
Under review as a conference paper at ICLR 2020

ONLINE META-CRITIC LEARNING FOR OFF-POLICY
ACTOR-CRITIC METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Off-Policy Actor-Critic (Off-PAC) methods have proven successful in a variety of
continuous control tasks. Normally, the critic’s action-value function is updated
using temporal-difference, and the critic in turn provides a loss for the actor that
trains it to take actions with higher expected return. In this paper, we introduce a
novel and flexible meta-critic that observes the learning process and meta-learns
an additional loss for the actor that accelerates and improves actor-critic learning.
Compared to the vanilla critic, the meta-critic network is explicitly trained to ac-
celerate the learning process; and compared to existing meta-learning algorithms,
meta-critic is rapidly learned online for a single task, rather than slowly over a
family of tasks. Crucially, our meta-critic framework is designed for off-policy
based learners, which currently provide state-of-the-art reinforcement learning
sample efficiency. We demonstrate that online meta-critic learning leads to im-
provements in a variety of continuous control environments when combined with
contemporary Off-PAC methods DDPG, TD3 and the state-of-the-art SAC.

1 INTRODUCTION

Off-policy Actor-Critic (Off-PAC) methods are currently central in deep reinforcement learning
(RL) research due to their greater sample efficiency compared to on-policy alternatives. On-policy
requires new trajectories to be collected for each update to the policy, and is expensive as the number
of gradient steps and samples per step increases with task-complexity even for contemporary TRPO
(Schulman et al., 2015), PPO (Schulman et al., 2017) and A3C (Mnih et al., 2016) algorithms.
Off-policy methods, such as DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018) and SAC
(Haarnoja et al., 2018b) achieve greater sample efficiency due to their ability to learn from randomly
sampled historical transitions without a time sequence requirement, thus making better use of past
experience. Their critic estimates the action-value (Q-value) function using a differentiable func-
tion approximator, and the actor updates its policy parameters in the direction of the approximate
action-value gradient. Briefly, the critic provides a loss to guide the actor, and is trained in turn to
estimate the environmental action-value under the current policy via temporal-difference learning
(Sutton et al., 2009). In all these cases the learning algorithm itself is hand-crafted and fixed.

Recently meta-learning, or “learning-to-learn” has become topical as a paradigm to accelerate RL
by learning aspects of the learning strategy. For example, through learning fast adaptation strategies
(Finn et al., 2017; Rakelly et al., 2019), exploration strategies (Gupta et al., 2018), optimization
strategies (Duan et al., 2016b), losses (Houthooft et al., 2018), and intrinsic rewards (Zheng et al.,
2018). However, these works mostly perform meta-learning on a family of tasks or environments
and amortize this huge cost by deploying the trained strategy for fast learning on a new task.

In this paper we introduce a novel meta-critic network to enhance existing Off-PAC learning frame-
works. The meta-critic is used alongside the vanilla critic to provide a loss to guide the actor’s
learning. However compared to the vanilla critic, the meta-critic is explicitly (meta)-trained to ac-
celerate the learning process rather than merely estimate the action-value function. Overall, the
actor is trained by gradients provided by both critic and meta-critic losses, the critic is trained by
temporal-difference as usual, and the meta-critic is trained to generate maximum learning perfor-
mance improvements in the actor. In our framework, both the critic and meta-critic use randomly
sampled off-policy transitions for efficient and effective Off-PAC learning, providing superior sam-
ple efficiency compared to existing on-policy meta-learners. Furthermore, we demonstrate that our

1

Under review as a conference paper at ICLR 2020

meta-critic can be successfully learned online within a single task. This is in stark contrast to the
mainstream meta-learning research paradigm – where entire task families are required to provide
enough data for meta-learning, and to provide new tasks to amortize the huge cost of meta-learning.

Essentially our framework meta-learns an auxiliary loss function, which can be seen as an intrinsic
motivation towards optimum learning progress (Oudeyer & Kaplan, 2009). As analogously observed
in several recent meta-learning studies (Franceschi et al., 2018), our loss-learning can be formalized
as a bi-level optimization problem with the upper level being meta-critic learning, and lower level
being conventional learning. We solve this joint optimization by iteratively updating the meta-critic
and base learner online while solving a single task. Our strategy is thus related to the meta-loss
learning in EPG (Houthooft et al., 2018), but learned online rather than offline, and integrated with
Off-PAC rather than their on-policy policy-gradient learning. The most related prior work is LIRPG
(Zheng et al., 2018), which meta-learns an intrinsic reward online. However, their intrinsic reward
just provides a helpful scalar offset to the environmental reward for on-policy trajectory optimization
via policy-gradient (Sutton et al., 2000). In contrast our meta-critic provides a loss for direct actor
optimization, and thus achieves dramatically better sample efficiency than LIRPG reward learning
in practice. We evaluate our framework on several contemporary continuous control benchmarks
and demonstrate that online meta-critic learning can be integrated with and improve a selection of
contemporary Off-PAC algorithms including DDPG, TD3 and SAC.

