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ABSTRACT

Intuitively, image classification should profit from using spatial information. Re-
cent work, however, suggests that this might be overrated in standard CNNs. In
this paper, we are pushing the envelope and aim to further investigate the reliance
on and necessity of spatial information. We propose and analyze three methods,
namely Shuffle Conv, GAP+FC and 1x1 Conv, that destroy spatial information
during both training and testing phases. We extensively evaluate these methods on
several object recognition datasets (CIFAR100, Small-ImageNet, ImageNet) with
a wide range of CNN architectures (VGG16, ResNet50, ResNet152, MobileNet,
SqueezeNet). Interestingly, we consistently observe that spatial information can
be completely deleted from a significant number of layers with no or only small
performance drops.

1 INTRODUCTION

Despite the fantastic performances of convolutional neural networks (CNNs) on computer vision
tasks, their inner workings remain mostly obfuscated to us and analyzing them results often in
surprising results.

Generally, the majority of modern CNNs for image classification learn spatial information across all
the convolutional layers: every layer in AlexNet, VGG, Inception, and ResNet applies 3×3 or larger
filters. Such design choice is based on the assumption that spatial information remains important
at every convolutional layer to consecutively increase the access to a larger spatial context. This is
based on the observations that single local features can be ambiguous and should be related to other
features in the same scene to make accurate predictions Torralba et al. (2003); Hoiem et al. (2008).

Recent work on restricting the receptive field of CNN architectures, scrambling the inputs (Bren-
del & Bethge, 2019) or using wavelet feature networks resulting in networks with shallow depth
(Oyallon et al., 2017) have all found it to be possible to acquire competitive performances on the
respective classification tasks. This raises doubts on whether common CNNs learn representations
of global context as small local features appear to be sufficient for classification.

We add to the list of surprising findings surrounding the inner workings of CNNs and present a
rigorous investigation on the necessity of spatial information in standard CNNs by avoiding learn-
ing spatial information at multiple layers. To this end, we propose three methods i.e., shuffle conv,
GAP+FC and 1x1Conv, to eliminate the spatial information. Surprisingly, we find that the modified
CNNs i.e., without the ability to access any spatial information at last layers, can still achieve com-
petitive results on several object recognition datasets. This indicates that the spatial information is
overrated for standard CNNs and not necessary to reach competitive performances.

In our experiments, the last layers of standard CNNs can be simplified by substituting them with our
proposed GAP+FC or 1x1Conv layers which ignore spatial information, leading to a smaller model
with less parameters. Moreover, our novel simplifications can be adapted to a wide range of CNN
architectures and maintain state-of-the-art performance on various image classification datasets.
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Figure 1: Left: A demonstration of Shuffle Conv, GAP+FC and 1x1Conv on a VGG-16 architecture,
where last 2 conv layers are modified accordingly. Right: The detail of the shuffle conv. Each
feature map from the input tensor will be randomly and independently shuffled before being fed into
an ordinary convolution.

2 RELATED WORK

Training models for the task of object recognition, our intuitive understanding would be that global
image context is beneficial for making accurate predictions. For that reason extensive efforts have
been made to enhance the aggregation of spatial information in the decision-making progress of
CNNs. Dai et al. (2017); Zhu et al. (2019) have made attempts to generalize the strict spatial sam-
pling of convolutional kernels to allow for globally spread out sampling and Zhao et al. (2017)
have spurred a range of follow-up work on embedding global context layers with the help of spatial
down-sampling.

While all of these works have improved on a related classification metric in some way, it is not
entirely evident whether the architectural changes alone can be credited, as there is an increasing
number of work on questioning the importance of the extent of spatial information for common
CNNs. One of the most recent observations by Brendel & Bethge (2019) for example indicate that
the VGG-16 architecture trained on ImageNet is invariant to scrambled images to a large extent,
e.g. they reported only a drop of slightly over 10% points top-5 accuracy for a pre-trained VGG-16.
Furthermore, they were also able to construct a modified ResNet architecture with a limited receptive
field as small as 33×33 and were able to reach competitive results on ImageNet, similar to the style
of the traditional Bag-of-Visual-Words. The latter was also explicitly incorporated into the training
of CNNs in the works by Mohedano et al. (2016); Feng et al. (2017); Cao et al. (2017), the effect of
neglecting global spatial information by design had surprisingly little effect on performance values.

