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ABSTRACT

We study how to set the number of channels in a neural network to achieve bet-
ter accuracy under constrained resources (e.g., FLOPs, latency, memory foot-
print or model size). A simple and one-shot approach, named AutoSlim, is
presented. Instead of training many network samples and searching with rein-
forcement learning, we train a single slimmable network to approximate the net-
work accuracy of different channel configurations. We then iteratively evaluate
the trained slimmable model and greedily slim the layer with minimal accuracy
drop. By this single pass, we can obtain the optimized channel configurations
under different resource constraints. We present experiments with MobileNet v1,
MobileNet v2, ResNet-50 and RL-searched MNasNet on ImageNet classification.
We show significant improvements over their default channel configurations. We
also achieve better accuracy than recent channel pruning methods and neural ar-
chitecture search methods with 100× lower search cost.
Notably, by setting optimized channel numbers, our AutoSlim-MobileNet-v2
at 305M FLOPs achieves 74.2% top-1 accuracy, 2.4% better than default
MobileNet-v2 (301M FLOPs), and even 0.2% better than RL-searched MNasNet
(317M FLOPs). Our AutoSlim-ResNet-50 at 570M FLOPs, without depthwise
convolutions, achieves 1.3% better accuracy than MobileNet-v1 (569M FLOPs).

1 INTRODUCTION

The channel configuration (a.k.a.. filter numbers or channel numbers) of a neural network plays a
critical role in its affordability on resource constrained platforms, such as mobile phones, wearables
and Internet of Things (IoT) devices. The most common constraints (Liu et al., 2017b; Huang et al.,
2017; Wang et al., 2017; Han et al., 2015a), i.e., latency, FLOPs and runtime memory footprint,
are all bound to the number of channels. For example, in a single convolution or fully-connected
layer, the FLOPs (number of Multiply-Adds) increases linearly by the output channels. The memory
footprint can also be reduced (Sandler et al., 2018) by reducing the number of channels in bottleneck
convolutions for most vision applications (Sandler et al., 2018; Howard et al., 2017; Ma et al., 2018;
Zhang et al., 2017b).

Despite its importance, the number of channels has been chosen mostly based on heuristics. LeNet-
5 (LeCun et al., 1998) selected 6 channels in its first convolution layer, which is then projected to
16 channels after sub-sampling. AlexNet (Krizhevsky et al., 2012) adopted five convolutions with
channels equal to 96, 256, 384, 384 and 256. A commonly used heuristic, the “half size, double
channel” rule, was introduced in VGG nets (Simonyan & Zisserman, 2014), if not earlier. The rule
is that when spatial size of feature map is halved, the number of filters is doubled. This heuristic
has been more-or-less used in followup network architecture designs including ResNets (He et al.,
2016; Xie et al., 2017), Inception nets (Szegedy et al., 2015; 2016; 2017), MobileNets (Sandler et al.,
2018; Howard et al., 2017) and networks for many vision applications. Other heuristics have also
been explored. For example, the pyramidal rule (Han et al., 2017; Zhang et al., 2017a) suggested to
gradually increase the channels in all convolutions layer by layer, regardless of spatial size. Figure 1
visually summarizes these heuristics for setting channel numbers in a neural network.

Beyond the macro-level heuristics across entire network, recent works (Sandler et al., 2018; He
et al., 2016; Zhang et al., 2017a; Tan et al., 2018; Cai et al., 2018) have also digged into channel
configuration for micro-level building blocks (a network building block is usually composed of
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Figure 1: Various heuristics for setting channel numbers across entire network ((A) − (B)) (Si-
monyan & Zisserman, 2014; Han et al., 2017; Zhang et al., 2017a), and inside network building
blocks ((a) − (f)) (Sandler et al., 2018; He et al., 2016; Han et al., 2017; Zhang et al., 2017a; Tan
et al., 2018; Cai et al., 2018).

several 1×1 and 3×3 convolutions). These micro-level heuristics have led to better speed-accuracy
trade-offs. The first of its kind, bottleneck residual block, was introduced in ResNet (He et al.,
2016). It is composed of 1× 1, 3× 3, and 1× 1 convolutions, where the 1× 1 layers are responsible
for reducing and then restoring dimensions, leaving the 3 × 3 layer a bottleneck (4× reduction).
MobileNet v2 (Sandler et al., 2018), however, argued that the bottleneck design is not efficient and
proposed the inverted residual block where 1 × 1 layers are used for expanding feature first (6×
expansion) and then projecting back after intermediate 3 × 3 depthwise convolution. Furthermore,
MNasNet (Tan et al., 2018) and ProxylessNAS nets (Cai et al., 2018) included 3× expansion version
of inverted residual block into search space, and achieved even better accuracy under similar runtime
latency.

