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ABSTRACT

Stereo matching is one of the important basic tasks in the computer vision field.
In recent years, stereo matching algorithms based on deep learning have achieved
excellent performance and become the mainstream research direction. Existing
algorithms generally use deep convolutional neural networks (DCNNs) to extract
more abstract semantic information, but we believe that the detailed information
of the spatial structure is more important for stereo matching tasks. Based on this
point of view, this paper proposes a shallow feature extraction network with a large
receptive field. The network consists of three parts: a primary feature extraction
module, an atrous spatial pyramid pooling (ASPP) module and a feature fusion
module. The primary feature extraction network contains only three convolution
layers. This network utilizes the basic feature extraction ability of the shallow net-
work to extract and retain the detailed information of the spatial structure. In this
paper, the dilated convolution and atrous spatial pyramid pooling (ASPP) module
are introduced to increase the size of receptive field. In addition, a feature fusion
module is designed, which integrates the feature maps with multiscale receptive
fields and mutually complements the feature information of different scales. We
replaced the feature extraction part of the existing stereo matching algorithms with
our shallow feature extraction network, and achieved state-of-the-art performance
on the KITTI 2015 dataset. Compared with the reference network, the number of
parameters is reduced by 42%, and the matching accuracy is improved by 1.9%.

1 INTRODUCTION

Since the introduction of deep learning in the computer vision field, increasing the network depth
(that is, the number of layers in the network) seems to be a necessary means to improve the
feature extraction ability. Taking the object classification task as an example, as the network depth
increases from the 8-layer network AlexNet (Krizhevsky et al., 2012) to the 16-layer network
VGG (Simonyan & Zisserman, 2014) and to the 101-layer network ResNet (He et al., 2015), the
classification accuracy constantly improves. There are two purposes of the deep network. First, the
deep network can improve the ability to extract abstract features (Zeiler & Fergus, 2013), which
are important for some vision tasks, such as object detection (Girshick, 2015; Ren et al., 2017) and
classification. For example, for objects such as cups, their colors, shapes and sizes may be different,
and they cannot be accurately identified using only these primary feature information. Therefore,
the feature extraction network must have the ability to extract more abstract semantic information.
Second, the deep feature extraction network can obtain a larger receptive field to learn more context
information (Luo et al., 2017; Liu et al., 2018). With the increase in the number of network layers,
the size of the receptive field is also constantly increasing. In particular, after image sampling using
a pooling operation, even the 3*3 convolution kernel has the ability to extract context information.
Many studies (Zeiler & Fergus, 2013; Yu & Koltun, 2016) have shown that the lower part of the
convolution neural network mainly extracts primary features, such as the edges and corners, while
the higher part can extract more abstract semantic information. However, many basic vision tasks
rely more on basic feature information instead of the high-level abstract features.
Stereo matching is one of the basic vision tasks. In the traditional stereo matching algo-
rithm (Scharstein & Szeliski, 2002), the color similarity metrics of pixels are usually used to
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calculate the matching costs between the left and right images to find the matching points in
the two images. After the introduction of deep learning, more robust feature information can be
obtained through training and learning, which can effectively improve the performance of the stereo
matching algorithm. At present, many excellent stereo matching algorithms based on deep learning,
such as the GC-Net (Kendall et al., 2017), PSMNet (Chang & Chen, 2018) and GwcNet (Guo
et al., 2019), generally adopt similar processes, including feature extraction, matching cost volume
construction, 3D convolution and disparity regression. This paper focuses on the feature extraction
steps.
The stereo matching task has two requirements for the feature extraction network. The first require-
ment is the enlargement of the receptive field as far as possible so that the network can obtain more
context information, which is critical to solving the mismatching problems in the discontinuous
disparity area. Because a larger receptive field can learn the relationships between different objects,
even if there are problems, such as conclusion or inconsistent illumination, the network can use the
context information to infer disparity and improve the stereo matching accuracy in the ill-posed
regions. The second requirement is the maintenance of more details of the spatial structure, which
can improve the matching accuracy of many small structures, such as railings, chains, traffic signs
and so on. The existing feature extraction networks usually use a deep convolution neural network
to obtain a larger receptive field and extract more abstract semantic information. In this process,
with the increase of the network layers and the compression of the image size, substantial detailed
information of the spatial structure is inevitably lost. We believe that compared with the abstract
semantic information that is extracted by a deep network, the detailed information of the spatial
structure is more important to improving the stereo matching accuracy. Based on this point of view,
this paper proposes a novel structure of feature extraction network – a shallow feature extraction
network. Unlike the common feature extraction network (with ResNet-50 as the backbone), in this
paper, the backbone of the feature extraction network only has 3 convolution layers, and the image
is only downsampled once in the first convolution layer to compress the size of the image. This
structure retains more details of the spatial structure and pays more attention to primary features
such as the edges and corners of objects, while abandoning more abstract semantic information.
To solve the problem that the size of the receptive field of the shallow structure is limited, this
paper introduces the atrous spatial pyramid pooling (ASPP) module (Chen et al., 2018). The ASPP
module uses the dilated convolution to increase the receptive field size without increasing the
number of parameters. In addition, the convolution layers with different dilation rate can obtain
feature maps with multiscale receptive fields. The large receptive fields can be used to obtain
context information and to solve the problem of mismatching in ill-posed regions, and the small
receptive fields can be used to retain more detailed information of the spatial structure and to
improve the stereo matching accuracy in local areas. To integrate feature maps with multiscale
receptive fields, this paper designs the feature fusion module and introduces the channel attention
mechanism (Jie et al., 2017). We assign different weights to feature maps with different dilation
rates in the channel dimensions. The weights are acquired through learning, and more weight and
attention are given to the feature channels with greater roles.
The advantages of a shallow feature extraction network with a large receptive field are twofold.
One advantage is that the network can meet the two requirements of the stereo matching task for
the feature extraction network. On the basis of ensuring the large receptive field, more details of the
spatial structure are retained. The other advantage is that the network greatly reduces the number of
parameters and the difficulties of network training and deployment. The feature extraction network
that is designed in this paper is used to replace the feature extraction part of the existing stereo
matching network, and state-of-the-art performance is achieved on the KITTI2015 dataset (Geiger,
2012). Compared with the reference network, the number of parameters is reduced by 42%, and the
matching accuracy is improved by 1.9%. The main contributions of this paper are as follows.