On a related note, Geirhos et al. (2019) has indicated with constructing object-texture mismatched
images that models trained solely on ImageNet do not learn shape sensitive representations, which
would be expected to require global spatial information, but instead are mostly sensitive to local
texture features.

Our work is motivated to push the envelope further in order to investigate the necessity of spatial
information in the process pipeline of CNNs. While the related work has put the attention mainly
on altering the input, we are interested in taking measures that remove the spatial information in
intermediate layers to shed light on how CNNs process spatial information, thus evaluating its im-
portance and make suggestions for architectural design choices.
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3 METHODS

In order to test how spatial information is processed in the CNN processing pipeline, we propose
three approaches: shuffle convolution, GAP+FC and 1x1Conv that neglect spatial information in dif-
ferent ways in intermediate layers and apply these to well established architectures. The evaluation
is primarily done with comparing the classification accuracy for models that have been increasingly
constrained with respect to how much spatial information can be propagated throughout the net-
work. Section 3.1 elaborates details on our approaches and the experimental setup is discussed in
section 3.2.

3.1 APPROACHES TO NEGLECT SPATIAL INFORMATION

Shuffle Convolution extends the ordinary convolution operation by prepending a random spatial
shuffle operation, so that the input to the convolution is permuted. As illustrated in Fig. 1 right:
Assume an input tensor of size c×h×w with c being the number of feature maps for a convolutional
layer. We first take one feature map from the input tensor and flatten it into a 1-d vector with h× w
elements, whose ordering is then permuted randomly. The resulting vector is finally reshaped back
into h×w and substitute the original feature map. This procedure is independently repeated c times
for each feature map so that activations from the same location in the previous layer are misaligned,
thereby preventing the information from being encoded by the spatial arrangement of the activations.
The shuffled output becomes the input of an ordinary convolutional layer in the end. Even though
shuffling itself is not differentiable, gradients can still be propagated through in the same way as
Max Pooling. Therefore it can be embedded into the model directly for end-to-end training.

As the indices are recomputed within each forward pass, the shuffled output is also independent
across training and testing steps. Images within the same batch are shuffled in the same way for the
sake of simplicity since we find empirically that it doesn’t make a difference whether the images
inside the same batch are shuffled in different ways. Instead of shuffling a single layer, we shuffle
all layers from the last to the specific depth (last 2 convolutional layers are shuffled in Fig. 1) in
order to prevent the model from remembering encountered permutations. Memorization of random
patterns is something that deep networks have been shown to be powerful at Zhang et al. (2017).

Global Average Pooling and Fully Connected Layers: Shuffle convolution is an intuitive way of
destroying spatial information but it also makes it impossible to learn correlations across channels
for a particular spatial location. Furthermore, shuffling introduces undesirable randomness into
the model so that during evaluation multiple forward passes are needed to acquire an estimate of
the mean of the output. A simple deterministic alternative achieving a similar goal is what we
call GAP+FC. The deployment of Global Average Pooling (GAP) after an intermediate layer, and
substitute all the subsequent ones by fully connected layers. Compared to shuffle conv, it is a much
more efficient way to avoid learning spatial information at intermediate layers because it shrinks the
spatial size of feature maps to one. Fig. 1 demonstrates a toy example of a CNN with the last two
convolutional layers modified by GAP+FC.

1x1 Convolution: GAP+FC collapses the spatial information to a size of 1. However, reducing the
spatial size potentially influences the expressive ability of the model. For example, the point-wise
difference of two consecutive 7× 7 feature maps lies in the 49 dimension space while the difference
of two 1 × 1 feature maps is just a single value, so if the information would be conveyed by the
order of the feature maps, larger feature map size tends to be more expressive. In order to retain the
information kept in the spatial dimensions but restrict the model to be invariant to the relationships
between spatial locations, we propose as an alternative the use of 1x1 convolutions, which replaces
the 3x3 convolutions at last layers in a network. It differs from shuffle conv in that the activation
at the same spatial location is aligned. Fig. 1 gives a small demonstration where the last 2 layers
from a toy CNN are modified. It is worth noting that ResNets use stride-two convolution to down-
sample the feature maps at the end of bottleneck. Such down-sampling strategy is not ideal for 1x1
convolution because it ignores more than 3/4 of the input. So we use max or average pooling with
2x2 windows as our down-sampling method instead.
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3.2 EXPERIMENTAL SETUP