Apart from these human-designed heuristics, efforts on automatically optimizing channel configura-
tion have been made explicitly or implicitly. A recent work (Liu et al., 2018c) suggested that many
network pruning methods (Liu et al., 2017b; Li et al., 2016; Luo et al., 2017; He et al., 2017; Huang
& Wang, 2018; Han et al., 2015b) can be thought of as performing network architecture search
for channel numbers. Liu et al. (Liu et al., 2018c) showed that training these pruned architectures
from scratch leads to similar or even better performance than fine-tuning and pruning from a large
model. More recently, MNasNet (Tan et al., 2018) proposed to directly search network architec-
tures, including filter sizes, using reinforcement learning algorithms (Schulman et al., 2017; Heess
et al., 2017). Although the search is performed on the factorized hierarchical search space, massive
network samples and computational cost (Tan et al., 2018) are required for an optimized network
architecture.

In this work, we study how to set channel numbers in a neural network to achieve better accuracy
under constrained resources. To start, the first and the most brute-force approach came in mind is
the exhaustive search: training all possible channel configurations of a deep neural network for full
epochs (e.g., MobileNets (Sandler et al., 2018; Howard et al., 2017) are trained for approximately
480 epochs on ImageNet). Then we can simply select the best performers that are qualified for
efficiency constraints. However, it is undoubtedly impractical since the cost of this brute-force
approach is too high. For example, we consider a 8-layer convolutional networks and a search space
limited to 10 candidates of channel numbers (e.g., 32, 64, ..., 320) for each layer. As a result, there
are totally 108 candidate network architectures.

To address this challenge, we present a simple and one-shot solution AutoSlim. Our main idea lies
in training a slimmable network (Yu et al., 2018) to approximate the network accuracy of different
channel configurations. Yu et al. (Yu et al., 2018; Yu & Huang, 2019) introduced slimmable net-
works that can run at arbitrary width with equally or even better performance than same architecture
trained individually. Although the original motivation is to provide instant and adaptive accuracy-
efficiency trade-offs, we find slimmable networks are especially suitable as benchmark performance
estimators for several reasons: (1) Training slimmable models (using the sandwich rule (Yu &
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Huang, 2019)) is much faster than the brute-force approach. (2) A trained slimmable model can
execute at arbitrary width, which can be used to approximate relative performance among different
channel configurations. (3) The same trained slimmable model can be applied on search of optimal
channels for different resource constraints.

In AutoSlim, we first train a slimmable model for a few epochs (e.g., 10% to 20% of full training
epochs) to quickly get a benchmark performance estimator. We then iteratively evaluate the trained
slimmable model and greedily slim the layer with minimal accuracy drop on validation set (for
ImageNet, we randomly hold out 50K samples of training set as validation set). After this single
pass, we can obtain the optimized channel configurations under different resource constraints (e.g.,
network FLOPs limited to 150M, 300M and 600M). Finally we train these optimized architectures
individually or jointly (as a single slimmable network) for full training epochs. We experiment with
various networks including MobileNet v1, MobileNet v2, ResNet-50 and RL-searched MNasNet
on the challenging setting of 1000-class ImageNet classification. AutoSlim achieves better results
(with much lower search cost) compared with three baselines: (1) the default channel configuration
of these networks, (2) channel pruning methods on same network architectures (Luo et al., 2017; He
et al., 2017; Yang et al., 2018) and (3) reinforcement learning based architecture search methods (He
et al., 2018; Tan et al., 2018).

2 RELATED WORK

2.1 ARCHITECTURE SEARCH FOR CHANNEL NUMBERS

In this part, we mainly discuss previous methods on automatic architecture search for channel num-
bers. Human-designed heuristics have been introduced in Section 1 and visually summarized in
Figure 1.

