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ABSTRACT

Anomaly detection, finding patterns that substantially deviate from those seen pre-
viously, is one of the fundamental problems of artificial intelligence. Recently,
classification-based methods were shown to achieve superior results on this task.
In this work, we present a unifying view and propose an open-set method to relax
current generalization assumptions. Furthermore, we extend the applicability of
transformation-based methods to non-image data using random affine transforma-
tions. Our method is shown to obtain state-of-the-art accuracy and is applicable to
broad data types. The strong performance of our method is extensively validated
on multiple datasets from different domains.

1 INTRODUCTION

Detecting anomalies in perceived data is a key ability for humans and for artificial intelligence. Hu-
mans often detect anomalies to give early indications of danger or to discover unique opportunities.
Anomaly detection systems are being used by artificial intelligence to discover credit card fraud, for
detecting cyber intrusion, alert predictive maintenance of industrial equipment and for discovering
attractive stock market opportunities. The typical anomaly detection setting is a one class classi-
fication task, where the objective is to classify data as normal or anomalous. The importance of
the task stems from being able to raise an alarm when detecting a different pattern from those seen
in the past, therefore triggering further inspection. This is fundamentally different from supervised
learning tasks, in which examples of all data classes are observed.

There are different possible scenarios for anomaly detection methods. In supervised anomaly de-
tection, we are given training examples of normal and anomalous patterns. This scenario can be
quite well specified, however obtaining such supervision may not be possible. For example in cyber
security settings, we will not have supervised examples of new, unknown computer viruses making
supervised training difficult. On the other extreme, fully unsupervised anomaly detection, obtains
a stream of data containing normal and anomalous patterns and attempts to detect the anomalous
data. In this work we deal with the semi-supervised scenario. In this setting, we have a training set
of normal examples (which contains no anomalies). After training the anomaly detector, we detect
anomalies in the test data, containing both normal and anomalous examples. This supervision is
easy to obtain in many practical settings and is less difficult than the fully-unsupervised case.

Many anomaly detection methods have been proposed over the last few decades. They can be
broadly classified into reconstruction and statistically based methods. Recently, deep classification-
based methods have achieved superior results. The prominent approaches include: Deep-SVDD
(Ruff et al., 2018) - one-class classification using a learned deep space, and transformation classifi-
cation based methods (Golan & El-Yaniv, 2018). Transformation classification-based methods have
been proposed with the object of image anomaly detection, but we show that by generalizing the
class of transformations they can apply to all data types.

In this paper, we introduce a novel technique for anomaly detection which unifies current
classification-based approaches. Our method first transforms the data into M subspaces, and learns
a feature space such that inter-class separation is larger than intra-class separation. For the learned
features, the distance from the cluster center is correlated with the likelihood of anomaly. We use
this criterion to determine if a new data point is normal or anomalous. We also generalize the class
of transformation functions to include affine transformation which allows our method to generalize
to non-image data. This is significant as tabular data is probably the most important for applications
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of anomaly detection. Our method is evaluated on anomaly detection on image and tabular datasets
(cyber security and medical) and is shown to significantly improve over the state-of-the-art.

1.1 PREVIOUS WORKS

Anomaly detection methods can be generally divided into the following categories:

Reconstruction Methods: Some of the most common anomaly detection methods are reconstruction-
based. The general idea behind such methods is that every normal sample should be reconstructed
accurately using a limited set of basis functions, whereas anomalous data should suffer from larger
reconstruction costs. The choice of features, basis and loss function differentiate between the dif-
ferent methods. Some of the earliest methods use: nearest neighbors (Eskin et al., 2002), low-rank
PCA (Jolliffe, 2011; Candès et al., 2011) or K-means (Hartigan & Wong, 1979) as the reconstruc-
tion basis. Most recently, neural networks were used Sakurada & Yairi (2014); Xia et al. (2015)
for learning deep basis functions for reconstruction. Another set of recent methods (Schlegl et al.,
2017; Deecke et al., 2018) use GANs to learn a reconstruction basis function. GANs suffer from
mode-collapse and are difficult to invert, which limits the performance of such methods.

