in Table 6.2. Specifically, Encoder k, k = 1, 2,
consists of three dense layers of 512 neurons each followed by rectified linear unit (ReLu) activations. The
output of encoder k is processed by a dense layer without nonlinear activation to generate µe

k and Σe
k of size 512

and 512× 512, respectively. Each decoder consists of two dense layers of 512 neurons with ReLu activations.
The output of decoder 1, 2 and 12 is processed, each, by a fully connected layer without activation to generate
µd
k and Σd

k and µd
12 and Σd

12, of size 2 and 2× 2.
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complexity tradeoffs for the Gaussian data
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1, n1 = n2 = 3 and n = 30.000.

Figure 5 shows the optimal relevance-complexity region of tuples (∆, Rsum) obtained from Theorem 2 for a
vector Gaussian model with K = 2 encoders, target variable dimension ny = 1, and observations dimension
n1 = n2 = 3. A set of 40.000 samples split among training (30.000 samples) and test (10.000 samples). The
figure depicts all accuracy-complexity pairs obtained by application of our algorithm D-VIB to this setting. The
results are compared to the case of inference with known joint distribution (referred to as D-IB, see next section)
as well as the case of centralized inference (C-IB). For the D-VIB algorithm, the the DNN architecture for the
coders is shown in Table 6.2. Figure 6 shows the evolution of the associated mean squared error (MSE) in the
estimation of the label Y using our D-VIB algorithm. As it can bee seen from both figures the performance of
our D-VIB algorithm (which does not require knowledge of the joint label-feature distribution) is very close to
that predicted by the theory, i.e., our Theorem 2.

Figure 7 shows similar curves for ny = 2, n1 = n2 = 3 dimensions, for various sizes of the training datset.
As expected large training sets allow a more accurate prediction. Noteworthy, that the performance during the
training phase might be better than that of the centralized learning scenario is an indicator can be caused by
overfitting. Related to this aspect, recall that although the D-VIB algorithm does not estimate the underlying
distribution explicitly, intuitively it does for the computation of the cost function. This is related to that universal
compressors also learn the actual distribution of the data that is being compressed. Recall that since the plug-in
estimator of entropy is biased downward, estimations of the mutual information terms that are involved in the
cost function are then biased upward, which is an alternate explanation to the observed overfitting during the
training phase.
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DNN Layers

Encoder k dense [512]-ReLu
dense [512]-ReLu
dense [512]-ReLu

Lat. space k dense [256]-ReLu
Decoder 12 dense [256]-ReLu
Decoder k dense [256]-ReLu

Table 3: Used DNN architecture.

7 DISTRIBUTED BLAHUT-ARIMOTO TYPE ALGORITHMS

7.1 DISCRETE-ALPHABET SETTING

In this section, we derive an iterative method to optimize the variational DIB cost function in equation 23 when
the data model is discrete and the joint distribution PXK,Y is either known, or a good estimation of it can be
obtained from the training samples. In these cases, the maximizing distributions P,Q of the variational DIB
cost in equation 23 can be efficiently found by an alternating optimization procedure over P and Q similar
to the expectation-maximization (EM) algorithm Dempster et al. (1977) and the standard Blahut-Arimoto
(BA) methodBlahut (1972). An extension to the vector Gaussian data model, which involves random variable
with continuous alphabets, is also provided. The main idea of the algorithm is that at iteration t, the optimal
distributions P(t) that maximize the variational D-IB bound LVB

s (P,Q(t)) for fixed Q(t) can be optimized in
closed form and, next, the maximizing pmfs Q(t) for given P(t) can be also found analytically. So, starting
from an initialization P(0) and Q(0) the algorithms performs the following computations successively and in
this order, until convergence,

P(0) → Q(0) → P(1) → . . .→ P(t) → Q(t) → . . . (81)

We refer to such algorithm as “Blahut-Arimoto Distributed Information Bottleneck Algorithm (BA-DIB)”.
Algorithm 1 describes the steps taken by BA-DIB to successively maximize LVB

s (P,Q) by solving a concave
optimization problem over P and over Q at each iteration. We have the following lemma whose proof follows
essentially by using the log-sum inequality Cover and Thomas (1991) and the convexity of the mapping
x 7→ x log x.