Channel Pruning. Channel pruning (a.k.a., network slimming) methods (Liu et al., 2017b; He et al.,
2017; Ye et al., 2018; Huang et al., 2018; Lee et al., 2018) aim at reducing effective channels of a
large neural network to speedup its inference. Both training-based, inference-time and initialization-
time pruning methods have been proposed (Liu et al., 2017b; He et al., 2017; Ye et al., 2018; Huang
et al., 2018; Lee et al., 2018; Frankle & Carbin, 2018) in the literature. Here we selectively review
two methods (Liu et al., 2017b; He et al., 2017). He et al. (He et al., 2017) proposed an inference-
time approach based on an iterative two-step algorithm: the LASSO based channel selection and
the least square feature reconstruction. Liu et al. (Liu et al., 2017b), on the other hand, trained
neural networks with a `1 regularization on the scaling factors in batch normalization (BN) (Ioffe
& Szegedy, 2015). By pushing the factors towards zero, insignificant channels can be identified
and removed. In a recent work (Liu et al., 2018c), Liu et al.suggested that many network pruning
methods (Liu et al., 2017b; Li et al., 2016; Luo et al., 2017; He et al., 2017; Huang & Wang, 2018;
Han et al., 2015b) can be thought of as performing network architecture search for channel num-
bers. In experiments, Liu et al. (Liu et al., 2018c) showed that training these pruned architectures
from scratch leads to similar or even better performance than iteratively fine-tuning and pruning a
large model. Thus, Liu et al. (Liu et al., 2018c) concluded that training a large, over-parameterized
model is not necessary to obtain an efficient final model. In our work, we take channel pruning
methods (Luo et al., 2017; He et al., 2017; 2018) as one of baselines.

Neural Architecture Search (NAS). Recently there has been a growing interest in automating the
neural network architecture design (Tan et al., 2018; Cai et al., 2018; Elsken et al., 2018; Bender
et al., 2018; Pham et al., 2018; Zoph et al., 2018; Liu et al., 2018a; 2017a; 2018b; Brock et al.,
2017). Significant improvements have been achieved by these automatically searched architectures
in many vision and language tasks (Zoph et al., 2018; Zoph & Le, 2016). However, most neural
architecture search methods (Elsken et al., 2018; Bender et al., 2018; Pham et al., 2018; Zoph et al.,
2018; Liu et al., 2018a; 2017a; 2018b; Brock et al., 2017) did not include channel configuration into
search space, and instead applied human-designed heuristics. More recently, the RL-based search-
ing algorithms are also applied to prune channels (He et al., 2018) or search for filter numbers (Tan
et al., 2018) directly. He et al.proposed AutoML for Model Compression (AMC) (He et al., 2018)
which leveraged reinforcement learning (deep deterministic policy gradient (Lillicrap et al., 2015))
to provide the model compression policy. MNasNet (Tan et al., 2018) proposed to directly search
network architectures, including filter sizes, for mobile devices. In the search, each sampled model
is trained on 5 epochs using an aggressive learning rate schedule, and evaluated on a 50K validation
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set. In total, Tan et al.sampled about 8, 000 models during architecture search. Further, Proxyless-
NAS (Cai et al., 2018) proposed to directly learn the architectures for large-scale target tasks and
target hardware platforms, based on DARTS (Liu et al., 2018b). For each residual block, Proxy-
lessNAS (Cai et al., 2018) followed the channel configuration of MNasNet (Tan et al., 2018), while
inside each block, the choices can be ×3 or ×6 version of inverted residual blocks. The memory
consumption issue (Cai et al., 2018; Liu et al., 2018b) was addressed by binarizing the architecture
parameters and forcing only one path to be active.

2.2 SLIMMABLE NETWORKS

Slimmable networks were firstly introduced in (Yu et al., 2018). A general slimmable training al-
gorithm and the switchable batch normalization were introduced to train a single neural network
executable at different widths, permitting instant and adaptive accuracy-efficiency trade-offs at run-
time. However, one drawback of the switchable batch normalization is that the width can only be
chosen from a predefined widths set. The drawback was addressed in (Yu & Huang, 2019), where
the authors introduced universally slimmable networks, extending slimmable networks to execute
at arbitrary width, and generalizing to networks both with and without batch normalization layers.
Meanwhile, two improved training techniques, the sandwich rule and inplace distillation, were pro-
posed (Yu & Huang, 2019) to enhance training process and boost testing accuracy. Moreover, with
the proposed methods, one can train nonuniform universally slimmable networks, where the width
ratio is not uniformly applied to all layers. In other words, each layer in a nonuniform universally
slimmable network can adjust its number of channels independently during inference. In this work,
we simply refer to nonuniform universally slimmable networks as slimmable networks, if not ex-
plicitly noted. While the original motivation (Yu et al., 2018; Yu & Huang, 2019) of slimmable
networks is to provide instant and adaptive accuracy-efficiency trade-offs at runtime for different
devices, we present an approach that uses slimmable networks for searching channel configurations
of deep neural networks.