Distributional Methods: Another set of commonly used methods are distribution-based. The main
theme in such methods is to model the distribution of normal data. The expectation is that anomalous
test data will have low likelihood under the probabilistic model while normal data will have higher
likelihoods. Methods differ in the features used to describe the data and the probabilistic model
used to estimate the normal distribution. Some early methods used Gaussian or Gaussian mixture
models. Such models will only works if the data under the selected feature space satisfies the prob-
abilistic assumptions implicit by the model. Another set of methods used non-parametric density
estimate methods such as kernel density estimate (Parzen, 1962). Recently, deep learning methods
(autoencoder or variational autoencoders) were used to learn deep features which are sometimes
easier to model than raw features (Yang et al., 2017). ADGMM introduced by Zong et al. (2018)
learn the probabilistic model jointly with the deep features therefore shaping the features space to
better conform with the probabilistic assumption.

Classification-Based Methods: Another paradigm for anomaly detection is separation between space
regions containing normal data from all other regions. An example of such approach is One-Class
SVM (Scholkopf et al., 2000), which trains a classifier to perform this separation. Learning a good
feature space for performing such separation is performed both by the classic kernel methods as
well as by the recent deep learning approach (Ruff et al., 2018). One of the main challenges in
unsupervised (or semi-supervised) learning is providing an objective for learning features that are
relevant to the task of interest. One method for learning good representations in a self-supervised
way is by training a neural network to solve an auxiliary task for which obtaining data is free or
at least very inexpensive. Auxiliary tasks for learning high-quality image features include: video
frame prediction (Mathieu et al., 2016), image colorization (Zhang et al., 2016; Larsson et al., 2016),
puzzle solving Noroozi & Favaro (2016) (predicting the correct order of random permuted image
patches). Recently, Gidaris et al. (2018) used a set of image processing transformations (rotation
by 0, 90, 180, 270 degrees around the image axis, and predicting the true image orientation has been
used to learn high-quality image features. Golan & El-Yaniv (2018), have used similar image-
processing operation prediction for detecting anomalies in images. This method has shown good
performance on detecting images from anomalous classes. In this work, we overcome some of the
limitations of previous classification-based methods and extend their applicability of transformation-
based methods to general data types. We also show that our method is more robust to adversarial
attacks.

2 CLASSIFICATION-BASED ANOMALY DETECTION

Classification-based methods have dominated supervised anomaly detection. In this section we will
analyse semi-supervised classification-based methods:

Let us assume all data lies in spaceRL (where L is the data dimension). Normal data lie in subspace
X ⊂ RL. We assume that all anomalies lie outside X . To detect anomalies, we would therefore like
to build a classifier C, such that C(x) = 1 if x ∈ X and C(x) = 0 if x ∈ RL/X .
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One-class classification methods attempt to learn C directly as P (x ∈ X). Classical approaches
have learned a classifier either in input space or in a kernel space. Recently, Deep-SVDD Ruff
et al. (2018) learned end-to-end to i) transform the data to an isotropic feature space f(x) ii) fit
the minimal hypersphere of radius R around the features of the normal training data. Test data is
classified as anomalous if the following normality score is positive: ‖f(x) − d0‖2 − R2. Learning
an effective feature space is not a simple task, as the trivial solution of f(x) = 0 ∀ x results in the
smallest hypersphere, various tricks are used to avoid this possibility.