We test different architectures with shuffle conv, GAP+FC and 1x1Conv on 3 datasets: CIFAR100,
Small-ImageNet-32x32 Chrabaszcz et al. (2017) and ImageNet. We measure in each experiment
the top-1 accuracy and the number of model parameters. We will take an existing model and apply
the modification to layers from the last layer on. The rest of the setup and hyper-parameters remain
the same as the baseline model. By shuffle conv or GAP+FC or 1x1Conv, our modification on the
baseline model always starts from the last layer and is consecutively extended to the first layer. We
denote as K the number of modified convolutional layers or sub-modules counting from the last
layer on. The rest of the operations, like skip connections, and modules remain the same. 2 × 2
average pooling with stride 2 is used for down-sampling in all experiments due to the ablation of
down-sampling methods in section 4.4.

For the VGG-16 architecture, the modification is only performed on the convolutional layers as
illustrated in Fig. 1. K varies from 0 (representing the baseline) to 13 since 13 out of the 16 layers
are convolutional. For the ResNet-50 architecture with 16 bottleneck sub-modules, one bottleneck
is considered as one layer and the modification is only applied onto the 3 × 3 convolutions inside
since they are the only operation with spatial extent, the rest of the configuration remains the same
as in the baseline model (see Appendix foran example of modified ResNet-50 architecture).

For CIFAR100 and Small-ImageNet-32x32 experiments, the first convolution in ResNet is set to
3 × 3 with stride 1 and the first max pooling layer is removed so that the final feature map size is
4× 4. For each architecture, we first reproduce the original result on the benchmark as our baseline,
and then the same training scheme is directly used to train our models. All models in the same set
of experiments are trained with the same setup from scratch and they are initialized by the same
random seed. During testing, we make sure to use a different random seed than during training.

4 RESULTS

We first present an in-depth study of our main observations on CIFAR100 for VGG-16 and ResNet-
50 in section 4.1 and then verify them on other datasets and architectures in section 4.3. Finally, the
influence of the depth and receptive field size is discussed in section 4.4.

4.1 SPATIAL INFORMATION AT LAST LAYERS IS NOT NECESSARY THUS MODELS CAN BE
SIMPLIFIED

In this section, we first investigate the invariance of pre-trained models to the absence of the spatial
information at test time, then we impose this invariance at training time with methods in section 3.1.

Contradicting to the common sense, recent works suggest a less important role of spatial information
in image classification task. Here we take a further step to study the robustness of the model against
the absence of the spatial information at test time by applying Shuffle Conv. More specifically, we
substitute the last 3 convolutional layers (see Appendix A.4 for more results on other layers) of a
pre-trained VGG-16 with shuffle conv at test time on CIFAR100 such that the spatial information
is neglected in those layers. Because random shuffle is independent at each forward pass, the final
test accuracy will be the average of 200 evaluations and the standard deviation is also present. The
left table in 2 clean→ shuffle shows the model from the clean training scheme gives around 1% test
accuracy, which is the same as random guess on CIFAR100, when evaluated with random shuffle.
However, if the shuffle conv is infused into the model at training time, then the baseline performance
can be achieved no matter whether random shuffle appears at test time as shown in the left table of
2 (73.67% for shuffle→ shuffle and 73.57% for shuffle→ clean).

We thus design the following experiment: we modify the last K convolutional or bottleneck layers
of VGG-16 or ResNet-50 on CIFAR100 by Shuffle Conv (both at training and test time), GAP+FC,
and 1x1Conv such that the spatial information is removed in different ways. Our modification on
the baseline model always starts from the last layer and is consecutively extended to the first layer.
The modified networks with different K are then trained on the training set with the same setup and
evaluated on the hold-out validation set of CIFAR100.
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Figure 2: Classification results for VGG-16 and ResNet-50 on CIFAR100. K is the number of
modified last layers, which refer to convolutional layers for VGG-16 and bottlenecks for ResNet-50.
VGG-16 has 13 convolutional layers and ResNet-50 has 16 bottleneck sub-modules. All models
are trained with the same setup. Curves from GAP+FC look similar to shuffle conv. Test accuracy
can be preserved even the last several layers are modified by shuffle conv or GAP+FC or 1x1Conv,
suggesting that spatial information at last layers is not necessary for a good test accuracy.