3 AUTOSLIM: NETWORK SLIMMING BY SLIMMABLE NETWORKS

Figure 2: The flow diagram of our proposed approach AutoSlim.

In this section, we first present an overview of our proposed approach for searching channel config-
uration of neural networks. We then discuss and analyze the difference of our approach compared
with other baselines, i.e., network pruning methods and network architecture search methods. Af-
terwards we present each individual module in our proposed solution and discuss its non-trivial
details.

3.1 OVERVIEW

The goal of channel configuration search is to optimize the number of channels in each layer, such
that the network architecture with optimized channel configuration can achieve better accuracy under
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constrained resources. The constraints can be FLOPs, latency, memory footprint or model size. Our
approach is conceptually simple, and it has two essential steps:

(1) Given a network architecture (e.g., MobileNets, ResNets), we first train a slimmable model for
a few epochs (e.g., 10% to 20% of full training epochs). During the training, many different sub-
networks with diverse channel configurations have been sampled and trained. Thus, after training
one can directly sample its sub-network architectures for instant inference, using the correspondent
computational graph and same trained weights.

(2) Next, we iteratively evaluate the trained slimmable model on the validation set. In each iteration,
we decide which layer to slim by comparing their feed-forward evaluation accuracy on validation
set. We greedily slim the layer with minimal accuracy drop, until reaching the efficiency constraints.
No training is required in this step.

The flow diagram of our approach is shown in Figure 2. Our approach is also flexible for different
resource constraints, since the FLOPs, latency, memory footprint and model size are all deterministic
given a channel configuration and a runtime environment. By a single pass of greedy slimming in
step (2), we can obtain the (FLOPs, latency, memory footprint, model size, accuracy) tuples of
different channel configurations. It is noteworthy that the latency and accuracy are relative values,
since the latency may be different across different hardware and the accuracy can be improved by
training the network for full epochs. In the setting of optimizing channel numbers, we benefit from
these relative values as performance estimators.

Network 
architecture

Train with 
channel sparsity 
regularization

Prune channels 
with small scaling 

factors

Fine-tune the 
pruned network Efficient network

(a) The pipeline of network pruning methods (Liu
et al., 2017b).

Network 
architecture 
search space

Search agent

Sample and train 
networks

Evaluate and 
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Efficient network 
architecture

Train agent and 
update policy

(b) The pipeline of network architecture search
methods (Tan et al., 2018; He et al., 2018)

Discussion. We compare the flow diagram of our approach with the baselines, i.e., network pruning
methods and network architecture search methods.

Many network channel pruning methods (Liu et al., 2017b; Han et al., 2015a; Luo et al., 2017; Han
et al., 2015b) follow a typical iterative training-pruning-finetuning pipeline, as shown in Figure 3a.
For example, Liu et al. (Liu et al., 2017b) trained neural networks with a `1 regularization on the
scaling factors in batch normalization (BN). After training, the method obtains channels in which
many scaling factors are near zero for pruning. Pruning will temporarily lead to accuracy loss, thus
the fine-tuning process and a repetitive multi-pass procedure are introduced for enhancement of final
accuracy. Compared with our approach, a notable difference is that most network channel pruning
methods are grounded on the importance of trained weights, thus the slimmed layer usually con-
sists channels of discrete index (e.g., the 4th, 7th, 9th channel are left as important channels while
all others are pruned). In our approach, after slimmable training, the importance of the weight is
implicitly ranked by its index. Thus our approach focuses more on the importance of channel
numbers, and we always keep the lower-index channels (e.g., all 1st to 3rd channels are left while
4th to 10th channels are slimmed in step (2)). We demonstrate the advantage of our approach by
empirical evidences on ImageNet classification with various network architectures.