Geometric-transformation classification (GEOM), proposed by Golan & El-Yaniv (2018) first trans-
forms the normal data subspace X into M subspaces X1..XM . This is done by transforming each
image x ∈ X using M different geometric transformations (rotation, reflection, translation) into
T (x, 1)..T (x,M). Although these transformations are image specific, we will later extend the class
of transformations to all affine transformations making this applicable to non-image data. They set
an auxiliary task of learning a classifier able to predict the transformation labelm given transformed
data point T (x,m). As the training set consists of normal data only, each sample is x ∈ X and
the transformed sample is in ∪mXm. The method attempts to estimate the following conditional
probability:

P (m′|T (x, m̃)) =
P (T (x, m̃) ∈ Xm′)P (m′)∑

m P (x, m̃ ∈ Xm)P (m)
=

P (T (x, m̃) ∈ Xm′)∑
m P (T (x, m̃) ∈ Xm)

(1)

Where the second equality follows by design of the training set, and where every training sample is
transformed exactly once by each transformation leading to equal priors.

For anomalous data, x ∈ RL/X , if the transformations T are one-to-one, it follows that the
transformed sample does not fall in the appropriate subspace: T (x, m̃) ∈ RL/Xm. GEOM uses
P (m|T (x,m)) as a score for determining if x is anomalous i.e. that x ∈ RL/X . GEOM gives
samples with low probabilities P (m|T (x,m)) high anomaly scores.

A significant issue with this methodology, is that the learned classifier P (m′|T (x, m̃)) is only valid
for samples x ∈ X which were found in the training set. For x ∈ RL/X we should in fact have
P (T (x, m̃) ∈ Xm′) = 0 for all m = 1..M (as the transformed x is not in any of the subsets). This
makes the anomaly score P (m′|T (x, m̃)) undefined for anomalies.

One way to overcome this issue is by using examples of anomalies xa and training P (m|T (x, m̃)) =
1
M on anomalous data. This corresponds to the supervised scenario and was recently introduced as
Outlier Exposure Hendrycks et al. (2018). Although getting such supervision is possible for some
image tasks (where large external datasets can be used) this is not possible in the general case e.g.
for tabular data which exhibits much more variation between datasets.

3 DISTANCE-BASED MULTIPLE TRANSFORMATION CLASSIFICATION

We propose a novel method to overcome the generalization issues highlighted in the previous section
by using ideas from open-set classification (Bendale & Boult, 2016). Our approach unifies one-class
and transformation-based classification methods. Similarly to GEOM we transform X to X1..XM .
We learn a feature extractor d = f(x) using a neural network, which maps the original input data
into a feature representation. Similarly to deep OC methods, we model each subspace Xm mapped
to the feature space {f(x)|x ∈ Xm} as a sphere with center cm. The probability of data point x
after transformation m is parameterized by P (T (x, m̃) ∈ Xm) = const ∗ e−(f(T (x,m̃))−cm)2 . The
classifier predicting transformation m given a transformed point is therefore:

P (m′|T (x, m̃)) =
e−(f(T (x,m̃))−cm′ )2)∑
m e−(f(T (x,m̃))−cm)2

(2)

The centers cm are given by the average feature over the training set for every transformation i.e.
cm = 1

N

∑
x∈X f(T (x,m)). One option is to directly learn f by optimizing cross-entropy between

P (m′|T (x, m̃)) and the correct label on the normal training set. Note, that it is defined everywhere.
In practice we obtained better results by training f using the center triplet loss He et al. (2018), which
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learns supervised clusters with low intra-class variation, and high-inter-class variation by optimizing
the following loss function (where s is a margin regularizing the distance between clusters):

L = max(‖f(T (x,m))− cm‖2 + s−minm′ 6=m‖f(T (x,m))− cm′‖2, 0) (3)

Having learned a feature space in which the different transformation subspaces are well separated,
we use the probability is Eq. 2 as a normaility score. However, for data far away from the normal
distributions, the distances from the means will be large. A small difference in distance will make
the classifier unreasonably certain of a particular transformation. To add a general prior for uncer-
tainty far from the training set, we add a small regularizing constant ε to the probability of each
transformation. This ensures equal probabilities for uncertain regions:

P̃ (m′|T (x, m̃)) =
e−(f(T (x,m̃))−cm′ )2) + ε∑

m e−(f(T (x,m̃))−cm)2 +M · ε
(4)

At test time we transform each sample by the M transformations. By assuming independence be-
tween transformations, the probability that x is normal (i.e. x ∈ X) is the product of the probabilities
that all transformed samples are in their respective subspace. For log-probabilities the total score is
given by:

Score(x) = − logP (x ∈ X) = −
∑
m

log P̃ (T (x,m) ∈ Xm) = −
∑
m

log P̃ (m|T (x,m)) (5)

The score computes the degree of anomaly of each sample. Higher scores indicate a more anomalous
sample.

4 PARAMETERIZING THE SET OF TRANSFORMATIONS

Geometric transformations have been used previously for unsupervised feature learning by Gidaris
et al. (2018) as well as by GEOM Golan & El-Yaniv (2018) for classification-based anomaly detec-
tion. This set of transformations is hand-crafted to work well with convolutional neural networks
(CNNs) which greatly benefit from preserving neighborhood between pixels. This is however not a
requirement for fully-connected networks.

Anomaly detection often deals with non-image datasets e.g. tabular data. Tabular data is very
commonly used on the internet e.g. for cyber security or online advertising. Such data consists of
both discrete and continuous attributes with no particular neighborhoods or order. The data is one-
dimensional and rotations do not naturally generalize to it. To allow transformation-based methods
to work on general data types, we therefore need to extend the class of transformations.

We propose to generalize the set of transformations to the class of affine transformations (where we
have a total of M transformations):

T (x,m) =Wmx+ bm (6)

It is easy to verify that all geometric transformations in Golan & El-Yaniv (2018) (rotation by a
multiple of 90 degrees, flips and translations) are a special case of this class (x in this case is the
set of image pixels written as a vector). The affine class is however much more general than mere
permutations, and allows for dimensionality reduction, non-distance preservation and random trans-
formation by sampling W , b from a random distribution.

Apart from reduced variance across different dataset types where no apriori knowledge on the cor-
rect transformation classes exists, random transformations are important for avoiding adversarial
examples. Assume an adversary wishes to change the label of a particular sample from anomalous
to normal or vice versa. This is the same as requiring that P̃ (m|T (x, m̃)) has low or high proba-
bility for m = m̃. If T is chosen deterministicaly, the adversary may create adversarial examples
against the known class of transformations (even if the exact network parameters are unknown).
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Conversely, if T is unknown, the adversary must create adversarial examples that generalize across
different transformations, which reduces the effectiveness of the attack.

To summarize, generalizing the set of transformations to the affine class allows us to: generalize to
non-image data, use an unlimited number of transformations and choose transformations randomly
which reduces variance and defends against adversarial examples.

5 EXPERIMENTS

We perform experiments to validate the effectiveness our distance-based approach and the perfor-
mance of our extending the class of transformations when applied to non-image data.

5.1 CIFAR10 EXPERIMENTS

Image Experiments: To verify the good performance of our method, we perform experiments on
the Cifar10 dataset. We use the same same architecture and parameter choices of Golan & El-Yaniv
(2018), with our distance-based approach. We use the standard protocol of training on all training
images of a single digit and testing on all test images. Results are reported in terms of AUC. In our
method, we used a margin of s = 0.1. We compare our method with the deep one-class method of
Ruff et al. (2018) as well as Golan & El-Yaniv (2018) without and with Dirichlet weighting. We
believe the correct comparison is without Dirichlet post-processing, as we also do not use it in our
method. Our distance based approach outperforms the SOTA approach by Golan & El-Yaniv (2018),
both with and without Dirichlet (which seems to improve performance on a few classes). This gives
evidence for the importance of considering the generalization behavior outside the normal region
used in training.