Lemma 4 The function LVB
s (P,Q) is concave in P and in Q.

For fixed P(t), the optimal Q(t) maximizing the variational D-IB bound in equation 19 follows from Lemma 1
as given by equation 21-equation 22. For fixed Q(t), the optimal P(t) can be found using the following lemma.

Lemma 5 For fixed Q, there exists a P that achieves the maximum maxP LVB
s (P,Q), where PUk|Xk is given

by

p∗(uk|xk) = q(uk)
exp (−ψs(uk, xk))∑

uk∈Uk
q(uk) exp(−ψs(uk, xk))

, (82)

for uk ∈ Uk and xk ∈ Xk, k ∈ K, and where we define

ψs(uk, xk) := DKL(PY |xk ||QY |uk ) +
1

s
EUK\k|xk [DKL(PY |UK\k,xk ||QY |UK\k,uk ))]. (83)

Proof: Due to its concavity, to maximize LVB
s (P,Q) with respect to P for given Q, we add the Lagrange

multipliers λxk ≥ 0 for each constraint
∑
uk∈Uk

p(uk|xk) = 1 with xk ∈ Xk. For each s, λxk ≥ 0 and
p(uk|xk) can be explicitly found by solving the KKT conditions, e.g.,

∂

∂p(uk|xk)

LVB
s (P,Q) +

∑
xk∈Xk

λxk

 ∑
uk∈Uk

p(uk|xk)− 1

 = 0.

This completes the proof.

17



Under review as a conference paper at ICLR 2020

Algorithm 1 BA-DIB training algorithm for discrete data

1: inputs:
discrete pmf PX1,...,Xk,Y , parameter s ≥ 0.

2: output: optimal P ∗Uk|Xk , pair (∆s, Rs).
3: initialization

Set t = 0 and set P(0) with p(uk|xk) = 1
|Uk| for uk ∈ Uk, xk ∈ Xk, k = 1, . . . ,K.

4: repeat
5: Compute Q(t+1) using equation 21 and equation 22.
6: Compute P(t+1) using equation 82.
7: t← t + 1
8: until convergence.

7.1.1 CONVERGENCE

Algorithm 1 essentially falls into the class of the Successive Upper-Bound Minimization (SUM) algorithms
Razaviyayn et al. (2013) in which LVB

s (P,Q) acts as a globally tight lower bound on Ls(P). Algorithm
1 provides a sequence P(t) for each iteration t, which converges to a stationary point of the optimization
problem equation 23.

Proposition 4 Every limit point of the sequence P(t) generated by Algorithm 1 converges to a stationary point
of equation 23.

Proof: Let Q∗(P) = arg maxQ LVB
s (P,Q). Using Lemma 1, for every P′ 6= P, it holds that

LVB
s (P,Q∗(P′)) ≤ LVB

s (P,Q∗(P))

= Ls(P). (84)

Since Ls(P) and LVB
s (P,Q∗(P′)) satisfy the assumptions of (Razaviyayn et al., 2013, Proposition 1), then

LVB
s (P,Q∗(P′)) satisfies A1-A4 in Razaviyayn et al. (2013). Convergence to a stationary point of equation 23

follows from (Razaviyayn et al., 2013, Theorem 1).

The self consistent equations equation 21, equation 22 and equation 83 satisfied by any stationary point of
the D-IB problem extend those of the standard point-to-point IB problem Globerson and Tishby (2004) to the
distributed IB problem with K ≥ 2 encoders. In particular, note the additional divergence term in equation 83.