Network architecture search methods (Tan et al., 2018; Cai et al., 2018; Zoph et al., 2018; Zoph & Le,
2016) commonly consist of three major components: search space, search strategy, and performance
estimation strategy. A typical pipeline is shown in Figure 3b. First the search space is defined,
based on which the search agent samples network architectures. The architecture is then passed to a
performance estimator, which returns rewards (e.g., predictive accuracy after training and/or network
runtime latency) to the search agent. In the process, the search agent learns from the repetitive loop to
design better network architectures. One major drawback of network architecture search methods is
their high computational cost and time cost (Pham et al., 2018; Liu et al., 2018b). Although recently
differentiable architecture search methods (Liu et al., 2018b; Luo et al., 2018) were proposed, they
cannot be applied on search of channel numbers directly. Most of them (Liu et al., 2018b; Luo et al.,
2018) were still using human-designed heuristics for setting channel numbers, which may introduce
human bias.
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3.2 TRAINING SLIMMABLE NETWORKS

Warmup. We warmup by a brief review of training techniques for slimmable networks. More
details can be found in (Yu et al., 2018; Yu & Huang, 2019). Slimmable networks were firstly
introduced and trained with switchable batch normalization (Ioffe & Szegedy, 2015), which em-
ployed individual BNs for different sub-networks. During training, features are normalized with
current mini-batch mean and variance, thus a simple modification to switchable batch normalization
is introduced in (Yu & Huang, 2019): re-calibrating BN statistics after training. With this simple
modification, one can train universally slimmable networks (Yu & Huang, 2019) that can run with
arbitrary channel numbers. Moreover, two improved training techniques the sandwich rule and in-
place distillation were introduced to enhance training process and boost testing accuracy. We use all
these techniques in training slimmable models by default.

Assumption. Our approach lies in the assumption that the slimmable model is a good accuracy
estimator of individually trained models given same channel configuration. More specifically, we are
interested in the relative ranking of accuracy among networks with different channel configurations.
We use the instant inference accuracy of a slimmable model as the performance estimator. We note
that assumptions and approximations commonly exist in other related methods. For example, in
network channel pruning methods (Liu et al., 2017b; He et al., 2017), one may assume that weights
with smaller norm are less informative and can be pruned, which may not be the case as shown in (Ye
et al., 2018). Recently the Lottery Ticket Hypothesis (Frankle & Carbin, 2018) was also introduced.
In network architecture search methods (Tan et al., 2018; Cai et al., 2018), one may believe the
transferability among different datasets, accuracy approximations using aggressive learning rates
and fewer training epochs, and approximation in runtime latency modeling.

The Search Space. The executable sub-networks in a slimmable model compose the search space of
channel configurations given a network architecture. To train a slimmable model, we simply apply
two width multipliers (Howard et al., 2017; Yu & Huang, 2019) as the upper bound and lower bound
of channel numbers. For example, for all mobile networks (Sandler et al., 2018; Howard et al., 2017;
Tan et al., 2018; Cai et al., 2018), we train a slimmable model that can execute between 0.15× and
1.5×. In each training iteration, we randomly and independently sample the number of channels in
each layer. It is noteworthy that in residual networks, we first sample the channel number of residual
identity pathway and then randomly and independently sample channel number inside each residual
block. Moreover, we make all layers in a neural network slimmable, including the first convolution
layer and last fully-connected layer. In each layer, we divide the channels into groups evenly (e.g.,
10 groups) to reduce the search space. In other words, during training or slimming, we sample or
remove an entire group, instead of an individual channel. We note that even with channel grouping,
the search space is still large. For example in a 10-layer network with 10 channel groups in each
layer, the total number of candidate channel configurations is 1010.

We implement a distributed training framework with synchronized stochastic gradient descent
(SGD) on PyTorch (Paszke et al., 2017). We set different random seeds in different processes such
that each GPU samples diverse channel configurations in each SGD training step. All other tech-
niques introduced in (Yu et al., 2018) and distributed training techniques introduced in (Goyal et al.,
2017) are used by default. All code will be released.

3.3 GREEDY SLIMMING

After training a slimmable model, we evaluate it on the validation set (on ImageNet (Deng et al.,
2009) we randomly hold out 50K images in training set as validation set). We start with the largest
model (e.g., 1.5×) and compare the network accuracy among the architectures where each layer
is slimmed by one channel group. We then greedily slim the layer with minimal accuracy drop.
During the iterative slimming, we obtain optimized channel configurations under different resource
constraints. We stop until reaching the strictest constraint (e.g., 50M FLOPs or 30ms CPU latency).

