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ABSTRACT

Some conventional transforms such as Discrete Walsh-Hadamard Transform
(DWHT) and Discrete Cosine Transform (DCT) have been widely used as feature
extractors in image processing but rarely applied in neural networks. However,
we found that these conventional transforms have the ability to capture the cross-
channel correlations without any learnable parameters in DNNs. This paper firstly
proposes to apply conventional transforms on pointwise convolution, showing that
such transforms significantly reduce the computational complexity of neural net-
works without accuracy performance degradation. Especially for DWHT, it re-
quires no floating point multiplications but only additions and subtractions, which
can considerably reduce computation overheads. In addition, its fast algorithm
further reduces complexity of floating point addition from O(n2) to O(n log n).
These non-parametric and low computational properties construct extremely effi-
cient networks in the number parameters and operations, enjoying accuracy gain.
Our proposed DWHT-based model gained 1.49% accuracy increase with 79.4%
reduced parameters and 48.4% reduced FLOPs compared with its baseline model
(MoblieNet-V1) on the CIFAR 100 dataset.

1 INTRODUCTION

Large Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; He et al., 2016; Szegedy et al., 2016b;a) and automatic Neural Architecture Search (NAS)
based networks (Zoph et al., 2018; Liu et al., 2018; Real et al., 2018) have evolved to show re-
markable accuracy on various tasks such as image classification (Deng et al., 2009; Krizhevsky &
Hinton, 2009), object detection (Lin et al., 2014), benefitted from huge learnable parameters and
computations. However, these large number of weights and high computations enabled only limited
applications for mobile devices that require the constraint on memory space being low as well as for
devices that require real-time computations (Canziani et al., 2016).

With regard to solving these problems, Howard et al. (2017); Sandler et al. (2018); Zhang et al.
(2017); Ma et al. (2018) proposed parameter and computation efficient blocks while maintaining
almost same accuracy compared to other heavy CNN models. All of these blocks utilized depthwise
separable convolution, which deconstructed the standard convolution with the (3 × 3 × C) size for
each kernel into spatial information specific depthwise convolution (3 × 3 × 1) and channel infor-
mation specific pointwise (1 × 1 × C) convolution. The depthwise separable convolution achieved
comparable accuracy compared to standard spatial convolution with hugely reduced parameters and
FLOPs. These reduced resource requirements made the depthwise separable convolution as well as
pointwise convolution (PC) more widely used in modern CNN architectures.

Nevertheless, we point out that the existing PC layer is still computationally expensive and occupies
a lot of proportion in the number of weight parameters (Howard et al., 2017). Although the demand
toward PC layer has been and will be growing exponentially in modern neural network architectures,
there has been a little research on improving the naive structure of itself.

Therefore, this paper proposes a new PC layer formulated by non-parametric and extremely fast
conventional transforms. Conventional transforms that we applied on CNN models are Discrete
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Walsh-Hadamard Transform (DWHT) and Discrete Cosine Transform (DCT), which have widely
been used in image processing but rarely been applied in CNNs (Ghosh & Chellappa, 2016).

We empirically found that although both of these transforms do not require any learnable parameters
at all, they show the sufficient ability to capture the cross-channel correlations. This non-parametric
property enables our proposed CNN models to be significantly compressed in terms of the number
of parameters, leading to get the advantages (i.e. efficient distributed training, less communication
between server and clients) referred by Iandola et al. (2016). We note that especially DWHT is
considered to be a good replacement of the conventional PC layer, as it requires no floating point
multiplications but only additions and subtractions by which the computation overheads of PC lay-
ers can significantly be reduced. Furthermore, DWHT can take a strong advantage of its fast ver-
sion where the computation complexity of the floating point operations is reduced from O(n2) to
O(n log n). These non-parametric and low computational properties construct extremely efficient
neural network from the perspective of parameter and computation as well as enjoying accuracy
gain.

Our contributions are summarized as follows:

• We propose a new PC layer formulated with conventional transforms which do not require
any learnable parameters as well as significantly reducing the number of floating point
operations compared to the existing PC layer.