• A shallow feature extraction network is proposed to extract and retain more details of the
spatial structure. This network can improve the stereo matching accuracy with fewer pa-
rameters.

• The dilated convolution and ASPP module are introduced to enlarge the receptive field.
We verify the effect of the dilated convolution on the receptive field using mathematics and
experiments.
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• A feature fusion module, which integrates the feature maps with multiscale receptive fields,
is designed and realizes the mutual complementary feature information of different scales.

2 RELATED WORK

In recent years, deep learning methods have gradually replaced traditional algorithms and become
the mainstream stereo matching algorithm. The GC-Net (Kendall et al., 2017) designed a new stereo
matching algorithm process based on deep learning, including feature extraction, matching cost vol-
ume construction, 3D convolution and disparity regression. First, in the feature extraction part, two
deep convolution neural network with shared weights are used to extract the feature information
from the left and right images. The matching cost volume is formed by cascading the left and right
feature maps. Then, the 3D convolution is carried out on the matching cost volume, which can ex-
tract the feature representations from the three dimensions of height, width and disparity. Finally,
the regression method is used to obtain the disparity map.
Since the introduction of GC-Net, most stereo matching algorithms follow the stereo matching pro-
cess of GC-Net. Focused on the feature extraction part, this section introduces many improved
schemes for feature extraction networks using excellent algorithms in recent years. The PSM-
Net (Chang & Chen, 2018) further deepened the feature extraction network structure, which took
ResNet-50 as the backbone, and used the spatial pyramid pooling (SPP) module (Kaiming et al.,
2014) to obtain the feature information at different scales. GwcNet (Guo et al., 2019) retained
the backbone structure in the PSMNet, but it eliminated the SPP module, and proposed a new
method to form the matching cost volume using the group-wise correlation. Based on the PSMNet,
MCUA (Nie et al., 2019) introduced DenseNet’s (Huang et al., 2016) densely connected structure,
which summarizes the output of each layer and transmits it to the next layer. This structure forms
a dense connection between the different layers of the network. The Stereo-DRNet (Chabra et al.,
2019) introduced the vortex pooling structure (Xie et al., 2018), which is a variant of the ASPP.
In this structure, average pooling is carried out on the feature map before the dilated convolution,
and the size of the pooling kernel is the corresponding dilation rate. Zhu et al. proposed the CFP-
Net (Zhu et al., 2019) and designed a cross form spatial pyramid pooling (CFSPP) module, which
consist of two branches: one branch is the SPP structure, and the other branch is the ASPP structure.
The feature maps obtained from two branches are concatenated to obtain the feature information of
each scale.
In the feature extraction network, almost all the existing stereo matching networks take the ResNet-
50 structure as their backbones. In this paper, we proposed a shallow feature extraction network
with fewer parameters but a larger receptive field, whose matching accuracy exceeds all the above
algorithms.