Large Batch Size. During greedy slimming, no training is involved. Thus we directly put the model
in evaluation mode (no gradients are required), which enables us to use a larger batch size (for
example during slimming we use mini-batch size 2048 for each GPU with totally 8 V100 GPUs).
Large batch size brings two benefits. First, previous work (Yu & Huang, 2019) shows that BN
statistics will be accurate if it is calibrated with the batch size larger than 2K. Thus post-statistics
of BN in our greedy slimming can be computed online without additional cost. Second, with large
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batch size we can simply use single feed-forward prediction accuracy as the performance estimator.
In practice we find it speeds up greedy slimming and simplifies implementation without affecting
final performance.

Training Optimized Networks. Similar to architecture search methods, after the search, we train
these optimized network architectures from scratch. By default we search for the network FLOPs at
approximately 200M, 300M and 500M, and train a slimmable model.

4 EXPERIMENTS

4.1 MAIN RESULTS

Table 1 summarizes our results on ImageNet (Deng et al., 2009) classification with various network
architectures including MobileNet v1 (Howard et al., 2017), MobileNet v2 (Sandler et al., 2018),
MNasNet (Tan et al., 2018), and one large model ResNet-50 (He et al., 2016). We compare our
results with their default channel configurations and recent channel pruning methods (Luo et al.,
2017; He et al., 2017; 2018). The top-1 errors of our baselines are from corresponding works (San-
dler et al., 2018; Howard et al., 2017; He et al., 2016; Tan et al., 2018; Luo et al., 2017; He et al.,
2017; 2018). To have a clear view, we divide the network architectures into four groups, namely,
200M FLOPs, 300M FLOPs, 500M FLOPs and heavy models (basically ResNet-50 based models).
We evaluate their latency on same hardware environment with single-core CPU to ensure fairness.
Device memory is reported as a summary of all feature maps and weights. We note that the memory
footprint can be largely optimized by improving memory reusing and implementation of dedicated
operators. For example, the inverted residual block can be optimized by splitting channels into
groups and performing partial execution for multiple times (Sandler et al., 2018). For all network
architectures we train 50 epochs with squeezed learning rate schedule to obtain a slimmable model
for greedy slimming. After search, we train the optimized network architectures for full epochs (300
epochs with linearly decaying learning rate for mobile networks, 100 epochs with step learning rate
schedule for ResNet-50 based models) with other training settings following previous works (San-
dler et al., 2018; Howard et al., 2017; Ma et al., 2018; Zhang et al., 2017b; He et al., 2016; Yu et al.,
2018; Yu & Huang, 2019) (weight initialization, weight decay, data augmentation, training/testing
image resolution, optimizer, hyper-parameters of batch normalization). We exclude the parame-
ters and FLOPs of Batch Normalization layers (Ioffe & Szegedy, 2015) following common practice
since they can be fused into convolution layers.

As shown in Table 1, our models have better top-1 accuracy compared with the default channel con-
figuration of MobileNet v1, MobileNet v2 and ResNet-50 across different computational budgets.
We even have improvements over RL-searched MNasNet (Tan et al., 2018), where the filter num-
bers are already included in its search space. Notably, by setting optimized channel numbers, our
AutoSlim-MobileNet-v2 at 305M FLOPs achieves 74.2% top-1 accuracy, 2.4% better than default
MobileNet-v2 (301M FLOPs), and even 0.2% better than RL-searched MNasNet (317M FLOPs).
Our AutoSlim-ResNet-50 at 570M FLOPs, without depthwise convolutions, achieves 1.3% better
accuracy than MobileNet-v1 (569M FLOPs).

4.2 VISUALIZATION AND DISCUSSION

In this part, we visualize our optimized channel configurations and discuss some insights from the
results.

Comparison with Default Channel Numbers. We first compare our results with default channels
in MobileNet v2 (Sandler et al., 2018). We show the optimized number of channels (left) and the
percentage compared with default channels (right) in Figure 4. Compared with default MobileNet
v2, our optimized configuration has fewer channels in shallow layers and more channels in deep
ones.

Comparison with Width Multiplier Heuristic. Applying width multiplier (Howard et al., 2017),
a global hyper-parameter across all layers, is a commonly used heuristic to trade off between model
accuracy and efficiency (Sandler et al., 2018; Howard et al., 2017; Ma et al., 2018; Zhang et al.,
2017b). We search optimal channels at 207M, 305M and 505M FLOPs corresponding to MobileNet
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Table 1: ImageNet classification results with various network architectures. Blue indicates the net-
work pruning methods (Liu et al., 2018c; Luo et al., 2017; He et al., 2017; 2018; Yang et al., 2018),
Cyan indicates the network architecture search methods (Tan et al., 2018; Zoph et al., 2018; Liu
et al., 2018a; Zhang et al., 2018) and Red indicates our results using AutoSlim.