2 BACKGROUND AND RELATED WORK

Policy-Gradient (PG) Methods. On-policy methods usually update actor parameters in the direc-
tion of greater cumulative reward. However, the on-policy needs to interact with environment in a
sequential manner to accumulate rewards and the expected reward is generally not differentiable due
to environment dynamics. Even exploiting tricks like importance sampling and improved applica-
tion of A2C (Zheng et al., 2018), on-policy use of full trajectories is less effective than off-policy
transitions. Off-policy actor-critic architectures aim to provide greater sample efficiency by reusing
past experience (previously collected transitions). DDPG (Lillicrap et al., 2016) borrows two main
ideas from Deep Q Networks (Mnih et al., 2013; 2015): a big replay buffer and a target Q network
to give consistent targets during temporal-difference backups. TD3 (Twin Delayed Deep Determin-
istic policy gradient algorithm) (Fujimoto et al., 2018) develops a variant of Double Q-learning by
taking the minimum value between a pair of critics to limit over-estimation. SAC (Soft Actor-Critic)
(Haarnoja et al., 2018a;b) proposes a maximum entropy RL framework where its stochastic actor
aims to simultaneously maximize expected action-value and entropy. The latest version of SAC
(Haarnoja et al., 2018b) also includes the Double Q-learning idea in its implementation.

Meta Learning for RL. Meta-learning (a.k.a. learning to learn) (Santoro et al., 2016; Finn et al.,
2017) has received a resurgence in interest recently due to its potential to improve learning perfor-
mance, and especially sample-efficiency in RL (Gupta et al., 2018). Several studies learn optimizers
that provide policy updates with respect to known loss or reward functions (Andrychowicz et al.,
2016; Duan et al., 2016b; Meier et al., 2018). A few studies learn loss functions (Houthooft et al.,
2018; Sung et al., 2017) or rewards (Zheng et al., 2018) that steer the learning of standard optimizers.
Our meta-critic framework is in the latter category of loss-function meta-learning, but unlike most
of these we are able to meta-learn the loss function online in parallel to learning a single extrinsic
task rather. No costly offline learning on a task family is required as in Houthooft et al. (2018); Sung
et al. (2017). Most current Meta-RL methods are based on on-policy policy-gradient, limiting their
sample efficiency. For example, while LIRPG (Zheng et al., 2018) is one of the rare prior works
to attempt online meta-learning, it is ineffective in practice due to only providing a scalar reward
increment rather than a loss for direct optimization. A few meta-RL studies have begun to address
off-policy RL (Rakelly et al., 2019), but for conventional offline multi-task meta-learning. Our
Meta-Critic uniquely enhances state-of-the-art Off-PAC RL with single-task online meta-learning.

Loss Learning. Loss learning has been exploited in ‘learning to teach’ (Wu et al., 2018) and surro-
gate loss learning (Huang et al., 2019; Grabocka et al., 2019) where a teacher network predicts the
parameters of a manually designed loss in supervised learning. In contrast our meta-critic is itself a
differentiable loss, and is designed for use in reinforcement learning. Other applications learn losses
that improve model robustness to out of distribution samples (Li et al., 2019; Balaji et al., 2018).
Our loss learning architecture is related to Li et al. (2019), but designed for accelerating single-task
Off-PAC RL rather than improving robustness in multi-domain supervised learning.

2

Under review as a conference paper at ICLR 2020

3 METHODOLOGY

We aim to learn a meta-critic that provides an auxiliary loss Laux
ω to assists the actor’s learning of a

task. The auxiliary loss parameters ω are optimized in a meta-learning process. The vanilla critic
Lmain and meta-critic Laux

ω losses train the actor πφ off-policy via stochastic gradient descent.

3.1 REVIEW OF OFF-POLICY ACTOR-CRITIC RL

Reinforcement learning involves an agent interacting with the environment E. At each time t,
the agent receives an observation st, takes a (possibly stochastic) action at based on its policy
π : S → A, and receives a scalar reward rt and new state of the environment st+1. We call
(st, at, rt, st+1) as a single point transition. The objective of RL is to find the optimal policy πφ,
which maximizes the expected cumulative return J .

In on-policy RL, J is defined as the discounted episodic return based on a sequential trajectory over
horizon H: (s0, a0, r0, · · · , sH , aH , rH). J = Ert,st∼E,at∼π

[∑H
t=0 γ

trt

]
. In the usual implemen-

tation of A2C, r is represented by a surrogate state-value V (st) from its critic. Since J is only a
scalar value, the gradient of J with respect to policy parameters φ has to be optimized under the
policy gradient theorem (Sutton et al., 2000): ∇φJ(φ) = E [J ∇φ log πφ(at|st)].
In off-policy RL (e.g., DDPG, TD3, SAC) which is our focus in this paper, parameterized policies
πφ can be directly updated by defining the actor loss in terms of the expected return J(φ) and taking
its gradient ∇φJ(φ), where J(φ) depends on the action-value Qθ(st, at). The main loss Lmain

provided by the vanilla critic is thus

Lmain = −J(φ) = −Es∼pπQθ(s, a)|a=πφ(s) (1)

where we follow the notation in TD3 and SAC that φ and θ denote actors and critics respectively.

