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ABSTRACT

A key element of understanding the efficacy of overparameterized neural networks
is characterizing how they represent functions as the number of weights in the
network approaches infinity. In this paper, we characterize the norm required to
realize a function f : Rd → R as a single hidden-layer ReLU network with an
unbounded number of units (infinite width), but where the Euclidean norm of the
weights is bounded, including precisely characterizing which functions can be re-
alized with finite norm. This was settled for univariate functions f : R → R in
Savarese et al. (2019), where it was shown that the required norm is determined
by the L1-norm of the second derivative of the function. We extend the charac-
terization to multi-variate functions (d ≥ 2, i.e., multiple input units), relating
the required norm to the L1-norm of the Radon transform of a (d + 1)/2-power
Laplacian of the function. This characterization allows us to show that all func-
tions in Sobolev spaces W s,1(Rd), s ≥ d + 1, can be represented with bounded
norm, to calculate the required norm for several specific functions, and to obtain a
depth separation result. These results have important implications for understand-
ing generalization performance and the distinction between neural networks and
more traditional kernel learning.

1 INTRODUCTION

It has been argued for a while, and is becoming increasingly apparent in recent years, that in terms
of complexity control and generalization in neural network training, “the size [magnitude] of the
weights is more important then the size [number of weights or parameters] of the network” (Bartlett,
1997; Neyshabur et al., 2014; Zhang et al., 2016). That is, inductive bias and generalization are not
achieved by limiting the size of the network, but rather by explicitly or implicitly (Neyshabur et al.,
2014; 2017; Gunasekar et al., 2018) controlling the magnitude of the weights.

In fact, since networks used in practice are often so large that they can fit any function (any labels)
over the training data, it is reasonable to think of the network as virtually infinite-sized, and thus
able to represent essentially all functions. Training and generalization ability then rests on fitting
the training data while controlling, either explicitly or implicitly, the magnitude of the weights.
That is, training searches over all functions, but seeks functions with small representational cost,
given by the minimal weight norm required to represent the function. This “representational cost
of a function” is the actual inductive bias of learning—the quantity that defines our true model
class, and the functional we are actually minimizing in order to learn. Understanding learning with
overparameterized (virtually infinite) networks thus rests on understanding this “representational
cost”, which is the subject of our paper.

We can also think of understanding the representational cost as asking an approximation theory
question: what functions can we represent, or approximate, with our de facto model class, namely
the class of functions representable with small magnitude weights? There has been much celebrated
work studying approximation in terms of the network size, i.e., asking how many units are necessary
in order to approximate a target function (Hornik et al., 1989; Cybenko, 1989; Barron, 1993; Pinkus,
1999). But if complexity is actually controlled by the norm of the weights, and thus our true model
class is defined by the magnitude of the weights, we should instead ask how large a norm is necessary
in order to capture a target function. This revised view of approximation theory should also change
how we view issues such as depth separation: rather then asking how increasing depth can reduce
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the number of units required to fit a function, we should instead ask how increasing depth can reduce
the norm required, i.e., how the representational cost we study changes with depth.

Our discussion above directly follows that of Savarese et al. (2019), who initiated the study of the
representational cost in term of weight magnitude. Savarese et al. considered two-layer (i.e., single
hidden layer) ReLU networks, with an unbounded (essentially infinite) number of units, and where
the overall Euclidean norm (sum of squares of all the weights) is controlled. Infinite width networks
of this sort have been studied from various perspectives by e.g., Bengio et al. (2006); Neyshabur
et al. (2015); Bach (2017); Mei et al. (2018). For univariate functions f : R→ R, corresponding to
networks with a single one-dimensional input and a single output, Savarese et al. obtained a crisp
and precise characterization of the representational cost, showing that minimizing overall Euclidean
norm of the weights is equivalent to fitting a function by controlling:

max

(∫
|f ′′(x)|dx, |f ′(−∞) + f ′(+∞)|

)
. (1)

While this is an important first step, we are of course interested also in more than a single one-
dimensional input. In this paper we derive the representational cost for any function f : Rd → R in
any dimension d. Roughly speaking, the cost is captured by:

‖f‖R ≈̇‖R{∆
(d+1)/2f}‖1 ≈ ‖∂d+1

b R{f}‖1 (2)

whereR is the Radon transform, ∆ is the Laplacian, and ∂b is a partial derivative w.r.t. the offset in
the Radon transform (see Section 3 for an explanation of the Radon transform). This characterization
is rigorous for odd dimensions d and for functions where the above expressions are classically well-
defined (i.e., smooth enough such that all derivatives are finite, and the integrand in the Radon
transform is integrable). But for many functions of interest these quantities are not well-defined
classically. Instead, in Definition 1, we use duality to rigorously define a semi-norm ‖f‖R that
captures the essence of the above quantities and is well-defined (though possibly infinite) for any
f in any dimension. We show that ‖f‖R precisely captures the representational cost of f , and in
particular is finite if and only if f can be approximated arbitrarily well by a bounded norm, but
possibly unbounded width, ReLU network. Our precise characterization applies to an architecture
with unregularized bias terms (as in Savarese et al. (2019)) and a single unregularized linear unit—
otherwise a correction accounting for a linear component is necessary, similar but more complex
than the term |f ′(−∞) + f ′(+∞)| in the univariate case, i.e., (1).

As we uncover, the characterization of the representational cost for multivariate functions is unfor-
tunately not as simple as the characterization (1) in the univariate case, where the Radon transform
degenerates. Nevertheless, it is often easy to evaluate, and is a powerful tool for studying the rep-
resentational power of bounded norm ReLU networks. Furthermore, as detailed in Section 5.5,
we are unaware of any kernel function for which the associated RKHS norm is the same as (2);
i.e., training neural networks is fundamentally different from kernel learning. In particular, using
our characterization we show the following:

• All sufficiently smooth functions have finite representational cost, but the necessary de-
gree of smoothness depends on the dimension. In particular, all functions in the Sobolev
space W d+1,1(Rd), i.e., when all derivatives up to order d+ 1 are L1-bounded, have finite
representational cost, and this cost can be bounded using the Sobolev norm. (Section 5.1)

• We calculate the representational cost of radial “bumps”, and show there are bumps with
finite support that have finite representational cost in all dimensions. The representational
cost increases as 1/ε for “sharp” bumps of radius ε (and fixed height). (Section 5.2)

• In dimensions greater than one, piecewise linear functions with bounded support have in-
finite representational cost (i.e., cannot be represented with a bounded norm, even with
infinite networks). (Section 5.3)

• We obtain a depth separation in terms of norm: we demonstrate a function in two dimen-
sions that is representable using a depth three ReLU network (i.e., with two hidden layers)
with small finite norm, but cannot be represented by any bounded-norm depth two (single
hidden layer) ReLU network. As far as we are aware, this is the first depth separation result
in terms of the norm required for representation. (Section 5.4)
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1.1 RELATED WORK

Although the focus of most previous work on approximation theory for neural networks was on the
number of units, the norm of the weights was often used as an intermediate step. However, this
use does not provide an exact characterization of the representational cost, only a (often very loose)
upper bound, and in particular does not allow for depth separation results where a lower bound is
needed. See Savarese et al. (2019) for a detailed discussion, e.g., contrasting with the work of Barron
(1993; 1994).