Group Model Params Memory CPU Latency FLOPs Top-1 Err. (gain)

200M FLOPs

ShuffleNet v1 1.0× 1.8M 4.9M 46ms 138M 32.6
ShuffleNet v2 1.0× - - - 146M 30.6
MobileNet v1 0.5× 1.3M 3.8M 33ms 150M 36.7
MobileNet v2 0.75× 2.6M 8.5M 71ms 209M 30.2

AMC-MobileNet v2 2.3M 7.3M 68ms 211M 29.2 (1.0)

MNasNet 0.75× 3.1M 7.9M 65ms 216M 28.5

AutoSlim-MobileNet v1 1.9M 4.2M 33ms 150M 32.1 (4.6)
AutoSlim-MobileNet v2 4.1M 9.1M 70ms 207M 27.0 (3.2)
AutoSlim-MNasNet 4.0M 7.5M 62ms 217M 26.8 (1.7)

300M FLOPs

ShuffleNet v1 1.5× 3.4M 8.0M 60ms 292M 28.5
ShuffleNet v2 1.5× - - - 299M 27.4
MobileNet v1 0.75× 2.6M 6.4M 48ms 325M 31.6
MobileNet v2 1.0× 3.5M 10.2M 81ms 300M 28.2

NetAdapt-MobileNet v1 - - - 285M 29.9 (1.7)
AMC-MobileNet v1 1.8M 5.6M 46ms 285M 29.5 (2.1)

MNasNet 1.0× 4.3M 9.8M 76ms 317M 26.0

AutoSlim-MobileNet v1 4.0M 6.8M 43ms 325M 28.5 (3.1)
AutoSlim-MobileNet v2 5.7M 10.9M 77ms 305M 25.8 (2.4)
AutoSlim-MNasNet 6.0M 10.3M 71ms 315M 25.4 (0.6)

500M FLOPs

ShuffleNet v1 2.0× 5.4M 11.6M 92ms 524M 26.3
ShuffleNet v2 2.0× - - - 591M 25.1
MobileNet v1 1.0× 4.2M 9.3M 64ms 569M 29.1
MobileNet v2 1.3× 5.3M 14.3M 106ms 509M 25.6

MNasNet 1.3× 6.8M 14.2M 95ms 535M 24.5
NASNet-A - - - 564M 26.0
PNASNet-5 - - - 588M 25.8
Graph-HyperNetwork - - - 569M 27.0

AutoSlim-MobileNet v1 4.6M 9.5M 66ms 572M 27.0 (2.1)
AutoSlim-MobileNet v2 6.5M 14.8M 103ms 505M 24.6 (1.0)
AutoSlim-MNasNet 8.3M 14.2M 95ms 532M 24.5

Heavy Models

ResNet-50 25.5M 36.6M 197ms 4.1G 23.9
ResNet-50 0.75× 14.7M 23.1M 133ms 2.3G 25.1
ResNet-50 0.5× 6.8M 12.5M 81ms 1.1G 27.9
ResNet-50 0.25× 1.9M 4.8M 44ms 278M 35.0

He-ResNet-50 - - - ≈2.0G 27.2

ThiNet-ResNet-50
- - - ≈2.9G 27.0
- - - ≈2.1G 28.0
- - - ≈1.2G 30.6

AutoSlim-ResNet-50

23.1M 32.3M 165ms 3.0G 24.0
20.6M 27.6M 133ms 2.0G 24.4
13.3M 18.2M 91ms 1.0G 26.0

7.4M 11.5M 69ms 570M 27.8

v2 0.75×, 1.0× and 1.3×. Figure 5a shows the pattern that under different budgets, AutoSlim applies
different width scaling in each layer.

Comparison with Model Pruning Methods. Next, we compare our optimized channel configu-
ration with model pruning method AMC (He et al., 2018). In Figure 5a, we show the number of
channels in all layers of optimized MobileNet v2. We observe several characteristics of our op-
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inverted residual

Output Channels

Figure 4: The optimized number of channels (left) and the percentage compared with default chan-
nels (right) of MobileNet v2. The channels of depthwise convolutions are ignored in the figure,
since its output channels are always equal to the previous 1× 1 convolution outputs.