Adversarial Robustness: Let us assume an attack model where the attacker knows the architecture
and the normal training data and is trying to minimally modify anomalies to look normal. We exam-
ine the merits of two settings i) the adversary knows the transformations used (non-random) ii) the
adversary uses another set of transformations. To measure the benefit of the randomized transfor-
mations, we train three networks A, B, C. Networks A and B use exactly the same transformations
but random parameter initialization prior to training. Network C is trained using other randomly se-
lected transformations. The adversary creates adversarial examples using PGD (Madry et al., 2017)
based on network A (making anomalies appear like normal data). On Cifar10, we randomly selected
8 transformations from the full set of 72 for A and B, another randomly selected 8 transformations
are used for C. We measure the increase of false classification rate on the adversarial examples us-
ing the three networks. The average increase in performance of classifying transformation correctly
on anomalies (causing lower anomaly scores) on the original network A was 12.8%, the transfer
performance for B causes an increase by 5.0% on network B which shared the same set of transfor-
mation, and 3% on network C that used other rotations. This shows the benefits of using random
transformations.

5.2 TABULAR DATA EXPERIMENTS

We evaluate our method against SOTA anomaly detection techniques on an extensive set of tabular
data sets:

Datasets

Following the evaluation protocol of Zong et al. Zong et al. (2018), 4 datasets are used in this
comparison:

Arrhythmia: A cardiology dataset from the UCI repository Asuncion & Newman (2007) contain-
ing attributes related to the diagnosis of cardiac arrhythmia in patients. The datasets consists of 16
classes: class 1 are normal patients, 2-15 contain different arrhythmia conditions, and class 16 con-
tains undiagnosed cases. Following the protocol established by ODDS Rayana (2016), the smallest
classes: 3, 4, 5, 7, 8, 9, 14, 15 are taken to be anomalous and the rest normal. Also following ODDS,
the categorical attributes are dropped, the final attributes total 274.

Thyroid: A medical dataset from the UCI repository Asuncion & Newman (2007), containing at-
tributes related to whether a patient is hyperthyroid. Following ODDS Rayana (2016), from the 3
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Table 1: Anomaly Detection Accuracy on Cifar10 (%)
Class Method

Deep-SVDD GEOM (no Dirichlet) GEOM (w. Dirichlet) Ours

0 61.7 ± 1.3 76.0 ± 0.8 74.7 ± 0.4 77.7 ± 0.6
1 65.9 ± 0.7 83.0 ± 1.6 95.7 ± 0.0 96.7 ± 0.2
2 50.8 ± 0.3 79.5 ± 0.7 78.1 ± 0.4 83.1 ± 1.4
3 59.1 ± 0.4 71.4 ± 0.9 72.4 ± 0.5 77.7 ± 0.7
4 60.9 ± 0.3 83.5 ± 1.0 87.8 ± 0.2 89.0 ± 0.6
5 65.7 ± 0.8 84.0 ± 0.3 87.8 ± 0.1 88.0 ± 0.6
6 67.7 ± 0.8 78.4 ± 0.7 83.4 ± 0.5 89.8 ± 0.6
7 67.3 ± 0.3 89.3 ± 0.5 95.5 ± 0.1 96.3 ± 0.3
8 75.9 ± 0.4 88.6 ± 0.6 93.3 ± 0.0 94.6 ± 0.9
9 73.1 ± 0.4 82.4 ± 0.7 91.3 ± 0.1 92.4 ± 0.6

classes of the dataset, we designate hyperfunction as the anomalous class and the rest as normal.
Also following ODDS only the 6 continuous attributes are used.

KDD: The KDD Intrusion Detection dataset was created by an extensive simulation of a US Airforce
LAN network. The dataset consists of the normal and 4 simulated attack types: denial of service,
unauthorized access from a remote machine, unauthorized access from local superuser and probing.
The dataset consists of around 5 million TCP connection records. Following the evaluation protocol
in Zong et al. (2018), we use the UCI KDD 10% dataset, which is a subsampled version of the
original dataset. The dataset contains 41 different attributes. 34 are continuous and 7 are categorical.
Following Zong et al. (2018), we encode the categorical attributes using 1-hot encoding.