The connection between the Radon transform and two-layer neural networks was previously made
by Carroll & Dickinson (1989) and Ito (1991), who used it to obtain constructive approximations
when studying approximation theory in terms of network size (number of units) for threshold and
sigmoidal networks. This connection also forms the foundation of ridgelet transform analysis of
functions Candès & Donoho (1999); Candès (1999). More recently, Sonoda & Murata (2017) used
ridgelet transform analysis to study the approximation properties of two-layer neural networks with
unbounded activation functions, including the ReLU.

While working on this manuscript, we learned through discussions with Matus Telgarsky of his
related parallel work. In particular, Telgarsky obtained a calculation formula for the norm required
to represent a radial function, paralleling our calculations in Section 5.2, and used it to show that
sufficiently smooth radial functions have finite norm in any dimension, and studied how this norm
changes with dimension.

2 INFINITE WIDTH RELU NETWORKS

We repeat here the discussion of Savarese et al. (2019) defining the representational cost of infinite-
width ReLU networks, with some corrections and changes that we highlight.

Consider the collection of all two-layer networks having an unbounded number of rectified linear
units (ReLUs), i.e., all gθ : Rd → R defined by

gθ(x) =

k∑
i=1

ai[w
>
i x− bi]+ + c, for all x ∈ Rd (3)

with parameters θ = (k,W = [w1, ...,wk], b = [b1, ..., bk]>,a = [a1, ..., ak]>, c), where the width
k ∈ N is unbounded. Let Θ be the collection of all such parameter vectors θ. For any θ ∈ Θ we
let C(θ) be the sum of the squared Euclidean norm of the weights in the network excluding the bias
terms, i.e.,

C(θ) =
1

2

(
‖W ‖2F + ‖a‖2

)
=

1

2

k∑
i=1

(
‖wi‖22 + |ai|2

)
, (4)

and consider the minimal representation cost necessary to exactly represent a function f ∈ Rd → R

R(f) := inf
θ∈Θ

C(θ) s.t. f = hθ. (5)

By the 1-homogeneity of the ReLU, it is shown in Neyshabur et al. (2014) (see also Appendix A of
Savarese et al. (2019)) that minimizing C(θ) is the same as constraining the inner layer weight
vectors {wi}ki=1 to be unit norm while minimizing the `1-norm of the outer layer weights a.
Therefore, letting Θ′ be the collection of all θ ∈ Θ with each wi constrained to the unit sphere
Sd−1 := {w ∈ Rd : ‖w‖ = 1}, we have

R(f) = inf
θ∈Θ′
‖a‖1 s.t. f = hθ. (6)

However, we see R(f) is finite only if f is exactly realizable as a finite-width two layer ReLU
network, i.e., f must be a continuous piecewise linear function with finitely many pieces. Yet, we
know that any continuous function can be approximated uniformly on compact sets by allowing the
number of ReLU units to grow to infinity. Since we are not concerned with the number of units, only
their norm, we modify our definition of representation cost to capture this larger space of functions,
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and define1

R(f) := lim
ε→0

(
inf
θ∈Θ′

C(θ) s.t. |gθ(x)− f(x)| ≤ ε ∀ ‖x‖ ≤ 1/ε and gθ(0) = f(0)

)
(7)

In words, R(f) is the minimal limiting representational cost among all sequences of networks con-
verging to f uniformly (while agreeing with f at zero).

Intuitively, if R(f) is finite this means f is expressible as an “infinite-width” ReLU network whose
outer-most weights are described by a density α(w, b) defined over all weight and bias pairs (w, b) ∈
Sd−1 × R. To make this intuition precise, let M(Sd−1 × R) denote the space of signed measures α
defined on (w, b) ∈ Sd−1×R with finite total variation norm ‖α‖1 =

∫
Sd−1×R d|α| (i.e., the analog

of the L1-norm for measures), and let c ∈ R. Then we define the infinite-width two-layer ReLU
network hα,c (or “infinite-width net” for short) by2

hα,c(x) :=

∫
Sd−1×R

(
[w>x− b]+ − [−b]+

)
dα(w, b) + c (8)

We prove in Appendix D that R(f) is equivalent to

R(f) = min
α∈M(Sd−1×R),c∈R

‖α‖1 s.t. f = hα,c (9)

Hence, learning an unbounded width ReLU network gθ by fitting some loss functional L(·) while
controlling the Euclidean norm of the weights C(θ) by minimizing

min
θ∈Θ

L(gθ) + λC(θ) (10)

is effectively the same as learning a function f by controlling R(f):

min
f :Rd→R

L(f) + λR(f), (11)

In other words, R(f) captures the true inductive bias of learning with unbounded width ReLU
networks with regularized weights. Our goal is then to calculate R(f) for any function f : Rd →
R, and in particular characterize when it is finite in order to understand what functions can be
approximated arbitrarily well with bounded norm but unbounded width ReLU networks.

2.1 SIMPLIFICATION USING AN UNREGULARIZED LINEAR UNIT

Every two-layer ReLU network uniquely decomposes into the sum of a network with absolute value
units plus a linear part3. As demonstrated by Savarese et al. (2019) in the 1D setting, the weights on
the absolute value units typically determine the representational cost, with a correction term needed
if the linear part has large weight. To allow for a cleaner formulation of the representation cost
without this correction term, we consider adding in one additional unregularized linear unit v>x
(similar to a “skip connection”) to “absorb” any representational cost due to the linear part.

Namely, for any θ ∈ Θ and v ∈ Rd we define the class of unbounded with two-layer ReLU networks
gθ,v with a linear unit by gθ,v(x) = gθ(x) + v>x with gθ as defined in (3), and associate gθ,v with
the same weight norm C(θ) as defined in (4) (i.e., we exclude the norm of the weight v from the
cost). We then define a new representational cost R1(f) for this class of networks by

R1(f) := lim
ε→0

(
inf

θ∈Θ′,v∈Rd
C(θ) s.t. |gθ,v(x)− f(x)| ≤ ε ∀ ‖x‖ ≤ 1/ε and gθ(0) = f(0)

)
.

(12)
1Our definition ofR(f) differs from the one given in Savarese et al. (2019). We require |gθ(x)−f(x)| ≤ ε

on the ball of radius 1/ε rather than all of Rd, and we additionally require gθ(0) = f(0). These modifications
are needed to ensure (7) and (9) are equivalent. Also, we note the choice of zero in the condition gθ(0) = f(0)
is arbitrary and can be replaced with any point x0 ∈ Rd.

2Our definition of hα,c also differs from the one given in Savarese et al. (2019). To ensure the integral is
well-defined, we include the additional −[−b]+ term in the integrand. See Remark 1 in the Appendix for more
discussion on this point.

3Such a decomposition follows immediately from the identity [t]+ = 1
2
(|t|+ t)
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Likewise, for all α ∈ M(Sd−1 × R), v ∈ Rd, c ∈ R, we define an infinite width net with a linear
unit by hα,v,c(x) := hα,c(x) + v>x. We prove in Appendix D that R1(f) is equivalent to:

R1(f) = min
α∈M(Sd−1×R),v∈Rd,c∈R

‖α‖1 s.t. f = hα,v,c (13)

= ‖α∗‖1, (14)

where α∗ is the unique even measure4 such that f = hα∗,v∗,c∗ for some v∗ ∈ Rd and c∗ ∈ R. The
uniqueness of the solution to (13) allows for a much cleaner description of R1(f) in function space
relative to R(f), as we show in Section 4.