Table 2: CIFAR10 classification results with default MobileNet v2 and AutoSlim-MobileNet-v2.

Model Parameters FLOPs Top-1 Err.

MobileNet v2 1.0× 2.2M 88M 8.1
MobileNet v2 0.75× 1.3M 59M 8.6
MobileNet v2 0.5× 0.7M 28M 10.4

AutoSlim-MobileNet v2 1.5M 88M 6.8 (1.3)
AutoSlim-MobileNet v2 0.7M 59M 7.0 (1.6)
AutoSlim-MobileNet v2 0.3M 28M 8.0 (2.4)

timized channel configurations. First, AutoSlim-MobileNet-v2 has much more channels in deep
layers, especially for deep depthwise convolutions. For example, AutoSlim-MobileNet-v2 has 1920
channels in the second last layer, compared with 848 channels in AMC-MobileNet-v2. Second,
AutoSlim-MobileNet-v2 has fewer channels in shallow layers. For example, AutoSlim-MobileNet-
v2 has only 8 channels in first convolution layer, while AMC-MobileNet-v2 has 24 channels. It is
noteworthy that although shallow layers have a small number of channels, the spatial size of feature
maps is large. Thus overall these layers take up large computational overheads.

4.3 CIFAR10 EXPERIMENTS

In addition to ImageNet dataset, we also conduct experiments on CIFAR10 (Krizhevsky, 2009)
dataset. We use same weight decay hyper-parameter, initial learning rate and learning rate schedule
as ImageNet experiments. We note that these training settings may not be optimal for CIFAR10

9



Under review as a conference paper at ICLR 2020

0 250 500 750 1000 1250 1500 1750 2000
number of channels

0

5

10

15

20

25

30

35

la
ye

r i
nd

ex

AutoSlim-MobileNet-v2, 207M FLOPs
AutoSlim-MobileNet-v2, 305M FLOPs
AutoSlim-MobileNet-v2, 505M FLOPs

(a) The channels of AutoSlim-MobileNet-v2 at 207M,
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(b) The channels of AutoSlim-MobileNet-v2 com-
pared with AMC-MobileNet-v2.

Table 3: CIFAR10 results with AutoSlim-MobileNet-v2 searched on CIFAR10 or ImageNet.

Model Searched On FLOPs Top-1 Err.

MobileNet v2 0.75× - 59M 8.6
AutoSlim-MobileNet v2 CIFAR10 59M 7.0 (1.6)
AutoSlim-MobileNet v2 ImageNet 63M 9.9 (-1.3)

dataset, nevertheless we report ablative study with same hyper-parameters and settings. We first
report the performance of MobileNet v2 (Sandler et al., 2018) with the default channel configura-
tions. We then search with proposed AutoSlim to obtain optimized channel configurations at same
FLOPs (we hold out 5K images from training set as validation set during the search). Finally we
train the optimized architectures individually with same settings as the baselines. Table 2 shows that
AutoSlim models have higher accuracy than baselines on CIFAR10 dataset.

We further study the transferability of the network architectures learned from ImageNet to CIFAR10
dataset, and compare it with the channel configuration searched on CIFAR10 directly. The results
are shown in Table 3. It suggests that the optimized channel configuration on ImageNet cannot
generalize to CIFAR10. Compared with the optimized architecture for ImageNet, we observed that
the optimized architecture for CIFAR10 have much fewer channels in deep layers, which we guess
may lead to better generalization on test set for small datasets like CIFAR10. It may also due to the
inconsistent image resolutions between ImageNet (224× 224) and CIFAR10 (32× 32).

5 CONCLUSION

We presented, AutoSlim, a simple and one-shot approach on neural architecture search for the num-
ber of channels to achieve better accuracy under constrained resources. We demonstrated the effec-
tiveness of AutoSlim with extensive experiments on large-scale ImageNet classification and various
network backbones including MobileNet v1, MobileNet v2, ResNet-50 and RL-searched MNasNet.
AutoSlim achieved significant improvements (with much lower search cost) compared with three
categories of baselines: the human-designed heuristics, channel pruning methods and architecture
search methods based on reinforcement learning. Our proposed solution AutoSlim automates the
design of channel configurations in a neural network for resource constrained devices.
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