Following Zong et al. (2018), we evaluate two different settings for the KDD dataset:

KDDCUP99: In this configuration we use the entire UCI 10% dataset. As the non-attack class
consists of only 20% of the dataset, it is treated as the anomaly in this case, while attacks are treated
as normal.

KDDCUP99-Rev: To better correspond to the actual use-case, in which the non-attack scenario is
normal and attacks are anomalous, Zong et al. (2018) also evaluate on the reverse configuration, in
which the attack data is subsampled to consist of 25% of the number of non-attack samples. The
attack data is in this case designated as anomalous (the reverse of the KDDCUP99 dataset).

In all the above datasets, the methods are trained on 50% of the normal data. The methods are
evaluated on 50% of the normal data as well as all the anomalies.

Methods

OC-SVM, E2E-AE and DA-GMM results are directly taken from those reported by Zong et al.
(2018). LOF was computed by us.

OC-SVM: One-class SVM Scholkopf et al. (2000) , a maximal-margin method that attempts to
differentiate between high and low density regions. This method used a radial basis function (RBF)
kernel.

LOF: Local Outlier Factor (Breunig et al., 2000) measure the local deviation of a given data point
with respect to its neighbours.

DAGMM: Deep Autoencoding Gaussian Mixture Model, introduced by Zong et al. (2018). This
method jointly learns features with the mixture of Gaussian density models. They propose multiple
variants of this technique, we compare against the main (and strongest) variant, DAGMM.

We compare the baselines to our method. We randomly sampled transformation matrices using the
normal distribution for each element. Each matrix has dimensionality L × r, where L is the data
dimension and r is a reduced dimension (we used r = 4). We set the bias term to 0.

Implementation: For C we used fully-connected hidden layers with 128 nodes and leakyReLU
activations. We optimized using ADAM with a learning rate of 0.001.
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Table 2: Anomaly Detection Accuracy on Arrhythmia and Thyroid (%)
Method Dataset

Arrhythmia Thyroid KDD KDDRev

F1 Score σ F1 Score σ

OC-SVM 45.8 38.9 79.5 83.2
E2E-AE 45.9 11.8 0.3 74.5
LOF 50.0 0.0 52.7 0.0 83.8 5.2 81.6 3.6
DAGMM 49.8 47.8 93.7 93.8

Ours 51.05 1.73 71.18 7.0 98.4 0.2 98.4 0.1

Each experiment was repeated 5 times. We report the mean and standard deviation (σ). Following
the protocol in Zong et al. (2018), the decision threshold value is chosen to result in the correct
number of anomalies e.g. if the test set contains Na anomalies, the threshold is selected so that the
highest Na scoring examples are classified as anomalies. True positives and negatives are evaluated
in the usual way.

Results

Arrhythmia: The Arrhythmia dataset was the smallest examined. A quantitative comparison on this
dataset can be seen in Tab. 2. OC-SVM and DAGMM performed reasonably well. Our method
outperformed all baselines. A linear classifier C performed better than deeper networks (which
suffered from overfitting). Early stopping after a single epoch generated the best results.

Thyroid: Thyroid is a small dataset, with a low anomally to normal ratio and low feature dimen-
sionality. A quantitative comparison on this dataset can be seen in Tab. 2. Most baselines performed
about equally well, probably due to the low dimensionality. On this dataset, we also found that early
stopping after a single epoch gave the best results. The best results on this dataset, were obtained
with a linear classifier. Our method beat all baselines by a wide margin.