The main loss is calculated by a mini-batch of transitions randomly sampled from the replay buffer.
The actor’s policy network is updated as ∆φ = α∇φLmain, following the critic’s gradient to in-
crease the likelihood of actions that achieve a higher Q-value. Meanwhile, the critic uses Q-learning
updates to estimate the action-value function:

θ ← arg min
θ

(Qθ(st, at)− rt − γQθ(st+1, π(st+1))2 (2)

3.2 ALGORITHM OVERVIEW

Our meta-learning goal is to train an auxiliary meta-critic network Laux
ω that in turn enhances actor

learning. Specifically, it should lead to the actor φ having improved performance on the main task
Lmain when following gradients provided by the meta-critic as well as those provided by the main
task. This can be seen as a bi-level optimization problem (Franceschi et al., 2018; Rajeswaran et al.,
2019) of the form:

ω = argmin
ω

Lmeta(dval;φ
∗)

s.t. φ∗ = argmin
φ

(Lmain(dtrn;φ) + Laux
ω (dtrn;φ))

(3)

where we can assume Lmeta(·) = Lmain(·) for now. Here the lower-level optimization trains the actor
φ to minimize both the main task and meta-critic-provided losses on some training samples. The
upper-level optimization further requires the meta-critic ω to have produced a learned actor φ∗ that
minimizes a meta-loss that measures the actor’s main task performance on a second set of validation
samples, after being trained by the meta-critic. Note that in principle the lower-level optimization
could purely rely on Laux

ω analogously to the procedure in EPG (Houthooft et al., 2018), but we
find that optimizing their linear combination greatly increases learning stability and speed. Eq. 3
is satisfied when the meta-critic successfully improves the actor’s performance on the main task as
measured by meta-loss. Note that the vanilla critic update is also in the lower loop, but as it updates
as usual, so we focus on the actor and meta-critic optimization for simplicity of exposition.

3

Under review as a conference paper at ICLR 2020

Algorithm 1 Online Meta-Critic Learning for Off-PAC RL

φ, θ, ω,D ← ∅ // Initialize actor, critic, meta-critic and buffer
for each iteration do

for each environment step do
at ∼ πφ(at|st) // Select action according to the current policy
st+1 ∼ p(st+1|st, at), rt // Observe reward rt and new state st+1

D ← D ∪ {(st, at, rt, st+1)} // Store the transition in the replay buffer
end for
for each gradient step do
θ ← θ − λ∇θJQ(θ) // Update the critic parameters
meta-train:
Sample mini-batch dtrn from D
Lmain ← Eqs.(1, 7 or 8) // Main actor loss
Laux
ω ← Eqs.(5 or 6) // Auxiliary actor loss from meta-critic

φold = φ− α∇φLmain // Update actor according to vanilla critic only
φnew = φold − α∇φLaux

ω // Update actor according to meta-critic
meta-test:
Sample mini-batch dval from D
Lmeta(dval;φold, φnew)← Eq. 4 // Meta-loss: Did meta-critic improve performance?
meta-optimization
φ← φ− η(∇φLmain +∇φLaux

ω) // Update actor parameters
ω ← ω − η∇ωLmeta // Update meta-critic parameters

In this setup the meta-critic is a neural network hω(dtrn;φ) that takes as input some featurisation of
the actor φ and the states and actions in dtrn. This auxiliary neural network must produce a scalar
output, which we can then treat as a loss Laux

ω := hω , and must be differentiable with respect to φ.
We next discuss the overall optimization flow, and discuss the specific meta-critic architecture later.

Figure 1: Meta-critic for Off-PAC. The agent uses
data sampled from the replay buffer during meta-
train and meta-test. Actor parameters are first up-
dated using only vanilla critic, or both vanilla- and
meta-critic. Meta-critic parameters are updated by
the meta-loss.

Meta-Optimization Flow. To optimize Eq. 3,
we iteratively update the meta-critic parameters ω
(upper-level) and actor and vanilla-critic parame-
ters φ and θ (lower-level). At each iteration, we
perform: (i) Meta-train: Sample a mini-batch of
transitions and putatively update policy φ accord-
ing to the main Lmain and meta-critic Laux

ω losses.
(ii) Meta-test: Sample another mini-batch of tran-
sitions to evaluate the performance of the updated
policy according to Lmeta. (iii) Meta-optimization:
Update the meta-critic parameters ω to maximize
the performance on the validation batch, and per-
form the real actor update according to both losses.
In this way the meta-critic is trained online and in
parallel to the actor so that they co-evolve. Fig-
ure 1 and Algorithm 1 summarize the process and
the details of each step are explained next.

Updating Actor Parameters (φ). During meta-
train, we randomly sample a mini-batch of tran-
sitions dtrn = {(si, ai, ri, si+1)} with batch size
N from the replay buffer D. We then update
the policy using both losses as: φnew = φ −
η ∂ L

main(dtrn)
∂φ − η

∂ Laux
ω (dtrn)
∂φ . We also compute a separate update φold = φ − η ∂L

main(dtrn)
∂φ that

only makes use of the vanilla loss. If the meta-critic provided a beneficial source of loss, φnew
should be a better parameter than φ, and in particular it should be a better parameter than φold. We
will use this comparison in the next meta-test step.