Model VGG16 ResNet50
Method baseline GAP+FC 1x1Conv baseline GAP+FC 1x1Conv

K - 5 2 5 2 - 5 2 9 2
Top-1(%) 74.12 73.21 74.00 74.06 74.80 78.06 77.42 79.42 78.49 79.42

#Params(M) 34.02 23.53 29.82 23.53 29.82 23.71 16.37 19.51 14.26 19.51

Table 1: Table summarizes the top-1 accuracy and the number of parameters of different K on
CIFAR100 for VGG-16 and ResNet-50 with GAP+FC and 1x1Conv. K is defined as the number of
modified layers counting from the last layer. The first column for each modification method shows
the most compressed model within 1% accuracy difference to the corresponding baseline model and
the second column presents the best performed model for each modification method. We can see
that 1x1Conv gives even a slightly higher test accuracy while having fewer parameters.

The results on CIFAR100 for VGG-16 and ResNet-50 are shown in Fig. 2. The x-axis is the
number of modified layers K, ranging from 0 to the total number of convolutional or bottleneck
layers. K = 0 is the baseline model performance without modifying any layer. As we can see in
the right of Fig. 2, with the increasing number of modified layers, the performance of ResNet-50
drops surprisingly slowly for our three methods consistently. For example, Shuffle conv can modify
up to the last 5 layers of ResNet-50 while maintaining similar baseline performance i.e., Shuffle
conv(K=5) achieves 77.89% accuracy v.s. 78.06% accuracy of the baseline (K=0). 1x1Conv and
GAP+FC can preserve the baseline performance until K = 5 and K = 9, where the feature map size
is 8 and 16, respectively. For VGG-16, as shown in the left of Fig. 2, a similar trend can be observed.
Shuffle conv, GAP+FC, and 1x1Conv are able to tolerate modification of the last 5 layers without
losing any accuracy. This is in strong contrast to the common belief that the spatial information is
essential for object recognition tasks.

One obvious advantage of our methods is that 1x1Conv and GAP+FC can reduce the number of
model parameters without affecting the performance. Table 1 summarizes how many parameters our
GAP+FC and 1x1Conv can reduce for VGG16 and ResNet50. We observe that our 1x1Conv (K=5)
achieves nearly identical results (74.06%) to the VGG-16 baseline (74.12%), while reducing the
number of parameters from 34.02M to 23.53M. For ResNet50, our 1x1Conv (K=2), with only
19.51M parameters, even outperforms the ResNet50 baseline with 23.71M parameters by 1.36%.
Similar results can be observed with our GAP+FC. This implies that CNNs may be easily simplified
by substituting last layers with 1x1Conv or GAP+FC with no performance drop.

As a side effect, we find that GAP+FC and 1x1Conv have a regularization effect that can lead
to improved generalization performance when data augmentation is not applied. Fig. 2 shows
the test accuracy of modified ResNet-50 via GAP+FC and 1x1Conv trained with and without data
augmentation. While the models trained with data augmentation show similar test accuracy, we
observe a significant performance improvement over the baseline on ResNet-50 trained without data
augmentation, e.g 1x1Conv outperforms the baseline by 8.01% on CIFAR100 when several last
layers are modified. Unfortunately, this effect doesn’t hold across other architectures and datasets.
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Schemes Top-1(%)Train Test
shuffle shuffle 73.67±1.03
shuffle clean 73.57±0.97
clean shuffle 1.06±1.15
clean clean 74.10

Config. for ResNet-50 Top-1(%)
baseline 78.06

GAP+FC 79.42w/
DataAug 1x1Conv 79.42

baseline 65.64
GAP+FC 68.40w/o

DataAug 1x1Conv 73.65
Table 2: Left: Top-1 accuracy of VGG-16 with random shuffle enabled at either training and test
time for the last 3 layers. Shuffled model is robust to the standard test scheme while the test accuracy
of a standard VGG-16 drops to the random guess level if evaluated with shuffling. Right: Effect of
data augmentation on classification results for ResNet-50 on CIFAR100. The data augmentation
here is the random flipping and the random cropping. We present here the best performed model for
each method. We can see that modified models reach higher test accuracy when data augmentation
is not applied. ResNet-50 with 1x1Conv trained without data augmentation shows a significant
performance improvement over the baseline from 65.64% to 73.65% on CIFAR100.