3 ARCHITECTURE

We propose a shallow feature extraction network with a large receptive field – SWNet – which
consists of three parts: the primary feature extraction module (PFE), the atrous spatial pyramid
pooling (ASPP) module and the feature fusion module (FFM). The network architecture is shown
in Figure 1. The detailed parameters of the feature extraction network structure that is designed in
this paper are shown in Appendix B.
The primary feature extraction network consists of three convolution layers with a kernel size of
3*3, each of which is followed by a batch normalization layer (Ioffe & Szegedy, 2015) and a ReLU
layer. Only the stride of the first convolution layer is 2 to reduce the size of images. The other layers
strides are set to 1 to retain more spatial structure information. Because of the shallow network
structure, the size of the receptive field is limited. Therefore, inspired by Deeplab v2 (Chen et al.,
2018), the ASPP module is added to the PFE module. In this module, dilated convolution layers
with different dilation rate (e.g. 2, 4, 6, and 8) form four parallel branches. The four branches
have receptive fields with different scales, which can complement each other. The outputs of
four branches are added to obtain the feature maps containing multiscale information. Unlike the
processing method of directly summing the feature maps with multiscale receptive fields, this paper
adopts a feature fusion module to integrate the feature information of different scales. First, the
feature maps that are obtained from each branch are concatenated to form a feature map group.
Since the importance of the information that is contained in each feature map is different, inspired
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Figure 1: Feature extraction network architecture. D denotes the dilation rate, 1*1 conv denotes
the convolution layer with kernel size of 1, Cat denotes concatenate operation, Mul denotes the
channel-wise multiplication and BN denotes the batch normalization.

by SENet (Jie et al., 2017), this paper gives each feature map a specific weight. The feature fusion
module is illustrated in Figure 1. The feature map group is converted into a 1D feature vector
by global average pooling, a bottleneck structure is used to limit the number of parameters, and
the weight of each channel is obtained by using a sigmoid function. The bottleneck structure is
composed of two 1*1 convolution layers and a ReLU activation layer. The first convolution layer
compresses the number of channels by r times. After activation using the ReLU function, the
number of channels is recovered by the second convolution layer. The weighted feature map group
is obtained by multiplying the weight coefficient with the corresponding feature map. Then, the
feature maps that are obtained by the PFE module are concatenated with the weighted feature map
group through the skip connection, and the number of channels is compressed to 32 using two 3*3
convolution layers to obtain the final fusion feature maps.

4 EXPERIMENT

In this paper, we select PSMNet and GwcNet, two representative stereo matching algorithms, as
our reference networks. The feature extraction network that is designed in this paper is used to
replace the feature extraction part of the reference networks. The matching cost volume construction
method adopts the most widely used shift and concatenation operation (the same as GC-Net and
PSMNet). The 3D convolution, disparity regression and loss function use the same structure as the
reference network. The network that is combined with PSMNet is called SWNet-P, and the network
that is combined with GwcNet is called SWNet-G. In the following experiments, unless otherwise
specified, the default network is SWNet-G.
In this section, we design experiments to study the effect of the depth of the feature extraction
network, the size of the receptive field and the multiscale receptive fields on stereo matching. In
section 4.1, we introduce the implementation details and the relevant information of the two datasets.
In section 4.2, the shallow feature extraction network is compared with other deep networks to
explore the effect of the network depth. In section 4.3, we calculate and test the size of the receptive
field of the dilated convolution, and verify the effect of a large receptive field on stereo matching.
In section 4.4, two important parameters of the ASPP module–the dilation rate and the number of
branches–were tested to verify the effect of the fusion of multiscale receptive fields. In section 4.5,
the stereo matching results that are generated by SWNet-P and SWNet-G are uploaded to KITTI, a
third-party evaluation website, and compared with other advanced algorithms.
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4.1 IMPLEMENTATION DETAILS AND DATASETS

We use Pytroch to implement the feature extraction network (SWNet) that was proposed by this
paper. The whole model uses the Adam method for end-to-end training, where β1 = 0.9, β2 = 0.99.
For all datasets, the training images are randomly cropped to a size of 512 × 256, and the intensity
range of all pixels is normalized to [-1,1]. The maximum disparity is set to 192. For the SceneFlow
dataset (Mayer et al., 2016), we conducted training for 10 epochs using a fixed learning rate of
0.001. For the KITTI 2015 dataset (Geiger, 2012), this paper used the model that was pretrained
using SceneFlow data for fine-tune training. The model was trained for 300 epochs in total. For the
first 200 epochs, the learning rate is set to 0.001, and for the later 100 epochs, the learning rate is
adjusted to 0.0001. We trained the entire model on an NVIDIA 1080Ti GPU with the batch size set
to 3. We take the end-point-error (EPE) of the SceneFlow test set and the three-pixel error (3-pix
error) of the KITTI 2015 validation set as the evaluation bases.
This paper uses two open datasets for network training and testing.
SceneFlow: This dataset is a large-scale synthetic dataset containing 35454 training images and
4370 test images. The size of images is 960× 540,and the dataset provides dense disparity maps as
the ground truth. Those pixels whose disparity exceeds the maximum disparity set in this paper will
be omitted when calculating the loss.
KITTI 2015: The dataset is a stereo dataset that is collected in a real street scene that contains 200
training images and 200 test images, the size of which is 1240 × 376. For the training subset, the
sparse disparity map that is obtained by Li-DAR is provided as the ground truth. To facilitate the
test, 40 pairs of stereo image in the training subset were randomly selected as the validation set, and
the remaining 160 pairs of stereo image were selected as the training set.