The following lemma, proved in Appendix D, will be used in some our examples, and shows that
R1(f) captures the expected representational cost for a ReLU net with finitely many units:

Lemma 1. Let f(x) =
∑k
i=1 ai[w

>
i x − bi]+ + v>x + c where the weight and bias pairs

{(wi, bi)}ki=1 are distinct under the identification (w, b) = (−w,−b). Then R1(f) =
∑k
i=1 |ai|.

3 THE RADON TRANSFORM AND ITS DUAL

Our characterization of the representational cost R1(f) is posed in terms of the Radon transform —
a transform that is fundamental to computational imaging, and whose inverse is the basis of image
reconstruction in computed tomography. For an investigation of its properties and applications, see
Helgason (1999). Here we give a brief review of the Radon transform and its dual as needed for the
derivation in Section 4; readers familiar with these topics can skip to Section 4.

The Radon transform R represents a function f : Rd → R in terms of its integrals over all possible
hyperplanes in Rd, as parameterized by the unit normal direction to the hyperplane w ∈ Sd−1 and
the signed distance of the hyperplane from the origin b ∈ R:

R{f}(w, b) :=

∫
w>x=b

f(x) ds(x) for all (w, b) ∈ Sd−1 × R (15)

where ds(x) represents integration with respect to (d−1)-dimensional surface measure on the hyper-
planew>x = b. Note the Radon transform is an even function, i.e.,R{f}(w, b) = R{f}(−w,−b)
for all (w, b) ∈ Sd−1 × R since the equations w>x = b and −w>x = −b determine the same hy-
perplane.

The Radon transform is invertible for many common spaces of functions, and its inverse is a compo-
sition of the dual Radon transform R∗ (i.e., the adjoint ofR) followed by a filtering step in Fourier
domain. The dual Radon transform R∗ maps a function ϕ : Sd−1 × R → R to a function over
x ∈ Rd by integrating over the subset of coordinates (w, b) ∈ Sd−1 × R corresponding to all
hyperplanes passing through x ∈ Rd:

R∗{ϕ}(x) :=

∫
Sd−1

ϕ(w,w>x) dw for all x ∈ Rd (16)

where dw represents integration with respect to the surface measure of the unit sphere Sd−1. The
filtering step is described by a power of the (negative) Laplacian (−∆)s/2, which for any positive
integer s > 0 is the operator defined in Fourier domain by

̂(−∆)s/2f(ξ) = ‖ξ‖sf̂(ξ) (17)

where ĝ(ξ) :=
∫
g(x)e−i2πξ

>xdx is the d-dimensional Fourier transform at the Fourier domain
(frequency) variable ξ ∈ Rd. When s is a even integer, (−∆)s/2 is the same as applying the negative
Laplacian s/2 times, while if s is odd it is a pseudo-differential operator given by convolution with
a singular kernel.

An inversion formula for the Radon transform is given by f = γd(−∆)(d−1)/2R∗{R{f}}, where
γd is a constant depending on dimension d, which holds for f belonging to many common function

4Roughly speaking, a measure α is even if dα(w, b) = dα(−w,−b); see Appendix B for a precise defini-
tion.
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spaces Helgason (1999). The dual Radon transform is also invertible by a similar formula, albeit
under more restrictive conditions on the function space. We use the following formula due to Solmon
(1987) that holds for all Schwartz class functions5, which we denote by S(Sd−1 × R):

Lemma 2 (Solmon (1987)). If ϕ is an even function6, i.e., ϕ(−w,−b) = ϕ(w, b) for all (w, b) ∈
Sd−1 × R, belonging to the Schwartz class S(Sd−1 × R), then

γdR{(−∆)(d−1)/2R∗{ϕ}} = ϕ, (18)

where γd = 1
2(2π)d−1 .

Additional properties of the Radon transform used in this work are given in Appendix A.

4 REPRESENTATIONAL COST IN FUNCTION SPACE: THE R-NORM

Our starting point is to relate the Laplacian of an infinite width net to the dual Radon transform of its
defining measure. In particular, consider an infinite width net f defined in terms of a smooth density
α(w, b) over Sd−1 × R that decreases rapidly in b, so that we can write

f(x) =

∫
Sd−1×R

(
[w>x− b]+ − [−b]+

)
α(w, b) dw db+ v>x+ c. (19)

Differentiating twice inside the integral, the Laplacian ∆f(x) =
∑d
i=1 ∂

2
xi
f(x) is given by

∆f(x) =

∫
Sd−1×R

δ(w>x− b)α(w, b) dw db =

∫
Sd−1

α(w,w>x) dw. (20)

where δ(·) denotes a Dirac delta. We see that the right-hand side of (20) is precisely the dual Radon
transform of α, i.e., we have shown ∆f = R∗{α}. Applying the inversion formula (18) to this
identity immediately gives the following result:

Lemma 3. Suppose f = hα,v,c for some α ∈ S
(
Sd−1 × R

)
with α even, and v ∈ Rd, c ∈ R. Then

α = −γdR{(−∆)(d+1)/2f}.

As a consequence of Lemma 3, and the characterization of R1(f) given in (13), we have the follow-
ing result, which for simplicity we state in the case d odd7.

Proposition 1. Suppose d is odd. If both f ∈ L1(Rd) and ∆(d+1)/2f ∈ L1(Rd), then

R1(f) = γd‖R{∆(d+1)/2f}‖1 = γd‖∂d+1
b R{f}‖1 <∞ (21)

with γd = 1
2(2π)d−1 .

Here we made use of the intertwining property of the intertwining property of the Laplacian and the
Radon transform to writeR{∆(d+1)/2f} = ±∂d+1

b R{f} (see Appendix A).

Proposition 1 suggests that for an arbitrary function f we might hope to have R1(f) equal to one
of the expressions in (21). However, for many functions of interest these quantities are not well-
defined classically. For example, the finite width net f(x) =

∑n
i=1 ai[w

>
i x − bi]+ is a piecewise

linear function that is non-smooth along each hyperplane w>i x = bi, so its derivatives can only be
understood in the sense of generalized functions or distributions. Similarly, in this case the Radon
transform of f is not well-defined since f is unbounded and not integrable along hyperplanes.