Model VGG16 ResNet50
Method baseline GAP+FC 1x1Conv baseline GAP+FC 1x1Conv

K - 4 2 7 4 - 3 1 6 1
Top-1(%) 46.59 46.05 46.50 45.44 46.64 61.87 61.11 61.72 61.00 61.95

#Params(M) 37.70 29.31 33.50 25.64 29.31 25.55 19.26 23.45 17.68 23.45

Table 3: Image classification results on Small-ImageNet for VGG16 and ResNet50 with GAP+FC
and 1x1Conv. K is defined as the number of modified layers counting from the last layer.

4.2 DISCUSSION

Our experiments in Table 2 left clearly show that ordinary models by default don’t possess the in-
variance to the absence of the spatial information. In contrast to the common wisdom, we find that
spatial information can be neglected from a significant number of last layers without any perfor-
mance drop if the invariance is imposed at training, which suggests that spatial information at last
layers is not necessary for a good performance. We should however notice that it doesn’t indicate
that models whose prediction is based on the spatial information can’t generalize well. Besides, un-
like the common design manner that layers at different depth inside the network are normally treated
equally, e.g. the same module is always used throughout the architecture, our observation implies it
is beneficial to have different designs for different layers since there is no necessity to encode spatial
information in the last layers (see Appendix A.3 for discussion on first layers), therefore reducing
the model complexity.

Comparing our three methods, we observe that 1x1Conv is more robust to the absence of the spatial
information while Shuffle Conv and GAP+FC perform similarly for both VGG-16 and ResNet-50.
This implies that CNNs can still benefit from the larger size of activation maps even though its
spatial information is not presented.

4.3 GENERALIZATION TO OTHER DATASETS AND ARCHITECTURES

Since CIFAR100 is a relatively easy dataset with centered objects belonging to only 100 classes,
we conduct in the following experiments on more complex inputs: small-ImageNet and ImageNet,
whereas small-ImageNet is a down-sampled version of the latter (from 256 × 256 to 32 × 32).
The results on Small-ImageNet are summarized in the Table 3 (see more details in the Appendix).
GAP+FC and 1x1Conv present a similar behavior as on CIFAR100 dataset. And the gap between the
performance of GAP+FC and 1x1Conv increases, the maximal number of layers that can be modified
on ResNet50 for GAP+FC and 1x1Conv are 3 and 6. This implies that spatial information at last
layers of CNNs are not necessary for good performance on the datasets with enough complexity.

Furthermore, we conduct experiments for different architectures on full ImageNet with an input
image size of 224 × 224. We first reproduce baselines as in the original papers and then apply
the same training scheme directly to train our models. Here we only evaluate 1x1Conv due to
its superiority over GAP+FC and due to its excessive computational overhead training on the full
ImageNet dataset. In Table 4, we observe that spatial information can be ignored at last layers
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Model ResNet152 ResNet50 VGG16 MobileNetV2 SqueezeNet
Method base. 1x1Conv base. 1x1Conv base. 1x1Conv base. 1x1Conv base. 1x1Conv

K - 19 - 5 - 1 - 2 - 2
Top-1(%) 77.66 77.82 75.22 75.53 72.96 72.51 72.29 72.06 60.07 60.64

#Params(M) 60.19 45.51 25.55 18.22 37.70 35.60 3.50 3.48 1.25 1.23

Table 4: ImageNet classification results for ResNet-152, ResNet-50, VGG-16 MobilenetV2 and
SqueezeNet with 1x1Conv. The best performed models are selected for 1x1Conv. We observe that
our modification reduces the number of parameter without loss of the test accuracy.

without losing any test accuracy on the ImageNet. For example, the last 19 layers of ResNet152
can be modified into 1x1 convolution (the feature map size is 14 × 14) while attaining the same
performance. Moreover, we find that the number of spatial invariant layers of ResNet50 becomes
smaller compared to ResNet152 i.e., k = 5 v.s. k = 19. Recall that last 6 layers on ResNet-50
can be modified by the 1x1Conv on Small-ImageNet resulting in a 8 × 8 final ferule map size, it is
surprising that this number becomes 5 on ImageNet where the final feature map is 14, considering
the large difference in the ability of expressiveness.