4.2 THE EFFECT OF THE NETWORK DEPTH ON STEREO MATCHING

To explore the effect of the depth of the feature extraction network on the stereo matching accuracy,
this paper modified the depth of the backbone of the feature extraction network of the reference
networks and compared them with the feature extraction network that is designed in this paper.

Table 1: The effect of the network depth on stereo matching

FEN Cost Volume 3D Conv SceneFlow
EPE

KITTI
3-pix error Parameters

P+Res34 c P 0.984 1.86% 4.6 M
P+Res50 c P 0.963 1.81% 5.2 M

SWNet(ours) c P 0.872 1.74% 2.3 M
G+Res34 g&c G 0.911 1.69% 6.3 M
G+Res50 g&c G 0.844 1.65% 6.9 M
G+Res101 g&c G 0.865 1.74% 9.8 M
G+Res50 c G 0.906 1.71% 6.9 M

SWNet(ours) c G 0.859 1.58% 4.0 M
Note: “FEN” means feature extraction network, “P” means the structure of PSMNet, “G”
means the structure of GwcNet, “Res34,50,101” mean ResNet34,50,101 respectively, “c”
means the matching cost volume constructed by concatenation and “g&c” means the match-
ing cost volume constructed by group-wise correlation and concatenation. “Parameters”
represents the number of parameters of the network. Bold text represents the default struc-
ture of the reference network. Due to the limitation of equipment performance, P+Res101
experiment cannot be carried out.

As seen from Table 1, when the backbone of the feature extraction network increases from 34 layers
to 50 layers, the performance of the reference network on the SceneFlow dataset is significantly
improved. End-point-error (EPE) decreases from 0.984 to 0.963 and from 0.911 to 0.844 in the
SceneFlow dataset, respectively. However, as the network deepened and the backbone adopted the
ResNet-101 structure, the stereo matching accuracy of GwcNet decreased. This result indicates
that with the deepening of the network, the extracted feature information is more abstract and
not suitable for the stereo matching task. Moreover, the large number of parameters in the deep
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network makes the model training more difficult. When other parts of the network are the same, the
matching accuracy of SWNet is close to or even better than the default structure of the reference
network (with ResNet-50 as the backbone) in both datasets, and the number of parameters is
greatly reduced. This result shows that simply increasing the network depth cannot improve
the stereo matching accuracy. The shallow feature extraction network can extract and retain
more details of the spatial structure, which is more suitable for the stereo matching task. In addi-
tion, the network has fewer parameters, lower training difficulty and a stronger generalization ability.

4.3 THE EFFECT OF THE SIZE OF THE RECEPTIVE FIELD ON STEREO MATCHING

The dilated convolution can enlarge the receptive field and solve the problem of a limited receptive
field in a shallow network. However, a dilated convolution may cause some input neurons to fail,
leading to a cavity in the receptive field. In this section, we propose the concepts of the theoretical
receptive field (TRF) and the effective receptive field (ERF). The theoretical receptive field refers
to the region that can be observed in the input space for a neuron in the convolutional neural net-
work. The effective receptive field refers to the set of input neurons that are actually connected to
a higher level neuron, excluding the invalid neurons in the receptive field. In this paper, the math-
ematical calculation methods (Yu & Koltun, 2016) of the two kinds of receptive fields are given
(the specific derivation process is shown in the Appendix A), and a simple experiment is designed
to intuitively demonstrate the effect of the dilated convolution on the receptive field by means of
visualization (Luo et al., 2017).

4.3.1 MATHEMATICAL CALCULATION METHOD

The size of theoretical receptive field is calculated as follows:

rn = rn−1 + (kn − 1) dn

n−1∏
i=1

si (1)

rn denotes the size of the theoretical receptive field corresponding to each neuron in the nth layer, kn
denotes the kernel size, dn denotes the dilation rate and si denotes the stride of the ith convolution
layer. The size of effective receptive field is calculated as follows:

r′n = rn − p0 (kn − 1) (2)

p0 denotes the number of the invalid neurons of the input layer, and the calculation method is shown
as follows: {

pn = dn+1 − 1

pn−1 = pn (Nn + 1)−Mn + 1
(3)

in which
Nn = max(2sn − kn, 0) (4)

Mn = kn − sn + 1 (5)

To describe the relationship between the theoretical receptive field and the effective receptive field,
we proposed the concept of the density of the receptive field and the calculation method is shown
as follows.

Q =

(
r′n
rn

)2

× 100% (6)

According to the above formulas, taking the primary feature extraction network that is designed in
this paper as an example, the corresponding relationship between the dilation rate and the size of
receptive field is shown in Table 2.
As seen from Table 2, the size of the theoretical receptive field continues to grow as the dilation rate

increases. When the dilation rate is 12, the size of the theoretical receptive field is close to 16 times
that of the ordinary convolution (the dilation rate is 1). Limited by the number of network layers,
the size of the ERF increases to 33*33 and then does not change, and the density of the receptive
field rapidly decreases.
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Table 2: The effect of the dilation rate on the size and density of the receptive field

Dilation Rate 1 2 4 6 8 10 12
the size of TRF r′n 15*15 19*19 27*27 35*35 43*43 51*51 59*59
the size of ERF rn 15*15 19*19 27*27 33*33 33*33 33*33 33*33

the density of RF Q 100% 100% 100% 89% 59% 42% 31%

.