Instead, we use duality to define a functional (the “R-norm”) that extends to the more general case
where f is possibly non-smooth or not integrable along hyperplanes. In particular, we define a

5i.e., functions ϕ defined on Sd−1×R that areC∞-smooth such that ϕ and all its partial derivatives decrease
faster than O(|b|−N ) as |b| → ∞ for any N ≥ 0

6The assumption that ϕ is even is necessary since odd functions are annihilated byR∗.
7For d even an analogous result holds with the pseudo-differential operators (−∆)(d+1)/2 and

(−∂2
b )(d+1)/2 in place of ∆(d+1)/2 and ∂d+1

b ; see Section 3.
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functional on the space of all Lipschitz functions8, which we denote by Lip(Rd). The main idea is
to re-express the L1-norm in (21) as a supremum of the inner product over a space of dual functions
ϕ, i.e., using the factR∗ is the adjoint ofR and the Laplacian ∆ is self-adjoint we write

‖R{∆(d+1)/2}‖1 = sup
‖ϕ‖∞≤1

〈R{∆(d+1)/2f}, ϕ〉 = sup
‖ϕ‖∞≤1

〈f,∆(d+1)/2R∗{ϕ}〉 (22)

then restrict ϕ to a space where ∆(d+1)/2R∗{ϕ} is always well-defined. This is made formal below.
Definition 1. For any function f ∈ Lip(Rd) define itsR-norm9, denoted as ‖f‖R, by

‖f‖R := sup
{
−γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ S(Sd−1 × R), ψ even , ‖ψ‖∞ ≤ 1

}
. (23)

where γd = 1
2(2π)d−1 , S(Sd−1 × R) is the space of Schwartz functions on Sd−1 × R, and 〈f, g〉 :=∫

Rd f(x)g(x)dx. If f 6∈ Lip(Rd) we define ‖f‖R = +∞.

We prove in Appendix that the R-norm is well-defined, though not always finite, for all Lipschitz
functions and, whether finite or infinite, is always equal to the representation cost:
Theorem 1. R1(f) = ‖f‖R for all functions f . In particular, R1(f) is finite if and only if f is
Lipschitz and ‖f‖R is finite.

We give the proof of Theorem 1 in the Appendix C, but the following example illustrates many key
elements of the proof.
Example 1. We show ‖f‖R is consistent with R1(f) in the case where f is a finite-width two-layer
ReLU network. First, consider the case where f consists of a single ReLU unit f(x) = a[w>x−b]+.
Then by Lemma 1,R1(f) = |a|. Note that ∆f(x) = a δ(w>x−b) in a distributional sense, i.e., for
any smooth test functionϕwe have 〈∆f, ϕ〉 = 〈f,∆ϕ〉 = a

∫
ϕ(x)δ(w>x−b)dx = aR{ϕ}(w, b).

So for any even ψ ∈ S(Sd−1 × R) we have

−γd〈f, (−∆)(d+1)/2R∗{ψ}〉 = γd〈∆f, (−∆)(d−1)/2R∗{ψ}〉 (24)

= a γdR{(−∆)(d−1)/2R∗{ψ}}(w, b) (25)
= aψ(w, b) (26)

where in the last step we used the inversion formula (18). Since the supremum defining ‖f‖R is over
all even ψ ∈ S(Sd−1 × R) such that ‖ψ‖∞ ≤ 1, taking any ψ∗ such that ψ∗(w, b) = sign(a) and
‖ψ∗‖∞ = 1 we see that ‖f‖R = R(f) = |a| as expected. The general case follows by linearity: let
g(x) =

∑k
i=1 ai[w

>
i x− bi]+ with all pairs {(wi, bi)}ki=1 distinct. Then for any ψ ∈ S(Sd−1 ×R)

we can show

− γd〈g, (−∆)(d+1)/2R∗{ψ}〉 =
k∑
i=1

ai ψ(wi, bi). (27)

Letting ψ∗ be any even Schwartz function such that ψ∗(wi, bi) = sign(ai) for all i = 1, ..., k and
‖ψ∗‖∞ = 1, we see that ‖g‖R =

∑k
i=1 |ai| = R1(g), as expected.

The representational cost R(f) defined without the unregularized linear unit is more difficult to
explicitly characterize than R1(f). However, we prove that R(f) is finite if and only if R1(f) is
finite, and give bounds for R(f) in terms of ‖f‖R and the norm of the gradient of the function “at
infinity”, similar to the expressions derived in Savarese et al. (2019) in the 1D setting.
Theorem 2. R(f) is finite if and only if ‖f‖R is finite, in which case we have the bounds

max{‖f‖R , 2‖∇f(∞)‖} ≤ R(f) ≤ ‖f‖R + 2‖∇f(∞)‖ (28)

where ∇f(∞) := limr→∞
1

cdrd−1

∮
‖x‖=r∇f(x)ds(x) ∈ Rd. In particular, if ∇f(∞) = 0 then

R(f) = R1(f) = ‖f‖R.

8Recall that f is Lipschitz if there exists a constantL (depending on f ) such that |f(x)−f(y)| ≤ L‖x−y‖
for all x,y ∈ Rd.

9Strictly speaking, the functional ‖·‖R is not a norm, but it is a semi-norm on the space of functions for
which it is finite; see Appendix F
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We give the proof of Theorem 2 in Appendix E. The lower bound max{‖f‖R , 2‖∇f(∞)‖} is anal-
ogous to the expression for the 1D representational cost (1) obtained in Savarese et al. (2019). From
this, one might speculate that R(f) is equal to max{‖f‖R , 2‖∇f(∞)‖2}. However, in Appendix
E we show this is not the case: there are examples of functions f in all dimensions such that R(f)
attains the upper bound in a non-trivial way (e.g., f(x, y) = |x|+ y in d = 2).

4.1 PROPERTIES OF THE R-NORM

In Appendix F we prove several useful properties for the R-norm. In particular, we show the R-
norm is in fact a semi-norm, i.e., is absolutely homogeneous and satisfies the triangle inequality,
while ‖f‖R = 0 if and only if f is affine. We also showR-norm is invariant to coordinate translation
and rotations, and prove the following scaling law under contractions/dilation:

Proposition 2. If fε(x) := f(x/ε) for any ε > 0, then ‖fε‖R = ε−1 ‖f‖R

Proposition 2 shows that “spikey” functions will necessarily have large R-norm. For example, let
f be any non-negative function supported on the ball of radius 1 with maximum height 1 such that
‖f‖R is finite. Then the contraction fε is supported on the ball of radius ε with maximum height 1,
but ‖fε‖R = ε−1 ‖f‖R blows up as ε→ 0.

From a generalization perspective, the fact that theR-norm blows up with contractions is a desirable
property, since otherwise the minimum norm fit to data would be spikes on data points. In particular,
this is what would happen if the representational cost involved derivatives lower than d+ 1, and so
in this sense it is not a coincidence that ‖f‖R involves derivatives of order d+ 1.

Finally, we show the smoothness requirements of the R-norm are also reflected in Fourier domain.
In particular, we show that for a broad class of functions in order R-norm to be finite the Fourier
transform of f must decay rapidly along every ray. A precise statement is given in Proposition 13 in
Appendix F.

5 CONSEQUENCES, APPLICATIONS AND DISCUSSION

Our characterization of the representational cost for multivariate functions in terms of the R-norm
is unfortunately not as simple as the characterization in the univariate case. Nevertheless, it is often
easy to evaluate, and is a powerful tool for studying the representational power of bounded norm
ReLU networks.

5.1 SOBOLEV SPACES

Here we relate Sobolev spaces and theR-norm. The key result is the following upper bound, which
is proved in Appendix G.

Proposition 3. If f ∈ Lip(Rd) and (−∆)(d+1)/2f exists in a weak sense then

‖f‖R ≤ cdγd‖(−∆)(d+1)/2f‖1. (29)

where cd =
∫
Sd−1 dw = 2πd/2

Γ(d/2) , and γd = 1
2(2π)d−1 .