4

end for

end for

Under review as a conference paper at ICLR 2020

Updating Meta-Critic Parameters (ω). To train the meta-critic network, we sample another
mini-batch of transitions: dval = {(sval

i , a
val
i , r

val
i , s

val
i+1)} with batch size M . The use of a val-

idation batch for bi-level meta-optimization (Franceschi et al., 2018; Rajeswaran et al., 2019)
ensures the meta-learned component does not overfit. Since our framework is off-policy, this
does not incur any sample-efficiency cost. The meta-critic is then updated by a meta loss ω ←
argmin

ω
Lmeta(dval;φnew), which could in principle be the same as the main loss Lmeta = Lmain.

However, we find it helpful for optimization efficiency to optimize the (monotonically related) dif-
ference between the updates with- and without meta-critic’s input. Specifically, we use Lmeta =
tanh(Lmain(dval;φnew)− Lmain(dval;φold)) leading to:

ω ← argmin
ω

tanh(Lmain(dval;φnew)− Lmain(dval;φold)) (4)

Here the updated actor φnew has dependence on the feedback given by meta-critic ω and φold does
not. The former should have higher reward/lower loss on the validation batch and the latter provides
a baseline, analogously to the baseline commonly used to accelerate and stabilize policy-gradient
RL. The use of tanh reflects the idea of diminishing marginal utility, and ensures that the meta-loss
range is always nicely distributed in [−1, 1].

Designing Meta-Critic (hω). The meta-critic network hω implements the auxiliary loss for the
actor. The design-space for hω has several requirements: (i) It’s input must depend on the policy
parameters φ. (ii) It should be permutation invariant to transitions in dtrn. A direct way to achieve
(i) is given in MetaReg (Balaji et al., 2018) which meta-learns a parameter regularizer: hω(φ) =∑
i ωi|φi|. This form of hω acts directly on φ, but does not exploit state information, and introduces

a large number of parameters as φ may be a high-dimensional deep neural network. We design a
more efficient form of hω . Similar to the feature extractor in supervised learning, the actor needs to
analyse and extract information from states for decision-making. We assume it can be represented as
πφ(s) = π̂(π̄(s)) and decompose into feature extraction π̄φ and decision-making π̂φ modules. The
penultimate layer of the full policy network π̄φ(s) is a feature that jointly encodes φ and s. Given
this encoding, we implement hw(dtrn;φ) as a three-layer multi-layer perceptron (MLP). Here we
consider two designs: using our joint feature alone and augmenting the joint feature with states and
actions:

(i) hw(dtrn;φ) =
1

N

N∑
i=1

MLPω(π̄φ(si)) (5)

(ii) hw(dtrn;φ) =
1

N

N∑
i=1

MLPω(π̄φ(si), si, ai) (6)

That is, we compute the batch-wise set-embdedding (Zaheer et al., 2017) of our joint actor-state
feature. Our design of Eq. 6 also includes the cues features in LIRPG and EPG where si and ai
are used as the input of their learned reward and loss respectively. We set a softplus activation to
the final layer of hω , following the idea in TD3 that the vanilla critic may over-estimate and the
introduction of a non-negative actor auxiliary loss can mitigate such over-estimation. Moreover,
we point out that only si (and ai) from dtrn are used when calculating Lmain and Laux

ω for the actor,
while si, ai, ri and si+1 are all used for optimizing the vanilla critic.

Implementation on DDPG, TD3 and SAC. Our meta-critic module can be incorporated in the
main Off-PAC methods DDPG, TD3 and SAC. In our framework, these algorithms differ only in
their definitions of Lmain, and the meta-critic implementation is otherwise exactly the same for each.
Further implementation details can be found in the supplementary material.

TD3 (Fujimoto et al., 2018) borrows the Double Q-learning idea to make unbiased value estimations
for critics. At the same time, computational cost is by using a single actor optimized with respect to
Qθ1 . Thus the corresponding Lmain for the actor becomes:

Lmain = −Es∼pπQθ1(s, a)|a=πφ(s) (7)

In SAC, two key technologies are considered for the actor: maximizing the policy entropy and
automatic temperature hyper-parameter regulation. At the same time, the latest version of SAC
(Haarnoja et al., 2018b) also draws lessons from Double Q-learning on critics. The Lmain for SAC
actor is:

Lmain = Es∼pπ [α log (πφ(a|s))−Qθ(s, a)|a=πφ(s)] (8)

5

Under review as a conference paper at ICLR 2020

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

2000

4000

6000

8000

10000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

DDPG
DDPG-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0
250
500
750

1000
1250
1500
1750
2000

Av
er

ag
e

Re
wa

rd

Hopper-v2
DDPG
DDPG-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
wa

rd

Walker2d-v2
DDPG
DDPG-MC

0 2 4 6 8 10
Time Steps (1e6)

1000

0

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Ant-v2
DDPG
DDPG-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

DDPG
DDPG-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
wa

rd

Ant (rllab)
DDPG
DDPG-MC

Figure 2: Learning curve mean and standard-deviation of vanilla DDPG and meta-critic enhanced DDPG-MC
for continuous control tasks.