4.3.2 VISUALIZATION EXPERIMENT METHOD

To verify the results of the above mathematical derivation, a intuitive experiment is designed in this
section. The effect of the dilation rate on the size of the receptive field is visually demonstrated.
If the neurons in the low-level network are regarded as receptors in the human nervous system,
the neurons in the high-level network represent the higher nerve center, and each nerve center is
connected with multiple receptors in the lower layer. Therefore, we can determine whether this
receptor is related to the nerve center by examining the response of the higher nerve center after
giving certain stimuli to the lower receptor. Specifically, this paper applies external stimuli to each
pixel of the input image in turn (such as increasing the RGB value by 10) to detect the value change
of the high-level neuron. If the value changes, the input neuron is related to the high-level neuron.
The more obvious the change is, the stronger the correlation is.

dilation=2

(a)

dilation=4

(b)

dilation=6

(c)

dilation=8

(d)

fusion

(e)

Figure 2: The effect of the dilation rate on the size and density of the receptive field. We normalized
the value change to the range of [0,1] and mapped it to the input images. For clarity, only the
100*100 pixel images that are centered on the high-level neuron are retained.

As shown in Figure 2, the color part in the figure indicates the corresponding receptive field of
the high-level neuron. The brighter the color is, the stronger the correlation is between the input
neuron and the central neuron. It is obvious that the size of the receptive field is increasing with the
dilation rate. However, when the dilation rate is greater than 6, there are cavities in the receptive
field, and with the continuous increase of the dilation rate, the sizes of cavities rapidly grow, which
is consistent with our theoretical derivation. To solve the problem of cavities in the receptive field,
the ASPP module and feature fusion module are used to fuse the convolution layers with different
dilation rates. By this means, the cavities in the receptive field are effectively compensated while
maintaining a large receptive field, as shown in Figure 2(e).
To verify the effect of the size of receptive field and density on stereo matching, this paper conducted
ablation experiments on the ASPP module and feature fusion module. The experiment results are
shown in Table 3.

Table 3: The effect of the size of receptive field and density on stereo matching

PFE ASPP FFM SceneFlow
EPE

KITTI
3-pix error

X 0.931 1.81%
X X 0.879 1.71%
X X X 0.859 1.58%
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As seen in Table 3, the matching error of the primary feature extraction network is high, because its
structure is too shallow and the size of receptive field is limited; therefore, more context information
cannot be extracted. The introduction of the dilated convolution and ASPP module effectively en-
large the receptive field, and improve the stereo matching accuracy. The EPE of SceneFlow dataset
decreases from 0.931 to 0.879. The feature fusion module can better fuse the information of the
multiscale receptive fields and further reduce the EPE to 0.859. The experiments of this section
shows that the dilated convolution can effectively enlarge the theoretical receptive field, but there
will be cavities in the receptive field, leading to the partial loss of information. The ASPP module
and feature fusion module can fuse the feature maps with multiscale receptive field and solve the
information loss that is caused by the dilated convolution. This structure can obtain a large receptive
field, and also ensure that the receptive field is dense enough to provide more context information
and improve the matching accuracy of ill-posed regions.

4.3.3 THE EFFECT OF MULTISCALE RECEPTIVE FIELDS ON STEREO MATCHING

The ASPP module can enlarge the receptive field and provide information on the multiscale
receptive fields. In this section, a series of experiments are designed for the two hyper-parameters
of the ASPP module: the dilation rate and the number of branches. For the dilation rate, we carried
out experiments on two groups of dilation rate parameters with base 2 and base 3. With respect to
the number of branches, the ASPP module with 4 and 8 branches were tested. The experimental
results are shown in the Table 4.

Table 4: The effect of the size of receptive field and density on stereo matching

ASPP module SceneFlow
EPE

KITTI
3-pix error parameters

[2,4,6,8] 0.859 1.58% 4.0 M
[3,6,9,12] 0.851 1.70% 4.0 M

[2,4,6,8,10,12,14,16] 0.864 1.68% 4.4 M
[3,6,9,12,15,18,21,24] 0.842 1.62% 4.4M

As seen from Table 4, the stereo matching accuracy improved as the number of branches increased.
The EPE decreased from 0.851 to 0.842 (base 3) in the SceneFlow dataset, and the 3-pixel error
decreased from 1.70% to 1.62% in the KITTI 2015 dataset, while the number of parameters will
increase from 4.0M to 4.4M. The dilation rate with the base of 3 is generally better than that with
the base of 2, and the EPE decreases by approximately 2% on average. However, in the KITTI
2015 dataset, ASPP module with dilation rate of [2, 4, 6, 8] got the best performance, with 3-pixel
error is 1.58%. This result indicates that more receptive fields with different scales can be obtained
by adding branches of the ASPP module. A small scale receptive field can extract local detailed
structural information, and a large scale receptive field can obtain more context information. The
feature extraction network should extract as much information of different scales as possible to
improve the overall matching accuracy.