Recall that if the dimension d is odd then (−∆)(d+1)/2 is just an integer power of the negative
Laplacian, which is a linear combination of partial derivatives of order d + 1. Hence, we have
‖(−∆)(d+1)/2f‖1 ≤ cdγd‖f‖Wd+1,1 , where ‖f‖Wd+1,1 is the Sobolev norm given by the sum of
L1-norm of f and the L1-norms of all its weak derivatives up to order d+1. This gives the following
immediate corollary to Proposition 3:

Corollary 1. Suppose d is odd. If f belongs to the Sobolev space W d+1,1(Rd), i.e., f and all its
weak derivatives up to order d+ 1 are in L1(Rd), then ‖f‖R is finite and ‖f‖R ≤ cdγd‖f‖Wd+1,1 .

Corollary 1 shows that the space of functions with finite R-norm is “dense” in the space of all
functions, in the sense that it contains a full Sobolev space.

8
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5.2 RADIAL BUMP FUNCTIONS

Here we study the case where f is a radially symmetric function, i.e., f(x) = g(‖x‖) for some
function g : [0,∞) → R. In this case, the R-norm is expressible entirely in terms of derivatives of
the radial profile function g, as shown in the following result, which is proved in Appendix H.
Proposition 4. Suppose d ≥ 3 is odd. If f ∈ L1(Rd) with f(x) = g(‖x‖) then

‖f‖R =
2

(d− 2)!

∫ ∞
0

∣∣∣∂(d+1)ρ(b)
∣∣∣ db. (30)

where ρ(b) =
∫∞
b
g(t)(t2 − b2)(d−3)/2t dt,

For example, in the d = 3 dimensional case, we have

‖f‖R = 2

∫ ∞
0

|b ∂3g(b) + 3∂2g(b)|db, (d = 3) (31)

More generally, for any odd dimension d ≥ 3 a simple induction shows (30) is equivalent to

‖f‖R =
2

(d− 2)!

∫ ∞
0

|Qd{g}(b)|db (32)

where Qd is a differential operator of degree (d+ 3)/2 having the form Qd =
∑(d+3)/2
k=2 pk,d(b)∂

k

where each pk,d(b) is a polynomial in b of degree k−2. In particular, if the weak derivative ∂(d+1)/2g
exists and has bounded variation, then ‖f‖R is finite.

Example 2. Consider the radial bump function f(x) = g(‖x‖) with x ∈ R3 where

g(r) =

{
(1− r2)2 if 0 ≤ r < 1

0 if r ≥ 1.
(33)

which is non-negative, supported on the unit ball, and has maximum height f(0) = 1, and let
fε(x) = f(x/ε) be the contraction of f to a ball of radius ε with the same height. Then using
formula (31), and the dilation property (2), we can compute

‖fε‖R = ‖f‖R /ε = 16(1 + 1
5 (5 + 2

√
5))/ε. (34)

Note that if we move up to dimension d = 5, then the function defined by (33) no longer has finite
norm since its derivatives of order (d+ 3)/2 = 4 do not exist; this phenomenon is explored in more
detail in the next example.
Example 3. Suppose d ≥ 3 is odd. Consider the radial bump function fd,k(x) = gd,k(‖x‖) with
x ∈ Rd where

gd,k(r) =

{
(1− r2)k if 0 ≤ r < 1

0 if r ≥ 1.
(35)

for any k > 0. Then we prove ‖fd,k‖R is finite if and only if k ≥ d+1
2 . To illustrate the scaling

with dimension d, we set kd = (d + 1)/2 + 2. In Appendix H we prove the bounds (d + 5)d ≤
‖fd,kd‖R ≤ 2d(d+ 5), hence we have the scaling ‖fd,kd‖R ∼ d

2. Similarly, a contraction of fd,kd
to the ball of radius ε will haveR-norm scaling as ∼ d2/ε

The next example10 shows there there is a universal choice of radial bump function in all (odd)
dimensions with finiteR-norm:
Example 4. Suppose d ≥ 3 is odd. Consider the radial bump function f(x) = g(‖x‖) with x ∈ Rd
where

g(r) =

{
e
− 1

1−r2 if 0 ≤ r < 1

0 if r ≥ 1.
(36)

Since g is C∞-smooth and its derivatives of all orders are L1-bounded, f has finite R-norm by
Proposition 4.

10The existence of such a radial function was noted in parallel work by Matus Telgarsky. Discussions with
Telgarsky motivated us to construct and analyze it using theR-norm.
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5.3 PIECEWISE LINEAR FUNCTIONS

Every finite-width two-layer ReLU network is a continuous piecewise linear function. However, the
reverse implication is not true. For example, in dimensions two and above no compactly supported
piecewise linear function is expressible as a finite-width two-layer ReLU network. A natural ques-
tion then is: what piecewise linear functions are represented by bounded norm infinite-width nets?
In particular, can a compactly supported piecewise linear function be represented by a bounded norm
infinite-width net? The following result, proved in Appendix F, shows this is not the case:

Proposition 5. A continuous piecewise linear function with compact support has infiniteR-norm.

This result suggests that the space of piecewise linear functions expressible as a bounded norm
infinite-width two-layer ReLU net is not qualitatively different than those captured by finite-width
nets. We go further and make the following conjecture:

Conjecture 1. A continuous piecewise linear function f (with finitely many pieces) has finite R-
norm if and only if it is a two-layer ReLU network with finitely many units.

5.4 DEPTH SEPARATION

In an effort to understand the power of deeper networks, there has been much work showing how
some functions can be much more easily approximated in terms of number of required units by
deeper networks compared to shallower ones, including results showing how functions that can be
well-approximated by three-layer networks require a much larger number of units to approximate if
using a two-layer network (e.g., Pinkus (1999); Telgarsky (2016); Liang & Srikant (2016); Safran
& Shamir (2017); Yarotsky (2017)). The following example shows that, also in terms of the norm,
such a depth separation exists for ReLU nets:

Example 5. The pyramid function f(x) = [1 − ‖x‖1]+ has infinite norm as a two-layer ReLU
network (R(f) = +∞), but can be exactly represented as a finite-width three-layer ReLU network.

Interestingly, this result shows that, in terms of the norm, we have a qualitive rather then quantitative
depth separation: the required norm with three layers is finite, while with only two layers it is
not merely very large, but infinite. In contrast, in standard depth separation results, the separation
is quantitative: we can compensate for a decrease in depth and use more neurons to achieve the
same approximation quality. It would be interesting to further strengthen Example 5 by obtaining a
quantitative lower bound on the norm required to ε-approximate the pyramid with an infinite-width
two-layer network.

5.5 THE R-NORM IS NOT A RKHS NORM

There is an ongoing debate in the community on whether neural network learning can be simulated
or replicated by kernel machines with the “right” kernel. In this context, it is interesting to ask
whether the inductive bias we uncover can be captured by a kernel, or in other words whether the
R-norm is an RKHS (semi) norm. The answer is no:

Proposition 6. TheR-norm is not a RKHS (semi-)norm.