So far, we have evaluated our methods with large models that have been shown to have incredible
capacity to learn even from random labels Zhang et al. (2017). A hypothesis could be that the models
we test are very complex to begin with such that it is of no surprise that they learn the relevant
representations in earlier layers and can encode the information necessary to classify in very few
dimensions. To approach this question, we deploy our experiments on architectures that have been
specifically designed to be of minimal complexity in order to save memory and reduce the number
of floating point operations. Hence, we evaluate MobileNetV2 Sandler et al. (2018) with 3.5M
parameters and SqueezeNet Iandola et al. (2017) with 1.25M parameters, both of which are able to
reach competitive performance on ImageNet. MobileNetV2 uses the inverted residual bottleneck as
their building block where the input tensor is first expanded along the channel dimension and then a
3 × 3 depth-wise convolution is performed before the number of channels is reduced to the output
dimension by the final 1 × 1 convolution. In our modification we simply remove the 3 × 3 depth-
wise convolution together with its ReLU and batch normalization. SqueezeNet is composed of fire
modules, which leverage the strategies from Iandola et al. (2017) to reduce the model parameters.
It first squeezes the number of channels by a 1 × 1 convolution and then expands by a mixture of
1× 1 convolutions and 3× 3 convolutions. In our modification, we replace all 3× 3 convolutions in
the expand phase by 1× 1 convolutions. The results in Table 4 show that the last two conv layers of
both MobileNetV2 and SqueezeNet are also spatial invariant i.e., neglecting the spatial information
at those 2 last layers does not affect the performance at all, despite the minimal model complexity.

The experiments on Small-ImageNet and ImageNet confirm again the claim in section 4.2 that the
spatial information at last layers is not necessary for a good performance and its generalizability
across architectures can lead to a further reduction of the number of model parameters even on
models that are already very efficient, e.g. MobileNetV2 and SqueezeNet.

4.4 EFFECT OF DEPTH AND RECEPTIVE FIELD SIZE

In the previous section, we observed that 1x1Conv gives the best performance in the sense that spa-
tial information of more layers can be neglected without affect the test accuracy. Here we investigate
whether these modified layers are of importance at all or whether they can be stripped of the archi-
tecture entirely. The relationship between the receptive field size of a layer and whether it can be
modified without performance impact is evaluated subsequently.

Importance of the Depth. We saw previously that 1x1Conv gives the best performance in the sense
that spatial information at more layers can be neglected without affect the overall test accuracy.
Here we ask whether those modified layers can be neglected altogether, effectively reducing the
depth. We first pick the most compressed ResNet-50 with the same test accuracy as the baseline
on Small-ImageNet, last 6 sub-modules are modified by 1x1Conv. We then strip off one modified
layer at a time from the last layer on, resulting in 6 different models which are trained with the
same configuration. The result is shown in Fig. 3 left. With the increase of the number of 1x1
convolutional layers, the test accuracy also increases. So even though the spatial information at
last layers is not necessary, those last layers are still essential for good performance. It appears
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Figure 3: Left: The test accuracy of ResNet-50 on Small-ImageNet increases monotonically with
the increase of the number of 1x1 convolutional layers. Right: The relation between the receptive
field size and the test accuracy difference to the baseline for different image size on VGG-16 over
CIFAR100 shows that the test accuracy saturates with the increase of the receptive field size for a
given image size. The minimal required receptive field tends to be larger for larger image size and
this minimum is normally larger than the actual image size. The exact relation is however unclear.

that the spatial information is marginalized out at some particular depth and the resulting non-linear
transformations are solely used to disentangle the depth wise information.