4.3.4 KITTI 2015 BENCHMARK

We uploaded the results that were generated by SWNet to KITTI and compared these results with
those of other excellent stereo matching algorithms. The KITTI 2015 leaderboard is shown in the
Table 5.

As seen from Table 5, SWNet has the lowest matching error compared with existing stereo
matching algorithms. Compared with the PSMNet and GwcNet reference networks, the error rate
was reduced by 3.4% and 1.9%, respectively, and the number of network parameters was decreased
by 56% and 42%, respectively. This result shows that the shallow feature extraction network with
a large receptive field can better extract and retain the feature information that is needed for the
stereo matching task and improve the stereo matching accuracy. At the same time, the shallow
feature extraction network can reduce the number of network parameters and the network training
and deployment difficulties. In terms of the processing speed, the network performance is related to
the performance of the computing platform. Since we only use a common GPU for calculations,

8



Under review as a conference paper at ICLR 2020

Table 5: The KITTI 2015 leaderboard. “D1” represents the percentage of stereo disparity outliers.
“bg” represents the background region, “fg” represents the foreground region, and “all” represents
the entire region. “Runtime” represents the time to process a pair of stereo images. The bold text
represents the improved stereo matching algorithm in this paper.

Network All Pixels Runtime ParametersD1-bg D1-fg D1-all
GC-Net 2.21% 6.16% 2.87% 0.9 s 3.5 M
PSMNet 1.86% 4.62% 2.32% 0.45 s 5.2 M
CFP-Net 1.90% 4.39% 2.31% 0.9 s -

Stereo-DRNet 1.72% 4.95% 2.26% 0.23 s -
SWNet-P(ours) 1.81% 4.41% 2.24% 0.4 s 2.3 M

GwcNet 1.74% 3.93% 2.11% 0.32 s 6.9M
MUCA 1.66% 4.27% 2.09% 0.9 s -

SWNet-G(ours) 1.68% 4.02% 2.07% 0.6 s 4.0 M

Figure 3: The disparity maps and error maps of the KITTI 2015 dataset. From top to bottom are the
left image of the input; the disparity maps of the PSMNet, GwcNet and SWNet; and the error map
of SWNet.

the processing speed is slightly inferior to the performance of the reference network.
As shown in Figure 3, compared with the PSMNet and GwcNet, the SWNet retains more detailed
structural information, so it has a better matching effect in areas such as iron chains, traffic signs
and railings (the areas that are marked by black circles in the figure). In addition, due to the use of
the ASPP module to enlarge the receptive field, the SWNet still maintains a high matching accuracy
on large-scale objects such as vehicles, buildings, trees and so on.

5 CONCLUSION

Focusing on the feature extraction part of a stereo matching network, this paper proposes a novel
network structure, which abandons the popular deep convolution neural network and use the shallow
network structure to extract and retain more basic feature information. To solve the problem that
the receptive field of a shallow network is limited, this paper introduces the ASPP module and
obtains multiscale receptive fields by adding convolution branches with different dilation rates. By
using the feature fusion module, the feature maps with multiscale receptive fields are fused together
to solve the information loss problem that is caused by dilated convolution. Finally, a large and
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dense receptive field is obtained. The shallow feature extraction network with a large receptive field
can provide more suitable feature information for stereo matching task, with fewer parameters and
lower training difficulty. Using the SWNet to replace the feature extraction part of the existing
network can effectively improve the stereo matching accuracy.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (51975434), the 111
Project(B17034)and the Excellent Dissertation Cultivation Funds of Wuhan University of Technol-
ogy (2018-YS-033).

REFERENCES

Rohan Chabra, Julian Straub, Chris Sweeny, Richard Newcombe, and Henry Fuchs. Stereodrnet:
Dilated residual stereo net. 2019.

Jia Ren Chang and Yong Sheng Chen. Pyramid stereo matching network. 2018.

L. C. Chen, G Papandreou, I Kokkinos, K Murphy, and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 40(4):834–848, 2018.

Andreas Geiger. Are we ready for autonomous driving? the kitti vision benchmark suite. In IEEE
Conference on Computer Vision & Pattern Recognition, 2012.

Ross Girshick. Fast r-cnn. Computer Science, 2015.

Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li. Group-wise correla-
tion stereo network. CoRR, abs/1903.04025, 2019. URL http://arxiv.org/abs/1903.
04025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Gao Huang, Zhuang Liu, Van Der Maaten Laurens, and Kilian Q. Weinberger. Densely connected
convolutional networks. 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. 2015.