• The great benefits of using the bases of existing transforms come from their fast versions,
which drastically decrease computation complexity in neural networks without degrading
accuracy performance.

• We found that applying ReLU after conventional transforms discards important information
extracted, leading to significant drop in accuracy. Based on this finding, we propose the
optimal computation block for conventional transforms.

• We also found that the conventional transforms can effectively be used especially for ex-
tracting high-level features in neural networks. Based on this, we propose a new transform-
based neural network architecture. Specifically, using DWHT, our proposed method yields
1.49% accuracy gain as well as 79.4% and 48.4% reduced parameters and FLOPs, respec-
tively, compared with its baseline model (MobileNet-V1) on CIFAR 100 dataset.

2 RELATED WORK

2.1 DECONSTRUCTION AND DECOMPOSITION OF CONVOLUTIONS

For reducing computation complexity of the existing convolution methods, several approaches of
rethinking and deconstructing the naive convolution structures have been presented. Simonyan &
Zisserman (2014) factorized a large sized kernel (e.g. 5 × 5) in a convolution layer into several
small size kernels (e.g. 3 × 3) with several convolution layers. Jeon & Kim (2017) pointed out the
limitation of existing convolution that it has the fixed receptive field. Consequently, they introduced
learnable spatial displacement parameters, showing flexibility of convolution. Based on Jeon & Kim
(2017), Jeon & Kim (2018) proved that the standard convolution can be deconstructed as a single PC
layer with the spatially shifted channels. Based on that, they proposed a very efficient convolution
layer, namely active shift layer, by replacing spatial convolutions with shift operations.

It is worth noting that the existing PC layer takes the huge proportion of computation and the number
of weight parameters in modern light-weight CNN models (Howard et al., 2017; Sandler et al.,
2018; Ma et al., 2018). Specifically, MobileNet-V1 (Howard et al., 2017) requires 94%, 74% of
the overall computational cost and the overall number of weight parameters for the existing PC
layer, respectively. Therefore, there were attempts to reduce computation complexity of PC layer.
Zhang et al. (2017) proposed ShuffleNet-V1 where the features are decomposed into several groups
over channels and PC operation was conducted for each group, thus reducing the number of weight
parameters and FLOPs by the number of groups G. However, it was proved in Ma et al. (2018)
that the memory access cost increases as G increases, leading to slower inference speed. Similarly
to the aforementioned methods, our work is to reduce computation complexity and the number of
weight parameters in a convolution layer. However, our objective is more oriented on finding out
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mathematically efficient algorithms that make the weights in convolution kernels more effective in
feature representation as well as efficient in terms of computation.

2.2 QUANTIZATION

Quantization in neural networks reduced the number of bits utilized to represent the weights and/or
activations. Vanhoucke et al. (2011) applied 8-bit quantization on weight parameters, which enabled
considerable speed-up with small drop of accruacy. Gupta et al. (2015) applied 16-bit fixed point
representation with stochastic rounding. Based on Han et al. (2015b) which pruned the unimpor-
tant weight connections through thresholding the values of weight, Han et al. (2015a) successfully
combined the pruning with 8 bits or less quantization and huffman encoding. The extreme case of
quantized networks was evolved from Courbariaux et al. (2015), which approximated weights with
the binary (+1,−1) values. From the milestone of Courbariaux et al. (2015), Courbariaux & Bengio
(2016); Hubara et al. (2016) constructed Binarized Neural Networks which either stochastically or
deterministically binarize the real value weights and activations. These Binarized weights and acti-
vations lead to significantly reduced run-time by replacing floating point multiplications with 1-bit
XNOR operations.

Based on Binarized Neural Networks (Courbariaux & Bengio, 2016; Hubara et al., 2016), Local
Binary CNN (Juefei-Xu et al., 2016) proposed a convolution module that utilizes binarized non-
learnable weights in spatial convolution based on Local Binary Patterns, thus replacing multiplica-
tions with addition/subtraction operations in spatial convolution. However, they did not consider
reducing computation complexity in PC layer and remained the weights of PC layer learnable float-
ing point variables. Our work shares the similarity to Local Binary CNN (Juefei-Xu et al., 2016) in
using binary fixed weight values. However, Local Binary Patterns have some limitations for being
applied in CNN since they can only be used in spatial convolution as well as there are no approaches
that enable fast computation of them.