4 EXPERIMENTS AND EVALUATION

The goal of our experimental evaluation is to demonstrate the versatility of our meta-critic module
in integration with several prior Off-PAC algorithms, and its efficacy in improving their respective
performance. We use the open-source implementations of DDPG, TD3 and SAC algorithms as
our baselines, and denote their enhancements by meta-critic as DDPG-MC, TD3-MC, SAC-MC
respectively. All -MC agents have both their built-in vanilla critic, and the meta-critic that we
propose. We take Eq. 5 as the default meta-critic architecture hω , and we compare the alternative in
the later ablation study. For our implementation of meta-critic, we use a three-layer neural network
with an input dimension of π̄ (300 in DDPG and TD3, 256 in SAC), two hidden feed-forward layers
of 100 hidden nodes each, and ReLU non-linearity between layers.

We evaluate the methods on a suite of seven MuJoCo continuous control tasks (Todorov et al., 2012)
interfaced through OpenAI Gym (Brockman et al., 2016) and HalfCheetah and Ant (Duan et al.,
2016a) in rllab. We use the latest V2 tasks instead of V1 used in TD3 and the old implementation of
SAC (Haarnoja et al., 2018a) without any modification to their original environment or reward.

Implementation Details. For DDPG, we use the open-source implementation “OurDDPG” 1 which
is the re-tuned version of DDPG implemented in Fujimoto et al. (2018) with the same hyper-
parameters of the actor and critic. For TD3 and SAC, we use the open-source implementations
of TD3 2 and SAC 3. In each case we integrate our meta-critic with learning rate 0.001. The specific
pseudo-codes can be found in the supplementary material.

4.1 EVALUATION OF META-CRITIC OFF-PAC LEARNING

DDPG Figure 2 shows the learning curves of DDPG and DDPG-MC. The experimental results
corresponding to each task are averaged over 5 random seeds (trials) and network initialisations,
and the standard deviation confidence intervals are represented as shaded regions over the time steps.
Following Fujimoto et al. (2018), curves are uniformly smoothed (window size 30) for clarity. We
run the experiments over 10 million environment steps, and every 1000 steps we evaluate our policy
over 10 episodes with no exploration noise and report the average reward.

From the learning curves in Figure 2, we can see that DDPG-MC generally outperforms the corre-
sponding DDPG baseline in terms of the learning speed (sample efficiency) and asmyptotic perfor-
mance. Furthermore, it usually has smaller variance. The summary results for all nine tasks in terms
of max average return are given in Table 1. We selected the six tasks shown in Figure 2 for plotting,

1https://github.com/sfujim/TD3/blob/master/OurDDPG.py
2https://github.com/sfujim/TD3/blob/master/TD3.py
3https://github.com/pranz24/pytorch-soft-actor-critic

6

Under review as a conference paper at ICLR 2020

Table 1: Max Average Return over 5 trials over all time steps. Max value for each task is bolded.

Environment DDPG DDPG-MC TD3 TD3-MC SAC SAC-MC PPO PPO-LIRPG
HalfCheetah 8440.2 10187.5 12735.7 15064.0 16651.8 16815.9 2061.5 1882.6
Hopper 2097.5 3253.6 3807.0 3854.3 3610.6 3738.4 3762.0 2750.0
Walker2d 2920.1 3753.7 5942.7 5955.5 6398.8 7164.9 4432.6 3652.9
Ant 2375.4 3661.1 5914.8 6280.0 6954.4 7204.3 684.2 23.6
Reacher -3.6 -3.7 -3.0 -2.9 -2.8 -2.7 -6.08 -7.53
InvPend 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 988.2 971.6
InvDouPend 9307.5 9326.5 9357.4 9358.8 9359.6 9359.6 7266.0 6974.9
HalfCheetah(rllab) 5860.8 6254.6 8029.6 8552.1 10011.0 10597.0 - -
Ant(rllab) 2300.8 2721.1 3672.6 4776.8 8014.8 8353.8 - -

0 2 4 6 8 10
Time Steps (1e6)

0
2000
4000
6000
8000

10000
12000
14000
16000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

TD3
TD3-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
wa

rd

Hopper-v2

TD3
TD3-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
wa

rd

Walker2d-v2

TD3
TD3-MC

0 2 4 6 8 10
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

Re
wa

rd

Ant-v2

TD3
TD3-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

2000

4000

6000

8000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

TD3
TD3-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Ant (rllab)
TD3
TD3-MC

Figure 3: Learning curve mean and standard-deviation of vanilla TD3 and meta-critic enhanced TD3-MC for
continuous control tasks.

because the other MuJoCo tasks “Reacher”, “InvertedPendulum” and “InvertedDoublePendulum”
have an environmental reward upper bound which all methods reach quickly without obvious differ-
ence between them. Table 1 shows that DDPG-MC provides consistently higher max return for the
tasks without upper bounds.

TD3 and SAC Figure 3 reports the learning curves for TD3. For some tasks vanilla TD3 perfor-
mance declines in the long run, while our TD3-MC shows improved stability with much higher
asymptotic performance. Generally speaking, the learning curves show that TD3-MC providing
comparable or better learning performance in each case, while Table 1 shows the clear improvement
in the max average return. Figure 4 report the learning curves of SAC. Note that we use the most re-
cent update of SAC (Haarnoja et al., 2018b), which can be regarded as the combination SAC+TD3.
Although this SAC+TD3 is arguably the strongest existing method, SAC-MC still gives a clear boost
for several of the tasks.