Hu Jie, Shen Li, Samuel Albanie, Sun Gang, and Enhua Wu. Squeeze-and-excitation networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(99):1–1, 2017.

He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. Spatial pyramid pooling in deep con-
volutional networks for visual recognition. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 37(9):1904–16, 2014.

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo regression.
2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In International Conference on Neural Information Processing Systems,
2012.

Yongge Liu, Jianzhuang Yu, and Yahong Han. Understanding the effective receptive field in seman-
tic image segmentation. Multimedia Tools & Applications, 77(Jun):1–13, 2018.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive
field in deep convolutional neural networks. 2017.

10

http://arxiv.org/abs/1903.04025
http://arxiv.org/abs/1903.04025
http://arxiv.org/abs/1512.03385


Under review as a conference paper at ICLR 2020

Nikolaus Mayer, Eddy Ilg, Philip Husser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In IEEE Conference on Computer Vision & Pattern Recognition, 2016.

Guang-Yu Nie, Ming-Ming Cheng, Yun Liu, Zhengfa Liang, Deng-Ping Fan, Yue Liu, and Yongtian
Wang. Multi-level context ultra-aggregation for stereo matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3283–3291, 2019.

S. Ren, K. He, R Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 39(6):1137–
1149, 2017.

Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1-3):7–42, 2002.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. Computer Science, 2014.

Chen Wei Xie, Hong Yu Zhou, and Jianxin Wu. Vortex pooling: Improving context representation
in semantic segmentation. 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. 2016.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. 2013.

Zhidong Zhu, Mingyi He, Yuchao Dai, Zhibo Rao, and Bo Li. Multi-scale cross-form pyramid
network for stereo matching. 2019.

11



Under review as a conference paper at ICLR 2020

A APPENDIX

Figure 4: Schematic diagram of neurons corresponding to receptive fields.

To clearly explain the calculation process of the theoretical receptive field and effective receptive
field, the 2D convolution neural network is simplified into a 1D neural network similar to multilayer
perceptron (MLP). The connection relationship between its neurons is shown in Figure 4, where
each circle represents one neuron. Limited by the size of the image, only half of the receptive
field of the neuron is shown. The receptive field of the neuron in layer 0 (input layer) is 1, that is
r0 = 1. The receptive field of the neuron in layer 1 is r1 = r0 × k1 = 1 × 3 = 3. The receptive
field of neurons in layer 2 is r2 = r1 × k2 = 3 × 3 = 9 , but since neurons are not independent
of each other, there are overlaps between their receptive fields, so the overlaps must be subtracted
when calculating the size of the receptive field. The number of neurons in the overlapping part is
related to the kernel size and the convolution stride. As shown in Figure 4, the kernel size of the
neurons in layer 2 is three. Then there are two overlaps in the corresponding receptive field, and the
number of neurons that is contained in each overlaps is one. Therefore, the number of neurons that
is contained in all overlaps is as follows.

(k2 − 1)(r1 − s1) = 2× 1 = 2 (7)

Then the size of receptive field of neuron in layer 2 should be modified as

r2 = r1 × k2 − (k2 − 1)(r1 − s1) = 3× 3− 2× 1 = 7 (8)

It is worth noting that, in the convolution neural network, as the number of convolution layers
increases, the impact of convolution stride is cumulative. Therefore, the size of the receptive field of
the neuron in layer n should be formulated as

rn = rn−1 × kn − (kn − 1)(rn−1 −
n−1∏
i=1

si) = rn−1 + (kn−1)

n−1∏
i=1

si (9)

For dilated convolution, the kernel size should be modified as

k′n = kn + (kn − 1)(dn − 1) (10)

By substituting formula (10) into formula (9), the size of the theoretical receptive field of the dilated
convolution can be calculated as

rn = rn−1 + (k′n − 1)

n−1∏
i=1

si

= rn−1 + [kn + (kn − 1)(dn − 1)− 1]

n−1∏
i=1

si

= rn−1 + (kn − 1)dn

n−1∏
i=1

si

(11)
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For the size of the effective receptive field, this paper only studies the case when the convolution
stride is smaller than the kernel size, which is kn > sn. As shown in Figure 4, the kernel of the
neuron in layer 3 is dilated, and the information of some low-level neurons will not be transmitted
to the neuron in layer 3, which are called invalid neurons (black circles in Figure 4). The maximum
number of continuous invalid neurons in layer 2 is the dilation rate of layer 3 minus 1, which is
p2 = d3 − 1 = 5 − 1 = 4 . The maximum number of continuously invalid neurons in layer 0-1
is related to the connection relationship between network layers. To describe this relationship, this
paper introduces the concepts of exclusive subneurons and shared subneurons. Subneurons refer
to the low-level neurons that are directly connected to the neurons in higher layers. As shown in
Figure 4, the green neurons are the subneurons of purple neurons, while the black neurons are not.
An exclusive subneuron refers to the only sub-neuron in layer (n-1) that is connected to a neuron in
layer n. As shown in Figure 4, the red neurons are the exclusive subneurons of the yellow neurons.
Under the 1D condition, each neuron has two adjacent neurons, and there is overlap between the
subneurons of every two neurons. Therefore, the number of exclusive subneurons of a neuron in
layer n can be calculated as