2.3 CONVENTIONAL TRANSFORMS

In general, several transform techniques have been applied for image processing. Discrete Cosine
Transform (DCT) has been used as a powerful feature extractor (Dabbaghchian et al., 2010). For
N -point input sequence, the basis kernel of DCT is defined as a list of cosine values as below:

Cm = [cos(
(2x+ 1)mπ

2N
)], 0 ≤ x ≤ N − 1 (1)

where m is the index of a basis and captures higher frequency information in the input signal as m
increases. This property led DCT to be widely applied in image/video compression techniques that
emphasize the powers of image signals in low frequency regions (Rao & Yip, 2014).

Discrete Walsh Hadamard Transform (DWHT) is a very fast and efficient transform by using only
+1 and −1 elements in kernels. These binary elements in kernels allow DWHT to perform with-
out any multiplication operations but addition/subtraction operations. Therefore, DWHT has been
widely used for fast feature extraction in many practical applications, such as texture image segmen-
tation (Vard et al., 2011), face recognition (Hassan et al., 2007), and video shot boundary detection
(G. & S., 2014).

Further, DWHT can take advantage of a structured-wiring-based fast algorithm (Algorithm 1) as
well as allowing very high efficiency in encoding the spatial information (Pratt et al., 1969). The
basis kernel matrix of DWHT is defined using the previous kernel matrix as below:

HD =

(
HD−1 HD−1

HD−1 −HD−1

)
, (2)

where H0 = 1 and D ≥ 1. In this paper we denote HD
m as the m-th row vector of HD in Eq.

2. Additionally, we adopt fast DWHT algorithm to reduce computation complexity of PC layer in
neural networks, resulting in an extremely fast and efficient neural network.
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3 METHOD

We propose a new PC layer which is computed with conventional transforms. The conventional PC
layer can be formulated as follows:

Zijm =W>m ·Xij , 1 ≤ m ≤M (3)

where (i, j) is a spatial index, and m is output channel index. In Eq. 3, N and M are the number of
input and output channels, respectively. Xij ∈ RN is a vector of input X at the spatial index (i, j),
Wm ∈ RN is a vector of m-th weight W in Eq. 3. For simplicity, the stride is set as 1 and the bias
is omitted in Eq. 3.

Our proposed method is to replace the learnable parameters Wm with the bases in the conven-
tional transforms. For example, replacing Wm with HD

m in Eq. 3, we now can formulate the new
multiplication-free PC layer using DWHT. Similarly, the DCT basis kernels Cm in Eq. 1 can sub-
stitute for Wm in Eq. 3, formulating another new PC layer using DCT. Note that the normalization
factors in the conventional transforms are not applied in the proposed PC layer, because Batch Nor-
malization (Ioffe & Szegedy, 2015) performs a normalization and a linear transform which can be
viewed as a normalization in the existing transforms.

The most important benefit of the proposed method comes from the fact that the fast algorithms of
the existing transforms can be applied in the proposed PC layers for further reduction of computa-
tion. Directly applying above new PC layer gives computational complexity of O(N2). Adopting
the fast algorithms, we can significantly reduce the computation complexity of PC layer fromO(N2)
to O(NlogN) without any change of the computation results.

We demonstrate the pseudo-code of our proposed fast PC layer using DWHT in Algorithm 1 based
on the Fast DWHT structure shown in Figure 1a. In Algorithm 1, for logN iterations, the even-
indexed channels and odd-indexed channels are added and subtracted in element-wise manner, re-
spectively. The resulting elements which were added and subtracted are placed in the first N/2
elements and the last N/2 elements of the input of next iteration, respectively. In this computation
process, each iteration requires only N operations of additions or subtractions. Consequently, Al-
gorithm 1 gives us complexity of O(NlogN) in addition or subtraction. Compared to the existing
PC layer that requires complexity of O(N2) in multiplication, our method is extremely cheaper
than the conventional PC layer in terms of computation costs as seen in Figure 1b and in power
consumption of computing devices (Horowitz, 2014). Note that, similarly to fast DWHT, DCT can
also be computed in a fast manner that recursively decomposes the N -point input sequence into two
subproblems of N/2-point DCT. (Kok, 1997).