7.2 GAUSSIAN SETTING

Recall Algorithm 1. For finite alphabet sources the updating rules of Q(t+1) and P(t+1) in Algorithm 1 are
relatively easy, but they become unfeasible for continuous alphabet sources. We leverage on the optimality of
Gaussian test channels, shown in Theorem 2, to restrict the optimization of P to Gaussian distributions, which
are easily represented by a finite set of parameters, namely mean and covariance. We show that if P(t) are
Gaussian distributions, then P(t+1) are also Gaussian distributions, which can be computed with an efficient
update algorithm of its representing parameters. In particular, if at time t the k-th distributions P (t)

Uk|Xk
is given

by

Ut
k = At

kXk + Ztk, (85)

where Ztk ∼ CN (0,Σzt
k
), we show that at t+ 1, for P(t+1) updated as in equation 82, the encoder P (t+1)

Uk|Xk
corresponds to Ut+1

k = At+1
k Xk + Zt+1

k , where Zt+1
k ∼ CN (0,Σ

zt+1
k

) and Σ
zt+1
k

,At+1
k are updated as

Σ
zt+1
k

=

((
1 +

1

s

)
Σ−1

ut
k
|y −

1

s
Σ−1

ut
k
|utK\k

)−1

, (86)

At+1
k = Σ

zt+1
k

((
1 +

1

s

)
Σ−1

ut
k
|yAt

k(I−Σxk|yΣ−1
xk )− 1

s
Σ−1

ut
k
|utK\k

At
k(I−Σxk|utK\k

Σ−1
xk )

)
. (87)

The detailed update procedure is given in Algorithm 2 (see the following section for the details of the derivations).
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Algorithm 2 BA-DIB algorithm for the Gaussin Vector D-IB

1: inputs:
covariance Σy,x1,...,xk , parameter s ≥ 0.

2: output: optimal pairs (A∗k,Σz∗k
), k = 1, . . . ,K.

3: initialization
Set randomly A0

k and Σz0
k
� 0, k ∈ K.

4: repeat
5: Compute Σxk|utK\k and update for k ∈ K

Σutk|y = At
kΣxk|yAt,†

k + Σztk
(88)

Σutk|utK\k = At
kΣxk|utK\kA

t,†
k + Σztk

, (89)

6: Compute Σzt+1
k

as in equation 86 for k ∈ K.

7: Compute At+1
k as equation 87, k ∈ K.

8: t← t + 1.
9: until convergence.

7.2.1 DERIVATION OF ALGORITHM 2

We derive the update rules of Algorithm 2 and show that the Gaussian distribution is invariant to the update rules
in Algorithm 1, in line with Theorem 2. First, we recall that if (X1,X2) are jointly Gaussian, then

PX2|X1=x1
= CN (µx2|x1

,Σx2|x1
), (90)

where µx2|x1
:= Kx2|x1

x1, with Kx2|x1
:= Σx2,x1Σ−1

x1
.

Then, for Q(t+1) computed as in equation 21 and equation 22 from P(t), which is a set of Gaussian distributions,
we have

Q
(t+1)

Y|uk
= CN (µy|ut

k
,Σy|ut

k
),

Q
(t+1)

Y|uK
= CN (µy|utK

,Σy|utK
).

Next, we look at the update P(t+1) as in equation 82 from given Q(t+1). First, we have that p(utk) is the
marginal of Ut

k, given by Ut
k ∼ CN (0,Σut

k
) where Σut

k
= At

kΣxkAt,H
k + Σzt

k
.

Then, to compute ψs(utk,xk), first, we note that

EUK\k|xk [DKL(PY |UK\k,xk ||QY |UK\k,uk )] = DKL(PY,UK\k|xk ||QY,UK\k|uk )−DKL(PUK\k|xk ||QUK\k|uk )

(91)

and that for two generic multivariate Gaussian distributions P1 ∼ CN (µ1,Σ1) and P2 ∼ CN (µ2,Σ2) in CN ,
the KL divergence is computed as in equation 80 below.