KDDCUP99: The UCI KDD 10% dataset is the largest dataset examined. A quantitative comparison
on this dataset can be seen in Tab. ??. E2E-AE failed on this dataset. OC-SVM performed better,
reaching around 0.8. The strongest baseline, DAGMM achieved 0.937. Our method significantly
outperformed all baselines. We found that large datasets have different dynamics from very small
datasets. On this dataset, large networks performed the best. We also, did not need early stopping.
The results are reported after 25 epochs.

KDD-Rev: The KDD-Rev dataset is a large dataset, but smaller than KDDCUP99 dataset. A quan-
titative comparison on this dataset can be seen in Tab. ??. Similarly to KDDCUP99, the two best
baselines are OC-SVM and DAGMM, where DAGMM significantly outperforms OC-SVM. Our
method significantly outperformed all baselines. Due to the size of the dataset, we did not need
early stopping. The results are reported after 25 epochs.

Adversarial Robustness: Due to the large number of transformations and relatively small networks,
adversarial examples are less of a problem for tabular data. PGD generally failed to obtain adversar-
ial examples on these datasets. On KDD, transformation classification accuracy on anomalies was
increased by 3.7% for the network the adversarial examples were trained on, 1.3% when transfer-
ring to the network with the same transformation and only 0.2% on the network with other randomly
selected transformations. This again shows increased adversarial robustness due to random transfor-
mations.

Further Analysis

Contaminated Data: This paper deals with the semi-supervised scenario i.e. when the training
dataset contains only normal data. In some scenarios, such data might not be available but instead
we might have a training dataset that contains a small percentage of anomalies. To evaluate the
robustness of our method to this unsupervised scenario, we analysed the KDDCUP99 dataset, when
X% of the training data is anomalous. To prepare the data, we used the same normal training data
as before and added further anomalous examples. The test data consists of the same proportions
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Figure 1: Left: Classification error for our method and DAGMM as a function of percentage of
the anomalous examples in the training set (on the KDDCUP99 dataset). Our method consistently
outperforms the baseline. Right: Classification error as a function of the number of transforma-
tions (on the KDDRev dataset). The error and instability decrease as a function of the number of
transformations. For both, lower is better.

as before. The results are shown in Fig. 1. Our method significantly outperforms DAGMM for all
impurity values, and degrades more graceful than the baseline. This attests to the effectiveness of
our approach.

Number of operations: One of the advantages of our approach, is the ability to generate any number
of operations. We investigated the effect of the number of operations on the accuracy of the results.
The experiment was carried on the KDD-Rev dataset (due to its large but manageable size). The
results can be seen in Fig. 1. We note that a small number of operations (less than 16) leads to
poor results. From 16 operations, the mean accuracy does not change, however the results become
increasingly more stable with a greater number of operations. A direct tradeoff between runtime and
stability of results, needs to be taken into account when applying our technique in practice.

6 DISCUSSION

Generating many tasks: As illustrated in Sec.5.2, increasing the number of tasks above a certain
threshold significantly increases the performance of our method. Beyond this threshold it mainly
improves the stability of the results. This is one of the strengths of our approach, which allows
generating an arbitrary number of tasks.

Unsupervised training: Although most of our results are semi-supervised i.e. assume that no anoma-
lies exist in the training set, we have shown results showing that our method is more robust than
strong baselines to a small percentage of anomalies in the training set. Our method might therefore
be used in fully unsupervised settings.

Deep vs. shallow classifiers: Our experiments show that for large datasets deep networks are benefi-
cial (particularly for the full KDDCUP99), but are not needed for smaller datasets. For performance
critical operations, our approach may be used in a linear setting. This may also aid future theoretical
analysis of our method.

7 CONCLUSION

In this paper, we presented a method for detecting anomalies for general unstructured data. This was
achieved by training a classifier on a set of random auxiliary tasks. Our method does not require
knowledge of the data domain, and we are able to generate an arbitrary number of random tasks. We
show that our method significantly improved over the state-of-the-art and even linear classifiers do
so for most datasets. Future work will extend this approach to generate arbitrary randomized tasks
for time-series and image data.
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