Compared to DWHT, DCT takes advantage of using more natural shapes of cosine basis kernels,
which tend to provide better feature extraction performance through capturing the frequency infor-
mation. However, DCT inevitably needs multiplications for inner product betweenC andX vectors,
and a look up table (LUT) for computing cosine kernel bases which can increase the processing time
and memory access. On the other hand, as mentioned, the kernels of DWHT consist only of +1,−1
which allows for building a multiplication-free module. Furthermore, any memory access towards
kernel bases is not needed if our structured-wiring-based fast DWHT algorithm (Algorithm 1) is
applied. Our comprehensive experiments in Section 3.1 and 3.2 show that DWHT is more efficient
than DCT in being applied in PC layer in terms of trade-off between the complexity of computation
cost and accuracy.

Note that, for securing more general formulation of our newly defined PC layer, we padded zeros
along the channel axis if the number of input channels are less than that of output channels while
truncating the output channels when the number of output channels shrink compared to that of input
channels as shown in Algorithm 1.

Figure 1a shows the architecture of fast DWHT algorithm described in Algorithm 1. This structured-
wiring-based architecture ensures that the receptive field of each output channels isN , which means
each output channel is fully reflected against all input channels through log2N iterations. This fully-
reflected property helps capturing the input channel correlations in spite of the computation process
of what channel elements will be added and subtracted being structured in the deterministic manner.
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For successfully fusing our new PC layer into neural networks, we explored two themes: i) an
optimal block search for the proposed PC; ii) an optimal insertion strategy of the proposed block
found by i), in a hierarchical manner on the blocks of networks. We assumed that there are an optimal
block unit structure and an optimal hierarchy level (high-, middle-, low-level) blocks in the neural
networks favored by these non-learnable transforms. Therefore, we conducted the experiments for
the two aforementioned themes accordingly. We evaluated the effectiveness for each of our networks
by accuracy fluctuation as the number of weight parameters or FLOPs changes. For comparison, we
counted total FLOPs with summation of the number of multiplications, additions and subtractions
performed during the inference. Unless mentioned otherwise, we followed the default experimental
setting as batch size = 128, training epochs = 200, initial learning rate = 0.1 where 0.94 is multiplied
per 2 epochs, and momentum = 0.9 with weight decay value = 5e-4. In all the experiments, the
model accuracy was obtained by taking an average of three training results in every case.

(a) A black circle indicates a channel element, and
black and red lines are additions and subtractions,
respectively. The number of input channels is set
as 8 for simplicity. Best viewed in color.

(b) x axis denotes logarithm of the number of in-
put channels which range from 20 to 2n. For sim-
plicity, the number of output channels is set to be
same as that of the input channel for all PC layers.
Best viewed in color.

Figure 1: Left: architecture of our PC layer based on fast DHWT algorithm in Algorithm 1, Right:
comparison of the number of multiplications between our new PC layers and the conventional PC
layer.

Algorithm 1 A new pointwise convolution using fast DWHT algorithm

Input: 4D input features X(B ×N ×H ×W ), output channel M

1: n← log2N
2: if N<M then
3: ZeroPad1D(X , axis=1) . pad zeros along the channel axis
4: end if
5: for i← 1 to n do
6: e← X[:, :: 2, :, :]
7: o← X[:, 1 :: 2, :, :]
8: X[:, : N/2, :, :]← e+ o
9: X[:, N/2 :, :, :]← e− o