Comparison vs PPO-LIRPG Intrinsic Reward Learning for PPO (Zheng et al., 2018) is the only
existing online meta-learning method that we are aware of. The original PPO-LIRPG study evalu-
ated on a modified environment with hidden rewards. Here we apply it to the standard unmodified
learning tasks that we aim to improve. The results in Table 1 demonstrate that: (i) In this con-
ventional setting, PPO-LIRPG worsens rather than improves basic PPO performance. (ii) Overall
Off-PAC methods generally perform better than on-policy PPO for most environments. This shows
the importance of our meta-learning contribution to the off-policy setting. In general Meta-Critic
is preferred compared to PPO-LIRPG because the latter only provides a scalar reward bonus only
influences the policy indirectly via policy-gradient updates, while Meta-Critic provides a direct loss.

Summary Table 1 and Figure 5 summarize all the results in terms of max average return. We can see
that SAC-MC always performs best; the Meta-Critic-enhanced methods are generally comparable
or better than their corresponding vanilla alternatives; and Meta-Critic usually provides improved
variance in return compared to the baselines.

7

Under review as a conference paper at ICLR 2020

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
2000
4000
6000
8000

10000
12000
14000
16000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

SAC
SAC-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

500
1000
1500
2000
2500
3000

Av
er

ag
e

Re
wa

rd

Hopper-v2

SAC
SAC-MC

0 2 4 6 8 10
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

Walker2d-v2

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

Ant-v2

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
2000
4000
6000
8000

10000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000
8000

Av
er

ag
e

Re
wa

rd

Ant (rllab)

SAC
SAC-MC

Figure 4: Learning curve mean and standard-deviation of vanilla SAC and meta-critic enhanced SAC-MC for
continuous control tasks.

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

2000
4000
6000
8000

10000
12000
14000
16000

HalfCheetah-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
0

1000

2000

3000

4000
Hopper-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
0

1000
2000
3000
4000
5000
6000
7000

Walker2d-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
0

1000
2000
3000
4000
5000
6000
7000

Ant-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
5000

6000

7000

8000

9000

10000

11000
HalfCheetah(rllab)

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

2000
3000
4000
5000
6000
7000
8000
9000 Ant(rllab)

Figure 5: Box plots of the Max Average Return over 5 trials of all time steps.

4.2 FURTHER ANALYSIS

Loss Analysis. To analyse the learning dynamics of our algorithm, we take Walker2d as an example.
Figure 6 reports the main lossLmain curve of actor and the loss curves of hω (i.e., Laux

ω) andLmeta over
5 trials for SAC. We can see that: (i) SAC-MC shows faster convergence to a lower value of Lmain,

0 2 4 6 8 10
Time steps (1e6)

700

600

500

400

300

200

100

M
ai

n
Lo

ss
 o

f A
ct

or

SAC
SAC-MC

(a) Main loss of actor

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps (1e6)

0.70

0.75

0.80

0.85

0.90

0.95

Au
x

Lo
ss

(b) Auxiliary loss of actor

0 2 4 6 8 10
Time steps (1e6)

0.03

0.02

0.01

0.00

0.01

0.02

M
et

a
Lo

ss

(c) Meta-loss

Figure 6: Loss analysis of our algorithm.

8

Under review as a conference paper at ICLR 2020

demonstrating the auxiliary loss’s ability to accelerate learning. Unlike supervised learning, where
the vanilla loss is, e.g., cross-entropy vs ground-truth labels. The Lmain for actors in RL is provided
by the critic which is also learned, so the plot also encompasses convergence of the critic. (ii) The
meta-loss (which corresponds to the success of the meta-critic in improving actor learning) fluctuates
throughout, reflecting the exploration process in RL. But it is generally negative, confirming that the
auxiliary-trained actor generally improves on the vanilla actor at each iteration. (iii) The auxiliary
loss converges smoothly under the supervision of the meta-loss.

Ablation on hω design. We also run Walker2d experiments with alternative hω designs as in Eq. 6
or MetaReg (Balaji et al., 2018) format (input actor parameters directly). As shown in Table 2, we
record the max average return and sum average return (regarded as the area under the average reward
curve) of all evaluations during all time steps. Eq. 6 achieves the highest max average return and our
default hω (Eq. 5) attains the highest mean average return. We can also see some improvement for
hω(φ) using MetaReg format, but the huge number (73484) of parameters is expensive. Overall, all
meta-critic module designs provides at least a small improvement on vanilla SAC.

Ablation on baseline in meta-loss. In Eq. 4, we use Lmain(dval;φold) as a baseline to improve
numerical stability of the gradient update. To evaluate this design, we removing the φold baseline
and optimize ω ← argmin

ω
tanh(Lmain(dval;φnew)). The last column in Table 2 shows that this

barely improves on vanilla SAC, validating our design choice to use a baseline.

Table 2: Max and Sum Average Return over 5 trials of all time steps under different designs of meta-critic
(aux-loss) and meta-loss. Max value in each row is bolded.