This is seen immediately by the failure of the parallelogram law to hold. For example, if f1(x) =
[w>1 x]+, f2 = [w>2 x]+ withw1,w2 ∈ Sd−1 distinct, then by Lemma 1 we have ‖f1‖R = ‖f2‖R =

1, while ‖f1 + f2‖R = ‖f1 − f2‖R = 2, and so 2(‖f1‖2R+ ‖f2‖2R) 6= ‖f1 + f2‖2R+ ‖f1 − f2‖2R.

5.6 GENERALIZATION IMPLICATIONS

Neyshabur et al. (2015) shows that training an unbounded size neural net while regularizing the `2
norm of the weights results in a sample complexity proportional to a variant11 of R(f). This paper
gives an explicit characterization of R(f) and thus of the sample complexity of learning a function
using regularized unbounded-width neural networks.

11Their analysis does not allow for unregularized bias, but can be extended to allow for it.
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(a) Radon transform (b) Dual Radon transform

Figure 1: The Radon transform and its dual. (a) Illustration of the Radon transform in (15) for dimension
d = 2. The red line of points x satisfies w>x = b; w determines the line orientation (angle relative to
the coordinate axes) and b determines its offset from the origin. (b) Illustration of the support of the Radon
transform of Dirac deltas centered at the colored points. If a function f is a superposition of such delta functions,
then R{f} is the sum of the curves in (b); this is typically referred to as a “sinogram”. Furthermore, the dual
Radon transform R{ϕ} given in equation (16) integrates a function ϕ(w, b) over a curve like one of the three
in (b).

APPENDICES

A ADDITIONAL PROPERTIES OF THE RADON TRANSFORM

Figure 1 illustrates the Radon transform and its dual in dimension d = 2.

We will often use the fact that the Radon transform is a bounded linear operator from L1(Rd) to
L1(Sd−1×R), i.e., if f ∈ L1(Rd) thenR{f} ∈ L1(Rd). In particular, if f ∈ L1(Rd) thenR{f} is
defined almost everywhere on Sd−1×R, and the functionR{f}(w, ·) is in L1(R) for allw ∈ Sd−1.

Here we recall the Fourier slice theorem for Radon transform (see, e.g., Helgason (1999)): Let
f ∈ L1(Rd), then for all σ ∈ R and w ∈ Sd−1 we have

FbR{f}(w, σ) = f̂(σ ·w) (37)
where Fb indicates the 1-D Fourier transform in the offset variable b. From this it is easy to establish
the following intertwining property of the Laplacian and the Radon Transform: assuming f and ∆f
are in L1(Rd), we have

R{∆f} = ∂2
bR{f} (38)

where ∂b is the partial derivative in the offset variable b. More generally, for any positive integer s
we have

R{(−∆)s/2f} = (−∂2
b )
s/2R{f} (39)

where fractical powers of −∂2
b can be defined in Fourier domain, same as fractional powers of the

Laplacian. In particular, for s an even integer (−∂2
b )s/2 = (−1)s/2∂sb while for s an odd integer,

(−∂2
b )s/2 = (H∂b)s whereH is the Hilbert transform in the offset variable b.

B INFINITE-WIDTH NETS

Measures and infinite-width nets Let α be a signed measure 12 defined on Sd−1 × R, and let
‖α‖1 =

∫
d|α| denote its total variation norm. We let M(Sd−1 × R) denote the space of measures

α with finite total variation norm. Since Sd−1 × R is a locally compact space, M(Sd−1 × R) is the
Banach space dual of C0(Sd−1 × R), the space of continuous functions on Sd−1 × R vanishing at
infinity (Malliavin, 2012, Chapter 2, Theorem 6.6), and

‖α‖1 = sup

{∫
ϕdα : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1

}
. (40)

12To be precise, we assume α is a signed Radon measure; see, e.g., Malliavin (2012) for a formal definition.
We omit the word “Radon” and simply call α a measure to avoid confusion with the Radon transform, which
is central to this work.
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For α ∈M(Sd−1 × R) and ϕ ∈ C0(Sd−1 × R), we often write 〈α,ϕ〉 =
∫
ϕdα.

Note that any α ∈M(Sd−1 × R) can be extended uniquely as a linear functional to Cb(Sd−1 × R),
the space continuous and bounded functions on Sd−1×R. In particular, since the function ϕ(w, b) =
[w>x− b]+ − [−b]+ belongs to Cb(Sd−1 × R), we see that the infinite width net

hα(x) :=

∫
Sd−1×R

([w>x− b]+ − [−b]+)dα(w, b) (41)

is well-defined for all x ∈ Rd.
Remark 1. Our definition of an infinite-width net in differs slightly from Savarese et al. (2019): we
integrate a constant shift of the ReLU [w>x − b]+ − [−b]+ with respect to the measure α(w, b)
rather than [w>x − b]+ as in Savarese et al. (2019). As shown above this ensures the integral
is always well-defined for any measure α with finite total variation. Alternatively, we could have
restricted to measures that have finite first moment, i.e.,

∫
Sd−1×R |b| d|α|(w, b) <∞, which ensures

h̃α(x) :=
∫
Sd−1×R[w>x− b]+dα(w, b), as given in Savarese et al. (2019), is always well-defined.

However, restricting to measures with finite first moment complicates the function space description,
and excludes from our analysis certain functions that are still naturally defined as limits of bounded
norm finite width networks, and so we opt for the definition above instead. In the case that α has a
finite first moment the difference between definitions is immaterial since hα and h̃α are equal up to
an additive constant, which implies they have the same representational cost under R(·) and R1(·).

Even and odd measures We say α ∈M(Sd−1 × R) is even if∫
Sd−1×R

ϕ(w, b)dα(w, b) =

∫
Sd−1×R

ϕ(−w,−b)dα(w, b) for all ϕ ∈ C0(Sd−1 × R) (42)

or α is odd if∫
Sd−1×R

ϕ(w, b)dα(w, b) = −
∫
Sd−1×R

ϕ(−w,−b)dα(w, b) for all ϕ ∈ C0(Sd−1 × R). (43)

It is easy to show every measure α ∈ M(Sd−1 × R) is uniquely decomposable as α = α+ + α−
where α+ is even and α− is odd. For example, if α has a density µ(w, b) then α+ is the measure
with density µ+(w, b) = 1

2 (µ(w, b)+µ(−w,−b)) and α− is the measure with density µ−(w, b) =
1
2 (µ(w, b)− µ(−w,−b)).

We let M(Pd) denote the subspace of all even measures α ∈M(Sd−1×R), and identify its Banach
space dual with C0(Pd), the subspace of all even functions ϕ ∈ C0(Sd−1×R). Even measures play
an important role in our results because of the following observations.

Let α ∈ M(Sd−1 × R). If α = α+ + α− where α+ is even and α− is odd, then we have hα =
hα+

+ hα− . By the identity [t]+ + [−t]+ = |t| we can show

hα+(x) =
1

2

∫
Sd−1×R

(|w>x+ b| − |b|)dα+(w, b). (44)

Likewise, by the identity [t]+ − [−t]+ = t we have

hα−(x) = v>0 x. (45)

where v0 = 1
2

∫
Sd−1×Rwdα−(w, b). Hence, hα decomposes into a sum of a component with

absolute value activations and a linear function. In particular, if f = hα,v,c for some α ∈M(Sd−1×
R),v ∈ Rd, c ∈ R, we can always write f = hα+,v′,c for some other v′ ∈ Rd where α+ is the even
part of α. In other words, we lose no generality by restricting ourselves to infinite width nets of the
form f = hα,v,c where α ∈M(Pd) (i.e., α is even).