10: end for
11: if N>M then
12: X =← X[:, :M, :, :]
13: end if

3.1 OPTIMAL BLOCK STUCTURE FOR CONVENTIONAL TRANSFORMS

From a microscopic perspective, the block unit is the basic foundation of neural networks, and it
determines the efficiency of the weight parameter space and computation costs in terms of accuracy.
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Accordingly, to find the optimal block structure for our proposed PC layer, our experiments are
conducted to replace the existing PC layer blocks with our new PC layer blocks in ShuffleNet-V2
(Ma et al., 2018). The proposed block and its variant blocks are listed in Figure 2. Comparing
the results of (c) and (d) in Table 1 informs us the important fact that the ReLU (Nair & Hinton,
2010) activation function significantly harms the accuracy of our neural networks equipped with the
conventional transforms. We empirically analyzed this phenomenon in Section 4.1. Additionally,
comparing the accuracy results of (b) and (d) in Table 1 denotes that the proposed PC layers are
superior to the PC layer which randomly initialized and fixed its weights to be non-learnable. These
results imply that DWHT and DCT kernels can better extract meaningful information of cross-
channel correlations compared to the kernels which are carelessly initialized and non-learnable.
Compared to the baseline model in Table 1, (d)-DCT w/o ReLU and (d)-DWHT w/o ReLU blocks
show accuracy drop by approximately 2.5% under the condition that 42% and 49.5% of learnable
weight parameters and FLOPs are reduced, respectively. These imply that the proposed blocks (c)
and (d) are still inefficient in trade-off between accuracy and computation costs of neural networks,
leading us to more explore to find out an optimal neural network architecture. In the next subsection,
we will solve this problem through applying conventional transforms on the optimal hierarchy level
features (See Section 3.2). Based on our comprehensive experiments, we set the block structure (d)
as our default proposed block which will be exploited in all the following experiments.

(a) (b) (c) (d)

Figure 2: Structure of block units. (a): the basic block of ShuffleNet-V2; (b): block using random
constant pointwise convolution (RCPC) layers; (c): block using conventional transform pointwise
convolution (CTPC) layers with ReLU applied after each of CTPC layer; (d): our proposed block
using CTPC layers without ReLU. Block (b) randomly initialized the weights of PC layer with
the distribution of U(−1/

√
N/2, 1/

√
N/2), where N is number of input channel and fixed these

weights during training.

3.2 OPTIMAL HIERARCHY LEVEL BLOCKS FOR CONVENTIONAL TRANSFORMS

In this section, we search on an optimal hierarchy level where our optimal block which is based on
the proposed PC layer is effectively applied in a whole network architecture. The optimal hierarchy
level will allow the proposed network to have the minimal number of learnable weight parameters
and FLOPs without accuracy drop, which is made possible by non-parameteric and extremely fast
conventional transforms. It is noted that applying our proposed block on the high-level blocks in
the network provides much more reduced number of parameters and FLOPs rather than applying
on low-level blocks, because channel depth increases exponentially as the layer goes deeper in the
network.

In Figure 3, we applied our optimal block (i.e. (d) block in Figure 2) on high- , middle- and low-level
blocks, respectively. In our experiments, we evaluate the performance of the networks depending on
the number of blocks where the proposed optimal block is applied. The model that we have tested
is denoted as (transform type)-(# of the proposed blocks)-(hierarchy level in Low (L), Middle (M),
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Top-1 Acc (%) # of Weights (ratio) # of FLOPs (ratio)
(a)-baseline 71.68± 0.26 1.57M (1x) 102.9M (1x)

(b)-RCPC w/o ReLU 68.16± 0.07 0.92M (0.58x) 102.9M (1x)
(c)-DWHT w/ ReLU 65.89± 0.26 0.92M (0.58x) 50.2M (0.48x)
(c)-DCT w/ ReLU 66.55± 0.5 0.92M (0.58x) 54.7M (0.53x)

(d)-DWHT w/o ReLU 69.13± 0.083 0.92M (0.58x) 50.2M (0.48x)
(d)-DCT w/o ReLU 69.23± 0.14 0.92M (0.58x) 54.7M (0.53x)

Table 1: Performance result of block units in Figure 2 on CIFAR100 dataset. All the experimented
models are based on ShuffleNet-V2 with width hyper-parameter 1.1x which we customized to make
the number of output channels in Stage2, 3, 4 as 128, 256, 512, respectively for fair comparison
with DWHT which requires 2n input channels. We replaced all of 13 stride 1 basic blocks (i.e. (a)
block) in baseline model with (b), (c), (d) blocks, respectively. (c)-DWHT w/ ReLU denotes CTPC
layer in (c) block is based on DWHT, while (d)-DCT w/o ReLU denotes CTPC layer in (d) block is
based on DCT.