Applying equation 91 and equation 80 in equation 83 and noting that all involved distributions are
Gaussian, it follows that ψs(utk,xk) is a quadratic form. Then, since p(utk) is Gaussian, the product
log(p(utk) exp(−ψs(utk,xk))) is also a quadratic form, and identifying constant, first and second order terms,
we can write

log p(t+1)(uk|xk) = Z(xk) + (uk − µut+1
k
|xk

)HΣ−1

zt+1
k

(uk − µut+1
k
|xk

), (92)

where Z(xk) is a normalization term independent of uk,

Σ−1

zt+1
k

= Σ−1
ut
k

+ KH
y|ut

k
Σ−1

y|ut
k
Ky|ut

k

+
1

s
KH

yutK\k|u
t
k
Σ−1

yutK\k|u
t
k
KyutK\k|u

t
k
− 1

s
KH

utK\k|u
t
k
Σ−1

utK\k|u
t
k
KutK\k|u

t
k
, (93)

and

µ
ut+1
k
|xk

= Σ
zt+1
k

(
KH

y|ut
k
Σ−1

y|ut
k
µy|xk
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+
1

s
Ky,utK\k|u

t
k
Σ−1

y,utK\k|u
t
k
µy,utK\k|xk

− 1

s
KutK\k|u

t
k
Σ−1

utK\k|u
t
k
µutK\k|xk

)
.

(94)

This shows that p(t+1)(uk|xk) is a multivariate Gaussian distribution and that Ut+1
k |{Xk = xk} is also a

multivariate Gaussian distributed as CN (µ
ut+1
k
|xk
,Σ

zt+1
k

).

Next, we simplify equation 93 and equation 94 to obtain the update rules equation 86 and equation 87. From the
matrix inversion lemma, similarly to Chechik et al. (Feb. 2005), for (X1,X2) jointly Gaussian we have

Σ−1
x2|x1

= Σ−1
x2

+ KH
x1|x2

Σ−1
x1|x2

Kx1|x2
. (95)

Applying equation 95, in equation 93 we have

Σ−1

zt+1
k

= Σ−1
ut
k
|y +

1

s
Σ−1

ut
k
|yutK\k

− 1

s
Σ−1

ut
k
|utK\k

, (96)

=

(
1 +

1

s

)
Σ−1

ut
k
|y −

1

s
Σ−1

ut
k
|utK\k

, (97)

where equation 97 is due to the Markov chain Uk −
−Y −
−UK\k.

Then, also from the matrix inversion lemma, we have for jointly Gaussian (X1,X2),

Σ−1
x2|x1

Σx2,x1Σ−1
x1

= Σ−1
x2

Σx2,x1Σ−1
x1|x2

. (98)

Applying equation 98 to equation 94, for the first term in equation 94, we have

KH
y|ut

k
Σ−1

y|ut
k
µy|xk = Σ−1

ut
k
|yΣy,ut

k
Σ−1

y µy|xk (99)

= Σ−1
ut
k
|yAt

kΣxk,yΣ−1
y Σy,xkΣ−1

xk xk

= Σ−1
ut
k
|yAt

k(I−Σxk|yΣ−1
xk )xk, (100)

where Σy,ut
k

= At
kΣxk,y; and equation 100 is due to the definition of Σxk|y.

Similarly, for the second term in equation 94, we have

KyutK\k|u
t
k
Σ−1

yutK\k|u
t
k
µy,utK\k|xk

= Σ−1
ut
k
|yutK\k

At
k(I−Σxk|yutK\k

Σ−1
xk )xk, (101)

= Σ−1
ut
k
|yAt

k(I−Σxk|yΣ−1
xk )xk, (102)

where we use Σut
k
,yutK\k

= At
kΣxk,yu

t
K\k

; and equation 102 is due to the Markov chain Uk −
−Y−
−UK\k.

For the third term in equation 94,

KutK\k|u
t
k
Σ−1

utK\k|u
t
k
µutK\k|xk

= Σ−1
ut
k
|utK\k

At
k(I−Σxk|utK\k

Σ−1
xk )xk. (103)

Equation equation 87 follows by noting that µ
ut+1
k
|xk

= At+1
k xk, and that from equation 94 At+1

k can be
identified as in equation 87.

Finally, we note that due to equation 85, Σut
k
|y and Σut

k
|utK\k

are given as in equation 88 and equation 89,
where Σxk|y = Σk and Σxk|utK\k

can be computed from its definition. This completes the proof.
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