We will need the following fact about even and odd decompositions of measures under the total
variation norm:
Proposition 7. Let α ∈ M(Sd−1 × R) with α = α+ + α− where α+ is even and α− is odd. Then
‖α+‖1 ≤ ‖α‖1 and ‖α−‖1 ≤ ‖α‖1.
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Proof. For any ϕ ∈ C0(Sd−1 × R) we can write ϕ = ϕ+ + ϕ− where ϕ+(w, b) = 1
2 (ϕ(w, b) +

ϕ(−w,−b)) is even and ϕ−(w, b) = 1
2 (ϕ(w, b) − ϕ(−w,−b)) is odd. Note that

∫
ϕdα+ =∫

ϕ+ dα+ since
∫
ϕ−dα+ = 0. Furthermore, if |ϕ(w, b)| ≤ 1 for all (w, b) ∈ Sd−1 × R we see

that |ϕ+(w, b)| ≤ 1
2 (|ϕ(w, b)| + |ϕ(−w,−b)|) ≤ 1 for all (w, b) ∈ Sd−1 × R. Therefore, in

the dual definition of ‖α+‖1 given in (40) it suffices to take the supremum over all even functions
ϕ ∈ C0(Sd−1 × R). Hence,

‖α‖1 = sup

{∫
ϕdα : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1

}
(46)

= sup

{∫
ϕdα+ +

∫
ϕdα− : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1

}
(47)

≥ sup

{∫
ϕdα+ +

∫
ϕdα− : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1, ϕ even

}
(48)

= sup

{∫
ϕdα+ : ϕ ∈ C0(Sd−1 × R), ‖ϕ‖∞ ≤ 1, ϕ even

}
(49)

= ‖α+‖1 (50)

A similar argument shows ‖α−‖1 ≤ ‖α‖1.

Lipschitz continuity of infinite-width nets Recall that we define Lip(Rd) to be the space of all
Lipschitz continuous functions on Rd. For any f ∈ Lip(Rd), define ‖f‖L := supx 6=y

|f(x)−f(y)|
‖x−y‖ ,

i.e., the smallest possible Lipschitz constant. The following result shows that Lip(Rd) is a natural
space to work in when considering infinite-width nets:
Proposition 8. Let f = hα,v,c for any α ∈M(Sd−1 × R),v ∈ Rd, c ∈ R. Then f ∈ Lip(Rd) with
‖f‖L ≤ ‖α‖1 + ‖v‖.

Proof. First we prove for all even α ∈M(Pd), ‖hα‖L ≤ ‖α‖1/2.

By the reverse triangle inequality we have
∣∣|w>x− b| − |w>y − b|∣∣ ≤ ∣∣w>(x− y)

∣∣ for all x,y ∈
Rd, w ∈ Sd−1, b ∈ R. Therefore, for all x,y ∈ Rd we see that

|hα(x)− hα(y)| = 1

2

∣∣∣∣∫
Sd−1×R

(
|w>x− b| − |w>y − b|

)
dα(w, b)

∣∣∣∣ (51)

≤ 1

2

∫
Sd−1×R

∣∣|w>x− b| − |w>y − b|∣∣ d|α|(w, b) (52)

≤ 1

2

∫
Sd−1×R

|w>(x− y)|d|α|(w, b) (53)

≤ 1

2
‖x− y‖‖α‖1 (54)

which shows hα is globally Lipschitz with ‖hα‖L ≤ ‖α‖1/2.

More generally, for any infinite-width net f = hα,v,c with α ∈ M(Sd−1 × R), v ∈ Rd and
c ∈ R. By an even/odd decomposition α = α+ + α− we have f = hα+,v0+v,c, where v0 =
1
2

∫
Sd−1×Rwdα−(w, b). Hence, ‖v0‖2 ≤ ‖α−‖1/2, Therefore, by the triangle inequality, ‖f‖L ≤

‖α+‖1/2 + ‖α−‖1/2 + ‖v‖ ≤ ‖α‖1 + ‖v‖, which gives the claim.

The following lemma shows every infinite-width net is the limit of a sequence of finite width nets
converging uniformly on compact subsets, and will be used in our proof of Theorem 1.
Lemma 4. Let f = hα,v,c for any α ∈M(Pd),v ∈ Rd, and c ∈ R. Then there exists a sequence of
discrete measures αn ∈M(Pd) with ‖αn‖1 ≤ ‖α‖1 such that fn = hαn,v,c converges uniformly to
f on compact subsets of Rd.

Proof. For any α ∈M(Pd) there exists a sequence of discrete measures {αn} converging narrowly
to α (meaning

∫
ϕdαn →

∫
ϕdα for all ϕ ∈ Cb(Sd−1 × R)) such that ‖αn‖1 ≤ ‖α‖1 (Malliavin,
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2012, Chapter 2, Theorem 6.9). Let fn = hαn,v,c. Since the function (w, b) 7→ |w>x− b| − |b| is
continuous and bounded, we have fn(x)→ f(x) for all x ∈ Rd, i.e., fn → f pointwise.

To show uniform convergence on compact sets, observe that the minimum Lipschitz constant of
fn, denoted by ‖fn‖L, is bounded as ‖fn‖L ≤ ‖αn‖1 ≤ ‖α‖1. This shows the sequence fn is
uniformly Lipschitz. Therefore, by a corollary of the Arzela-Ascoli theorem, the sequence fn is
uniformly convergent on any compact set of Rd, as claimed.

Finally, we give a lemma deriving equivalent expressions for R(f) and R1(f) in terms the limiting
norm of sequences of finite-width ReLU networks converging pointwise to f ; this formulation will
be easier to work with in our proofs.
Lemma 5. For any f we have,

R(f) = inf
{

lim inf
n→∞

C(θn) : θn ∈ Θ′, gθn → f pointwise, gθn(0) = f(0) ∀n
}
. (55)

and

R1(f) = inf
{

lim inf
n→∞

C(θn) : θn ∈ Θ′,vn ∈ Rd, gθn,vn → f pointwise, gθn,vn(0) = f(0) ∀n
}
.

(56)
with R(f) as defined in (7) and R1(f) as defined in (12).

Proof. We prove the identity in (55) for R(f); the identity in (56) for R1(f) follows by the same
argument.

Let R̃(f) denote the right-hand side of (55), and define
Rε(f) := inf

θ∈Θ′
C(θ) s.t. |gθ(x)− f(x)| ≤ ε ∀ ‖x‖ ≤ 1/ε and gθ(0) = f(0) (57)

so that R(f) = limε→0Rε(f).

First, suppose R(f) is finite. Let εn = 1/n. Then by definition of R(f), for all n there exists θn ∈
Θ′ such that fn := gθn satisfies ‖fn(x)− f(x)‖ ≤ εn, fn(0) = f(0), and C(θn) ≤ Rεn(fn) + εn.
Hence, fn → f pointwise with fn(0) = f(0), while

lim inf
n→∞

C(θn) ≤ lim inf
n→∞

(Rεn(fn) + εn) = R(f). (58)

Therefore, we have shown R̃(f) ≤ R(f).