Figure 3: Performance curve of hierarchically applying our optimal block on CIFAR100, Top: in the
viewpoint of the number of learnable weight parameters, Bottom: in the viewpoint of the number
of FLOPs. The performance of baseline models was evaluated by ShuffleNet-V2 architecture with
width hyper-parameter 0.5x, 1x, 1.1x, 1.5x. Our models were all experimented with 1.1x setting,
and each dot in the figures represents mean accuracy of 3 network instances. Note that the blue line
denotes the indicator of the efficiency of weight parameters or FLOPs in terms of accuracy. The
upper left part from the blue line is the superior region while lower right part from blue line is the
inferior region compared to the baseline models.

and High (H) where the proposed optimal is applied). For example, DWHT-3-L indicates the neural
network model where the first three blocks in ShuffleNet-V2 consist of the proposed blocks, while
the other blocks are the original blocks of ShuffleNet-V2. It is noted that in this experiment, we fix
all the blocks with stride = 2 in the baseline model to be original ShuffleNet-V2 (Ma et al., 2018)
stride = 2 blocks.

Figure 3 shows the performance of the proposed methods depending on the transform types {DCT,
DWHT}, hierarchy levels {L, M, H} and the number of the proposed blocks that replace the original
ones in the baseline {3, 6, 10} in terms of Top-1 accuracy and the number of learnable weight
parameters (or FLOPs). It is noted that, since the baseline model has only 7 blocks in the middle-
level Stage(i.e. Stage3), we performed the middle-level experiments only for DCT/DWHT-3-M and
-7-M models where the proposed blocks are applied from the beginning and the end of Stage3 in the
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baseline model, respectively. In Figure 3, the performance of our 10-H (or 10-L), 6-H (or 6-L), 3-H
(or 3-L) models (7-M and 3-M only for middle-level experiments) is listed in ascending order of the
number of learnable weight parameters and FLOPs.

As can be seen in the first column of Figure 3, applying our optimal block on the high-level blocks
achieved much better trade-off between the number of learnable weight parameters (FLOPs) and
accuracy. Meanwhile, applying on middle- and low-level features suffered, respectively, slightly
and severely from the inefficiency of the number of weight parameters (FLOPs) with regard to
accuracy. This tendency is shown similarly for both DWHT-based models and DCT-based models,
which implies that there can be an optimal hierarchical level of blocks favored by conventional
transforms. Also note that our DWHT-based models showed slightly higher or same accuracy with
less FLOPs in all the hierarchy level cases compared to our DCT-based models. This is because the
fast version of DWHT does not require any multiplication but needs much less amount of addition
or subtraction operations compared to the fast version of DCT while it also has the sufficient ability
to extract cross-channel information with the exquisite wiring-based structure.

For confirming the generality of the proposed method, we also implemented our methods into
MobileNet-V1 (Howard et al., 2017) and performed experiments. Inspired by the above results
showing that optimal hierarchy blocks for conventional transforms can be found in the high-level
blocks, we replaced high-level blocks of baseline model (MobileNet-V1) and changed the number
of proposed blocks that are replaced to verify the effectiveness of the proposed method. The exper-
imental results are described in Table 2. Remarkably, as shown in Table 2, our DWHT-6-H model
yielded the 1.49% increase in Top-1 accuracy even under the condition that the 79.4% of parameters
and 48.4% of FLOPs are reduced compared with the baseline 1x model. This outstanding per-
formance improvement comes from the depthwise separable convolutions used in MobileNet-V1,
where PC layers play dominant roles in computation costs and memory space, i.e. they consume
94.86% in FLOPs and 74% in the total number of parameters in the whole network (Howard et al.,
2017). The full performance results for all the hierarchy levels {L, M, H} and the number of blocks
{3, 6, 10} (exceptionally, {3, 7} blocks for the middle level experiments) are described in Appendix
A.