Relationship to the Receptive Field. A reason for that marginalization of spatial information could
be hypothesized to be related to the receptive field size of a particular layer. If the receptive field
size of a layer is greater or equal to the size of the image, does that tell us whether all following
layers can be manipulated? We choose to ablate VGG-16 because the receptive field for a multi-
branch network is not properly defined as it can only state a theoretical upper bound and do so on
CIFAR100 as each object normally occupies the entire image. We replace the 3 × 3 convolutional
layers in VGG-16 by 1×1 convolutional layers from the last layer on and until the first layer, thereby
varying the receptive field size of the last convolutional layer in our model. Results are shown in Fig.
3 right. Y-axis is the test accuracy difference between the modified model and the baseline model.

We can see that the test accuracy saturates with the increase of the receptive field size for a given
image size. In order to reach the saturation, it seems that the minimal required receptive field size
has to exceeds the actual image size by a relatively large margin and this margin increases for larger
image size. For example, the model reaches approximately the same test accuracy as a vanilla VGG-
16 with receptive field being 50 for 32× 32 input image, and the same number becomes around 120
for 64 × 64 input image. This is maybe because the effective receptive field is normally smaller
than the theoretical receptive field Luo et al. (2016). However, it is still not really possible to tell a
quantitative relation between the required receptive field size and the image size since there are too
few data points and it is hard to confirm if an architecture with a specific final receptive field size is
sufficient to obtain the baseline performance.

5 CONCLUSION AND FUTURE WORK

To conclude, we empirically show that last layers of CNNs are robust to the absence of the spatial
information, which is commonly assumed to be important for object recognition tasks. Our pro-
posed methods, without accessing any spatial information at last layers of modern CNNs, are able
to achieve competitive results on several object recognition datasets incuding CIFAR100, Small-
ImageNet and ImageNet. We suggest a good rule of thumb for CNN architectures: using 1x1 con-
volution or fully connected layers at last layers reduces the number of parameters without affecting
the performance. An interesting future direction is to study whether our methods can generalize to
other computer vision tasks, e.g., object detection and pose estimation where the spatial relationships
are vital for localizing objects.
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Figure 4: Pooling methods give better test accuracy than convolution with stride 2 as down-sampling
method for ResNet-50 on Small-ImageNet.

A APPENDIX

A.1 EFFECT OF DOWN-SAMPLING METHOD

Convolution with stride 2 was suggested by Springenberg et al. (2015) for 3× 3 filters as a replace-
ment for pooling layers as the down-sampling method. For example, ResNets use 1× 1 convolution
with stride 2 to reduce the feature map size. However, a direct adaptation leads to a failure for our
1x1Conv. In figure 4, we observe a more rapid decrease of the test accuracy for stride 2 down-
sampling than average pooling and max pooling on ResNet50 over Small-ImageNet. With the same
test accuracy as the baseline, the number of modifiable layers is 3 for convolution with stride 2
and 6 for average pooling. The reason for the failure of the stride 2 case may lie in the fact that
1x1 convolution doesn’t have the spatial extent, so a down-sampling will ignore 75% of the activa-
tions even they may convey the majority of the information. In an ordinary bottleneck that performs
down-sampling, the lost information in the main branch can be replenished from the skip connection
where 3× 3 convolution is deployed to ensure the information at each location is processed. In our
modification, however, the skip connection branch will suffer from the loss of the information as
well due to 1x1 convolution.

Average pooling or max pooling on the other hand doesn’t have this problem and their performance
according to the plot doesn’t have significant difference to each other.

A.2 RESULTS ON SMALL-IMAGENET

We test the necessity of spatial information by GAP+FC and 1x1Conv for VGG-16 and ResNet-
50 on Small-ImageNet. Experimental setup is the same as the CIFAR100 experiment. Results are
shown in Fig. 5. Within 1% test accuracy difference, GAP+FC manages to replace the last 4 layers
in VGG-16 and 1x1Conv can replace the last 7 layers (46.05% and 45.44% compared to the baseline
performance 46.59%, respectively). Similarly, the test accuracy can be preserved until K = 3
and K = 6 for GAP+FC and 1x1Conv, which confirms the better performance of 1x1Conv over
GAP+FC. This indicates spatial information at last layers is not necessary for a good performance.