Nn = kn − (kn − sn)× 2 = 2sn − kn (12)

However, the number of exclusive subneurons should be non-negative, with a minimum value of 0.
Therefore, a non-negative constraint is added to formula (12)

Nn = max(2sn − kn, 0) (13)

Therefore, if one neuron in layer n fails, it will directly lead to the failure of Nn subneurons in layer
(n-1).
A shared subneuron refers to the subneuron that is connected with multiple neurons in higher layers.
As shown in Figure 4, the blue neurons are the shared neurons of the yellow neurons. A shared
subneuron in layer (n-1) is connected to Mn neurons in layer n. In other words, if there are Mn con-
tinuously invalid neurons in layer n, there will be one invalid neuron in layer (n-1). The calculation
method of Mn is

Mn = kn − sn + 1 (14)
Comprehensively considering the exclusive subneurons and shared subneurons, when there are pn
invalid neurons in layer n, the number of invalid neurons in layer (n-1) is

pn−1 = pnNn + (pn −Mn + 1) = pn(Nn + 1)−Mn + 1 (15)

If the invalid neuron in layer n is directly caused by the dilated convolution, the number of invalid
neurons in layer n is

pn = dn+1 − 1 (16)
As shown in Figure 4, the number of invalid neurons in layer 2 is p2 = d3 − 1 = 5 − 1 = 4 .
The numbers of invalid neurons in layer 1 and 0 are p1 = 4 × (0 + 1) − 3 + 1 = 2 and p0 =
2× (1 + 1)− 2 + 1 = 3, respectively.
The size of the effective receptive field should be the size of theoretical receptive field minus the
number of invalid neurons in layer 0. The calculation method is shown in formula (17)

r′n = rn − p0(kn − 1) (17)

13



Under review as a conference paper at ICLR 2020

B APPENDIX

K denotes the convolution kernel size, C denotes the number of output channels, S denotes the
convolution stride, D denotes the dilation rate, BN denotes the batch normalization layer, ReLU
denotes the activation layer, H denotes the height of the image and W denotes the width of the image.
Concat stands for the concatenation operation of feature maps, and SElayer stands for assigning
weights to each feature map.

Table 6: The network structure parameter of SWNet

Input Setting Output The input size The output size
primary feature extraction module

left/right input H*W*3 H*W*3

input
K=3*3,C=32,S=2,

D=1,BN,ReLU
conv 0 H*W*3 1/2H*1/2W*32

conv 0
K=3*3,C=64,S=1,

D=1,BN,ReLU
conv 1 H*W*32 1/2H*1/2W*64

conv 1
K=3*3,C=128,S=1,

D=1,BN,ReLU
conv 2 H*W*64 1/2H*1/2W*128

ASPP module

conv 2
K=3*3,C=32,S=1,

D=2,BN,ReLU
branch 1 s 1/2H*1/2W*128 1/2H*1/2W*32

branch 1 s
K=3*3,C=32,S=1,

D=1,BN,ReLU
branch 1 1/2H*1/2W*32 1/2H*1/2W*32

conv 2
K=3*3,C=32,S=1,

D=4,BN,ReLU
branch 2 s 1/2H*1/2W*128 1/2H*1/2W*32

branch 2 s
K=3*3,C=32,S=1,

D=1,BN,ReLU
branch 2 1/2H*1/2W*32 1/2H*1/2W*32

conv 2
K=3*3,C=32,S=1,

D=6,BN,ReLU
branch 3 s 1/2H*1/2W*128 1/2H*1/2W*32

branch 3 s
K=3*3,C=32,S=1,

D=1,BN,ReLU
branch 3 1/2H*1/2W*32 1/2H*1/2W*32

conv 2
K=3*3,C=32,S=1,

D=8,BN,ReLU
branch 4 s 1/2H*1/2W*128 1/2H*1/2W*32

branch 4 s
K=3*3,C=32,S=1,

D=1,BN,ReLU
branch 4 1/2H*1/2W*32 1/2H*1/2W*32

feature fusion module

branch1∼4 Concat cat
1/2H*1/2W

*(32*4)
1/2H*1/2W*128

cat SElayer se 1/2H*1/2W*128 1/2H*1/2W*128

se
K=3*3,C=128,S=1,

D=1,BN,ReLU
fusion 1/2H*1/2W*128 1/2H*1/2W*128

fusion,conv 2
K=3*3,C=128,S=2,

D=1,BN,ReLU
conv 3

1/2H*1/2W
*(128+32)

1/4H*1/4W*128

conv 3
K=3*3,C=32,S=1,

D=1,BN,ReLU
conv 4 1/4H*1/4W*128 1/4H*1/4W*32
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