In Appendix A, based on the comprehensive experiments it can be concluded that i) the proposed
PC block always shows its better efficiency of number of parameters and FLOPs when applied on
high-levels compared to when applied on low-level in the network hierarchy; ii) the performance
gain start to decrease when the number of transform based PC blocks exceeded a certain capacity of
the networks.

Top-1 Acc (%) # of Weights (ratio) # of FLOPs (ratio)
Baseline 67.15± 0.3 3.31M (1x) 92.4M (1x)

DWHT-3-H 68.19± 0.35 1.47M (0.44x) 71.6M (0.77x)
DCT-3-H 68.21± 0.19 1.47M (0.44x) 72M (0.78x)

DWHT-6-H 68.65± 0.27 0.68M (0.2x) 46.7M (0.5x)
DCT-6-H 67.95± 0.53 0.68M (0.2x) 47.7M (0.51x)

Table 2: Performance result of hierarchically applying our optimal block on CIFAR100 dataset. All
the models are based on MobileNet-V1 with width hyper-parameter 1x. We replaced both stride 1,
2 blocks in the baseline model with the optimal block that consist of [3× 3 depthwise convolution -
Batch Normalization - ReLU - CTPC - Batch Normalization] in series.

4 EXPERIMENTS AND ANALYSIS

In this section, we analyze the significant accuracy degradation of applying ReLU after our proposed
PC layer. Additionally, we analyze the active utilization of 3x3 depthwise convolution weight kernel
values which takes an auxiliary role for conventional transform being non-learnable.

4.1 HINDRANCE OF RELU IN CROSS-CHANNEL REPRESENTABILITY

As seen in Table 1, applying ReLU after conventional transforms significantly harmed the accuracy.
This is due to the properties of conventional transform basis kernels that both HD

m in Eq. 2 and
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Figure 4: Histograms of hierarchy level (low-level, middle-level, high-level) activations after the
proposed PC layer based on conventional transforms, Left: DWHT, Right: DCT. Both DWHT and
DCT models are based on ShuffleNet V2 1.1x model where we replaced all of stride 1 blocks with
(d)-DWHT w/o ReLU and (d)-DCT w/o ReLU blocks, respectively in Figure 2.

Figure 5: Histogram of 3× 3 depthwise convolution weights in the third block, out of last 3 blocks.
DCT-3-H and DWHT-3-H models are based on ShuffleNet V2 1.1x model with (d) block. Baseline
model is ShuffleNet V2 1.1x model.

Cm in Eq. 1 have the same number of positive and negative parameters in the kernels except for
m = 0 and that the distributions of absolute values of positive and negative elements in kernels are
almost identical. These properties let us know that the output channel elements that have under zero
value should also be considered during the forward pass; when forwarding Xij in Eq. 3 through
the conventional transforms if some important channel elements in Xij that have larger values than
others are combined with negative values of Cm or HD

m , the important cross-channel information
in the output Zijm in Eq. 3 can reside in the value range under zero. Figure 4 shows that all
the hierarchy level activations from both DCT and DWHT based PC layer have not only positive
values but also negative values in almost same proportion. These negative values possibly include
important cross-channel correlation information. Thus, applying ReLU on activations of PC layers
which are based on conventional transforms discards crucial cross-channel information contained in
negative values that must be forwarded through, leading to significant accuracy drop as shown in the
results of Table 1. Figure 6 empirically demonstrates above theoretical analysis by showing that as
the negative value regions are fully ignored (i.e. F = ReLU), the accuracy is significantly degraded
while fully reflecting the negative value regions (i.e. g = 1) shows the best accuracy. From above
kernel value based analysis and its experiment, we do not use non-linear activation function after the
proposed PC layer.

4.2 ACTIVE 3× 3 DEPTHWISE CONVOLUTION WEIGHTS

In Figure 5 and Appendix B, it is observed that 3×3 depthwise convolution weights of last 3 blocks
in DWHT-3-H and DCT-3-H have much less near zero values than that of baseline model. That
is, the number of values which are apart from near-zero is much larger on DCT-3-H and DWHT-
3-H models than on baseline model. We conjecture that these learnable weights whose values are
apart from near-zero were actively fitted to the optimal domain that is favored by conventional
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Figure 6: Ablation study of negative slope term g in activation function F , which is defined as
F (x) = max(0, x) + g ∗min(0, x). The performance of models were evaulated based on DCT or
DWHT-10-H ShuffleNet-V2 1.1x where we applied F as an activation function after every DCT or
DWHT based PC layer and Batch Normalization layer.