A.3 SINGLE LAYER SHUFFLE

Previous experiments always apply shuffle conv from one specific layer until the last layer in a
network. We test here the impact of random shuffle at different depth by applying shuffle conv at
one single layer at a time. The result of VGG-16 on CIFAR100 is summarized in Fig. 6 where the
x-axis is the layer index (VGG-16 has 13 convolutional layers). We plot the baseline performance
with an horizontal line alongside the modified models in order to show a clearer comparison. We
can see an overall similar trend as multiple layer shuffle in Fig. 2, the test accuracy drops slowly
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Figure 5: Classification results for VGG-16 and ResNet-50 on Small-ImageNet. K is the number of
modified last layers and 0 indicates the baseline performance. We observe that test accuracy can be
preserved even the last several layers are modified by GAP+FC or 1x1Conv, suggesting that spatial
information at last layers is not necessary for a good test accuracy. All models are trained with the
same setup.
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Figure 6: The orange curve is the test accuracy of the vanilla VGG-16 i.e. the baseline. The blue
curve shows the test accuracy of the VGG-16 with a single convolutional layer modified by shuffle
conv at different depth. The x-axis is the layer index with 13 being the last convolutional layer in
VGG-16. Random shuffle is applied both at training and test time. The result implies random shuffle
has a larger impact at first layers than the last layers.

with the decrease of the layer index. The baseline performance is maintained for the last 4 layers,
which implies random shuffle has a larger impact at first layers than the last layers.

A.4 MISMATCHED TRAINING AND TEST SCHEMES

In Table. 2 left, we presented the test accuracy of a specific model whose last 3 layers are replaced
by shuffle conv under mismatched training and test schemes. We show here the complete results of
models with different K in Fig. 7. The green curve which is obtained by evaluating the baseline with
different K at test time falls to random guess on CIFAR100, compared to the red curve which repre-
sents the baseline with clean training and test schemes. And the shuffled models which maintain the
baseline accuracy have very similar behavior (the overlapped part of orange curve and blue curve) no
matter whether random shuffle appears during evaluation. However, there is a gradually increasing
gap between these 2 curve when the shuffled model can’t preserve the baseline performance, that
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Figure 7: VGG-16 test accuracy with mismatched training and test schemes. The performance of a
standard VGG-16 drops to the random guess level if evaluated with shuffling while shuffled models
at last layer are invariant to this.
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Figure 8: Classification results for ResNet-152 modified by 1x1Conv on ImageNet. The most
compressed model without affecting the test performance has the last 19 layers being modified by
1x1Conv.

consistent schemes gives significant higher accuracy than the inconsistent one. Unfortunately, the
reason is not fully understood.

A.5 RESULTS ON IMAGENET

Fig. 8 and 9 show the complete results of test accuracy of ResNet-152 and ResNet-50 being modified
by 1x1Conv on ImageNet. All models are trained with the same scheme as in He et al. (2016)
from scratch. The claim that spatial information is not necessary at last layers generalizes well on
ImageNet.
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Figure 9: Classification results for ResNet-50 modified by 1x1Conv on ImageNet. The most
compressed model without affecting the test performance has the last 5 layers being modified by
1x1Conv.
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Figure 10: In contrast to random spatial shuffle, VGG-16 doesn’t seem to be robust to the channel
shuffle. The test accuracy drops from 74.10% to 71.49% with only the last layer being shuffled.

A.6 CHANNEL SHUFFLE

We test here another type of random shuffle along the depth of feature maps. It randomly swaps
the order of the feature maps along the channel dimension in each forward pass and is denoted as
channel shuffle. The experiments are run for VGG-16 on CIFAR100. Fig. 10 shows the change of
the test accuracy with the number of layers K that is modified by channel shuffle increasing. Besides
an overall decreasing trend, the test accuracy drops much faster than that from random spatial shuffle
(74.10% to 71.49% with only the last layer being shuffled), which implies a much weaker robustness
of the model against channel shuffle. We therefore assume a more important role of the order of the
feature maps in encoding the information at last layers.
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Figure 11: An example of ResNet-50 with the last 3 bottlenecks being modified by shuffle conv,
GAP+FC and 1x1Conv.

A.7 RESNET50 ARCHITECTURE

Fig. 11 shows an example of ResNet-50 with the last 3 bottlenecks being modified by shuffle
conv, GAP+FC and 1x1Conv. Our modification is applied only the 3 × 3 convolution in side each
bottleneck since it is the only operation that has the spatial extent.
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