SAC
Lmeta : φnew − φold Lmeta : φnew

hω(π̄φ) hω(π̄φ, s, a) hω(φ) hω(π̄φ)

Max Average Return 6398.8 ± 289.2 7164.9 ± 151.3 7423.8 ± 780.2 6644.3 ± 1815.6 6456.1 ± 424.8
Sum Average Return 53,695,678 61,672,039 57,364,405 58,875,184 52,446,717

5 CONCLUSION

We present Meta-Critic, an auxiliary critic module for Off-PAC methods that can be meta-learned
online during single task learning. The meta-critic is trained to generate gradients that improve
the actor’s learning performance over time, and leads to long run performance gains in continuous
control. The meta-critic module can be flexibly incorporated into various contemporary Off-PAC
methods to boost performance. In future work, we plan to apply the meta-critic to conventional
offline meta-learning with multi-task and multi-domain RL.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In NIPS, 2016.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gener-
alization using meta-regularization. In NeurIPS, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. In arXiv preprint arXiv:1606.01540, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In ICML, 2016a.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. In arXiv preprint arXiv:1611.02779,
2016b.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

9

Under review as a conference paper at ICLR 2020

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimilano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In arXiv preprint
arXiv:1806.04910, 2018.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, 2018.

Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surrogate losses. In arXiv
preprint arXiv:1905.10108, 2019.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In NeurIPS, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In arXiv preprint
arXiv:1801.01290, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. In arXiv preprint arXiv:1812.05905, 2018b.

Rein Houthooft, Richard Y Chen, Phillip Isola, Bradly C Stadie, Filip Wolski, Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In NeurIPS, 2018.

Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Ángel Bautista, Shih-Yu Sun, Carlos Guestrin,
and Josh Susskind. Addressing the loss-metric mismatch with adaptive loss alignment. In ICML,
2019.

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M Hospedales. Feature-critic networks for het-
erogeneous domain generalization. In ICML, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Franziska Meier, Daniel Kappler, and Stefan Schaal. Online learning of a memory for learning rates.
In ICRA, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In NeurIPS, 2019.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In ICML, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In ICML, 2016.

10

Under review as a conference paper at ICLR 2020

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
meta-critic networks for sample efficient learning. In arXiv preprint arXiv:1706.09529, 2017.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, 2000.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvri, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In ICML, 2009.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-Huang, and Tie-Yan Liu. Learning to
teach with dynamic loss functions. In NeurIPS, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems 30.
2017.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In NeurIPS, 2018.

11

Under review as a conference paper at ICLR 2020

Supplementary Information

6 ALGORITHMS OF META-CRITIC FOR DDPG, TD3 AND SAC

We incorporate our Meta-Critic to the implementation of vanilla DDPG, TD3 and SAC, following
their original implementations.

Algorithm 2 DDPG-MC algorithm

Initialize critic Q(s, a|θ), actor π(s|φ) and auxiliary loss network hω
Initialize target network Q′ and π′ with weights θ

′ ← θ, φ
′ ← φ

Initialize replay bufferR
for episode = 1, ..., M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, ..., T do

Select action at = π(st|φ) +Nt according to the current policy and exploration noise
Execute action at, observe reward rt and new state st+1

Store transition (st, at, rt, st+1) inR
Sample a random mini-batch of N transitions (si, ai, ri, si+1) fromR
Set yi = ri + γQ′(si+1, π

′(si+1|φ
′
)|θ′

)
Update critic by minimizing the loss: L = N−1

∑
i(yi −Q(si, ai|θ))2

meta-train:
Calculate the old actor weights using the main actor loss:

∇φLmain = −N−1
∑
i

∇aQ(s, a|θ)|s=si,a=π(s)∇φπ(s|φ)|s=si

φold = φ− α∇φLmain

Calculate the new actor weights using the auxiliary actor loss:

∇φLaux
ω = ∇φhω = N−1

∑
i

∇φMLPω(π̄(s|φ)|s=si)

φnew = φold − α∇φLaux
ω

meta-test:
Sample a random mini-batch of N sval

i fromR
Calculate the meta-loss using the meta-test sampled transitions:

Lmeta = tanh(Lmain(s, a|θ)|s=sval
i ,a=π(s|φnew) − Lmain(s, a|θ)|s=sval

i ,a=π(s|φold))

meta-optimization: Update the weight of actor and meta-critic network:

φ← φ− η(∇φLmain +∇φLaux
ω)

ω ← ω − η∇ωLmeta

Update the target networks:
θ
′
← τθ + (1− τ)θ

′

φ
′
← τφ+ (1− τ)φ

′

12

end for

end for

Under review as a conference paper at ICLR 2020

Algorithm 3 TD3-MC algorithm

Initialize critics Qθ1 , Qθ2 , actor πφ and auxiliary loss network hω
Initialize target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πφ(s) + ε, ε ∼ N (0, σ) and observe reward r and
new state s′
Store transition tuple (s, a, r, s′) in B

Sample mini-batch of N transitions (s, a, r, s′) from B
ã← πφ′(s′) + ε, ε ∼ clip(N (0, σ̃),−c, c)
y ← r + γmini=1,2Qθ′i(s

′, ã)