Figure 7: Ablation study of weight decay values (5e-4, 2e-3, 1e-2, 1e-1). We applied these weight
decay values only on 3× 3 depthwise convolution weights of last 3 blocks in DCT-based model and
DWHT-based model, while all the other learnable weights were regularized with weight decay of
5e-4.

transforms. Consequently, these weights are actively and sufficiently utilized to take the auxiliary
role for conventional transforms which are non-learnable, deriving accuracy increase compared to
the conventional PC layer as shown in Figrue 3.

To confirm the impact of activeness of these 3×3 depthwise convolution weights in the last 3 blocks,
we experimented with regularizing these weights varying the weight decay values. Higher weight
decay values strongly regularize the scale of 3× 3 depthwise convolution weight values in the last 3
blocks. Thus, strong constraint on the scale of these weight values hinders active utilization of these
weights, which results in accuracy drop as can be seen in Figure 7.

5 CONCLUSION

We propose the new PC layers through conventional transforms. Our new PC layers allow the neural
networks to be efficient in complexity of computation and learnable weight parameters. Especially
for DWHT-based PC layer, its floating point multiplication-free property enabled extremely effi-
cient in computation overhead. With the purpose of successfully fusing our PC layers into neural
networks, we empirically found the optimal block unit structure and hierarchy level blocks in neu-
ral networks for conventional transforms, showing accuracy increase and great representability in
cross-channel correlations. We further intrinsically revealed the hindrance of ReLU toward captur-
ing the cross-channel representability and the activeness of depthwise convolution weights on the
last blocks in our proposed neural network.
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A GENERALITY OF PROPOSED PC LAYERS IN OTHER NEURAL NETWORK

Figure 8: Performance curve of hierarchically applying our optimal block (See Table 2 for detail
settings) on CIFAR100, Top: in the viewpoint of the number of learnable weight parameters, Bot-
tom: in the viewpoint of the number of FLOPs. The performance of baseline models was evaluated
by MobileNet-V1 architecture with width hyper-parameter 0.2x, 0.35x, 0.5x, 0.75x, 1x, 1.25x. Our
proposed models were all experimented with 1x setting, and each dot in the figures represents mean
accuracy of 3 network instances. Our models experimented are 10-H, 6-H, 3-H models (first col-
umn) , 7-M, 3-M-Rear, 3-M-Front models (second column), 10-L, 6-L, 3-L models (final column)
in ascending order of the number of learnable weight parameters and FLOPs.

In Figure 8, for the purpose of finding more definite hierarchy level of blocks favored by our
proposed PC layers, we subdivided our middle level experiment scheme; DCT/DWHT-3-M-Front
model denotes the model which applied the proposed blocks from the beginning of Stage3 in the
baseline while DCT/DWHT-3-M-Rear model denotes the model which applied from the end of
Stage3. The performance curves of all our proposed models in Figure 8 show that if we apply the
proposed optimal block within the first 6 blocks in the network, the Top-1 accuracy is mildly or
significantly deteriorated compared to the computation cost they require, informing us the impor-
tant fact that there are the definite hierarchy level blocks which are favored or not favored by our
proposed PC layers in the network.
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B HISTOGRAM OF 3× 3 DEPTHWISE CONVOLUTION WEIGHTS IN
HIGH-LEVEL BLOCKS

Figure 9: Histograms of 3 × 3 depthwise convolution weights, Top: histogram of first block out of
last 3 blocks, Bottom: histogram of second block out of last 3 blocks. DWHT-3-H and DCT-3-H
models are based on ShuffleNet-V2 1.1x model with (d)-DWHT w/o ReLU and (d)-DCT w/o ReLU
block, respectively. Baseline model is ShuffleNet-V2 1.1x model.
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