Update critics θi ← arg minθi N
−1 ∑(y −Qθi(s, a))2

if t mod d then
∇φLmain = −N−1

∑
∇aQθ1(s, a)|a=πφ(s)∇φπφ(s)

∇φLaux
ω = ∇φhω = N−1

∑
∇φMLPω(π̄φ(s))

meta-train :
Calculate the old actor weights using the main actor loss: φold = φ− α∇φLmain

Calculate the new actor weights using the auxiliary actor loss: φnew = φold − α∇φLaux
ω

meta-test:
Sample mini-batch of N sval from B
Calculate the meta-loss using the meta-test sampled transitions:
Lmeta = tanh(Lmain(sval, a|θ1)|a=π(sval)|φnew) − Lmain(sval, a|θ1)|a=π(sval)|φold))
meta-optimization:
Update the actor and meta-critic:
φ← φ− η(∇φLmain +∇φLaux

ω)
ω ← ω − η∇ωLmeta

Update target networks:
θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end if

13

end for

Under review as a conference paper at ICLR 2020

Algorithm 4 SAC-MC algorithm

θ1, θ2, φ, ω // Initialize parameters
θ̄ ← θ1, θ̄2 ← θ2 // Initialize target network weights
D ← ∅ // Initialize an empty replay pool
for each iteration do

for each environment step do
at ∼ πφ(at|st) // Sample action from the policy
st+1 ∼ p(st+1|st, at) // Sample transition from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} // Store the transition in the replay pool

end for
for each gradient step do
θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2} // Update the Q-function parameters
meta-train :
∇φLmain = N−1

∑
t∇a[α log (πφ(a|s))−Qθ(s, a)|s=st,a=π(s)]∇φπφ(s)|s=st

φold = φ− α∇φLmain // Calculate old weights of the actor
∇φLaux

ω = ∇φhω = N−1
∑
t∇φMLPω(π̄φ(s))|s=st

φnew = φold − α∇φLaux
ω // Calculate new weights of the actor

meta-test:
Lmeta = tanh(Lmain(s, a|θ)|s=sval

t ,a=π(s|φnew) − Lmain(s, a|θ)|s=sval
t ,a=π(s|φold))

// Calculate meta-loss
meta-optimization:
φ← φ− η(∇φLmain +∇φLaux

ω) // Update the actor parameters
ω ← ω − η∇ωLmeta // Update the meta-critic parameters

α← α− λ∇αJ(α) // Adjust temperature
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} // Update target network weights

end for

14

end for

Under review as a conference paper at ICLR 2020

7 AVERAGE REWARDS ON OTHER TASKS AND PPO-LIRPG EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

8

7

6

5

4
Av

er
ag

e
Re

wa
rd

Reacher-v2

DDPG
DDPG-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

300
400
500
600
700
800
900

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

DDPG
DDPG-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

4000

5000

6000

7000

8000

9000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

DDPG
DDPG-MC

Figure 7: Learning curve mean and standard-deviation of vanilla DDPG and meta-critic enhanced DDPG-MC
for MuJoCo tasks with upper reward bound.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0

Av
er

ag
e

Re
wa

rd

Reacher-v2

TD3
TD3-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

300
400
500
600
700
800
900

1000
Av

er
ag

e
Re

wa
rd

InvertedPendulum-v2

TD3
TD3-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

4000
5000
6000
7000
8000
9000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

TD3
TD3-MC

Figure 8: Learning curve mean and standard-deviation of vanilla TD3 and meta-critic enhanced TD3-MC for
MuJoCo tasks with upper reward bound.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5

Av
er

ag
e

Re
wa

rd

Reacher-v2

SAC
SAC-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

SAC
SAC-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

5000

6000

7000

8000

9000

Av
er

ag
e

Re
wa

rd
InvertedDoublePendulum-v2

SAC
SAC-MC

Figure 9: Learning curve mean and standard-deviation of vanilla SAC and meta-critic enhanced SAC-MC for
MuJoCo tasks with upper reward bound.

0 2 4 6 8 10
Time Steps (1e6)

500

0

500

1000

1500

2000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

Re
wa

rd

Hopper-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Walker2d-v2
PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

400

200

0

200

400

600

Av
er

ag
e

Re
wa

rd

Ant-v2
PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

100
80
60
40
20

0

Av
er

ag
e

Re
wa

rd

Reacher-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0
200
400
600
800

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

PPO
PPO-LIRPG

Figure 10: Learning curve mean and standard-deviation of PPO and PPO-LIRPG for continuous control tasks.

15

Under review as a conference paper at ICLR 2020

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

9
8
7
6
5
4
3
2

Reacher-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

950

960

970

980

990

1000
InvertedPendulum-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

7000

7500

8000

8500

9000

InvertedDoublePendulum-v2

Figure 11: Box plots of the Max Average Return over 5 trials of all time steps for MuJoCo tasks with upper
reward bound.

16

	Introduction
	Background and Related Work
	Methodology
	Review of Off-Policy Actor-Critic RL
	Algorithm Overview

	Experiments and Evaluation
	Evaluation of Meta-Critic Off-PAC learning
	Further Analysis

	Conclusion
	Algorithms of Meta-Critic for DDPG, TD3 and SAC
	Average Rewards on Other Tasks and PPO-LIRPG Experiments