Conversely, suppose R̃(f) is finite. Fix any ε > 0. Then by definition of R̃(f) there exists a
sequence θn ∈ Θ′ such that fn := gθn converges to f pointwise, and where limn→∞ C(θn) exists
with limn→∞ C(θn) < R̃(f) + ε. Note that fn = hαn,cn where αn ∈ M(Sd−1 × R) is the
discrete measure defined by αn(w, b) =

∑k
i=1 aiδ(wi,bi)(w, b) for some cn ∈ R, and we also have

C(θn) = ‖αn‖1. Therefore limn→∞ ‖αn‖1 ≤ R(f) + ε, and so there exists an N1 such that for
all n ≥ N1 we have ‖αn‖1 < R(f) + ε. By Proposition 8, the Lipschitz constant of fn is bounded
above by ‖αn‖1, hence the sequence fn is uniformly Lipschitz. This implies fn → f uniformly on
compact subsets, and so there exists an N2 such that ‖fn(x) − f(x)‖ ≤ ε for all ‖x‖ ≤ 1/ε and
fn(0) = f(0) for all n ≥ N2. Hence for all n ≥ N2, fn belongs to the feasible set in the definition
of Rε(·). Therefore, for all n ≥ max{N1, N2} have

Rε(f) ≤ C(θn) = ‖αn‖1 ≤ R(f) + ε. (59)

Finally, taking the limit as ε → 0, we have R(f) ≤ R̃(f). Hence, we have shown R(f) is finite if
and only if R̃(f) is finite, in which case R(f) = R̃(f).

C EXTENSION OF R-NORM TO LIPSCHITZ FUNCTIONS AND PROOF OF THEOREM 1

To simplify notation we let S(Pd) denote the space of even Schwartz functions on Sd−1×R, i.e., ψ ∈
S(Pd) if ψ ∈ C∞(Sd−1 × R), ψ(w, b) = ψ(−w,−b) for all (w, b) ∈ Sd−1 × R, and ψ(w, b) and
all of its partial derivatives decrease rapidly as |b| → ∞.

We will need the following result characterizing the image of Schwartz functions under the dual
Radon transform due to Solmon (1987):
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Lemma 6 (Solmon (1987), Theorem 7.7). Let ψ ∈ S(Pd) and define ϕ = γd(−∆)(d−1)/2R∗{ψ}.
Then ϕ ∈ C∞(Rd) with ϕ(x) = O(‖x‖−d) and ∆ϕ(x) = O(‖x‖−d−2) as ‖x‖ → ∞. Moreover,
R{ϕ} = ψ.

Using the above result we show the functional ‖f‖R given in Definition 1 is well-defined:

Proposition 9. For any f ∈ Lip(Rd), the linear functional Lf (ψ) := γd〈f, (−∆)(d+1)/2R∗{ψ}〉
is finite for all ψ ∈ S(Pd), hence

‖f‖R = sup
{
Lf (ψ) : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(60)

is a well-defined functional taking on values in [0,+∞].

Proof. Since f is globally Lipschitz we have |f(x)| = O(‖x‖), while for any ψ ∈ S(Pd) by
Lemma 6 we have |(−∆)(d+1)/2R∗{ψ}| = O(‖x‖−d−2), hence |f(x)(−∆)(d+1)/2R∗{ψ}(x)| =
O(‖x‖−d−1) is absolutely integrable, and so 〈f, (−∆)(d+1)/2R∗{ψ}〉 is finite. If
〈f, (−∆)(d+1)/2R∗{ψ}〉 6= 0, we can choose the sign of ψ so that the inner product is positive,
which shows that ‖f‖R ≥ 0.

In Section 4 we showed ∆hα = R∗{α} when α was a measure with a smooth density having rapid
decay. The next lemma, which is key to proving Theorem 1, shows this equality still holds in the
sense of distributions when α is any measure in M(Pd).
Lemma 7. Let f = hα,v,c for any α ∈ M(Pd),v ∈ Rd, c ∈ R. Then we have 〈f,∆ϕ〉 =
〈α,R{ϕ}〉 for all ϕ ∈ C∞(Rd) such that ϕ(x) = O(‖x‖−d) and ∆ϕ(x) = O(‖x‖−d−2) as
‖x‖ → ∞.

Proof. Consider the ridge function rw,b(x) := 1
2 |w

>x−b|, which is generated by the even measure
α0(w′, b′) = 1

2 (δ(w′−w, b′−b)+δ(w′+w, b′+b)). An easy calculation shows that ∆rw,b(x) =

δ(w>x− b) in the sense of distributions, i.e.,∫
rw,b(x)∆ϕ(x) dx =

∫
w>x=b

ϕ(x) dx = R{ϕ}(w, b) (61)

for all test functions ϕ ∈ S(Rd). SinceR{ϕ}(w, b) is finite valued for all ϕ ∈ C∞(Rd) with decay
likeO(‖x‖−d), by continuity ∆rw,b(x) extends uniquely to a distribution acting on this larger space
of test functions.

Now consider the more general case of f = hα with α ∈ M(Pd). Then for all ϕ ∈ C∞(Rd) with
|ϕ(x)| = O(‖x‖−d) and |∆ϕ(x)| = O(‖x‖−d−2) as ‖x‖ → ∞ we have∫

Rd

f(x)∆ϕ(x) dx =

∫
Rd

(∫
Sd−1×R

1

2
(|w>x− b| − |b|) dα(w, b)

)
∆ϕ(x) dx (62)

=

∫
Sd−1×R

(∫
Rd

1

2
(|w>x− b| − |b|)∆ϕ(x) dx

)
dα(w, b) (63)

=

∫
Sd−1×R

(∫
Rd

rw,b(x)∆ϕ(x) dx

)
dα(w, b) (64)

=

∫
Sd−1×R

R{ϕ}(w, b) dα(w, b) (65)

where in (63) we applied Fubini’s theorem to exchange the order of integration, whose application
is justified since

h+(x) :=
1

2

∫
Sd−1×R

(|w>x− b| − |b|) d|α|(w, b) ≤ ‖α‖1‖x‖ (66)

and by assumption |∆ϕ(x)| = O(‖x‖−d−2), hence h+(x)|∆ϕ(x)| = O(‖x‖)−d−1, and so∫
h+(x)|∆ϕ(x)| dx <∞.

Finally, if f = hα,v,c for any α ∈ M(Pd), v ∈ Rd, c ∈ R, since affine functions vanish under
the Laplacian we have 〈f,∆ϕ〉 = 〈hα,∆ϕ〉, reducing this to the previous case, which gives the
claim.
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The following lemma shows the ‖f‖R is finite if and only if f is an infinite width net, in which case
‖f‖R is given by the total variation norm of the unique even measure defining f .

Lemma 8. Let f ∈ Lip(Rd), and define the linear functional Lf (ψ) = γd〈f, (−∆)(d−1)/2R∗{ψ}〉
for all ψ ∈ S(Pd). Then ‖f‖R is finite if and only if there exists a unique measure α ∈ M(Pd)
such that Lf (ψ) =

∫
ψ dα for all ψ ∈ S(Pd) and unique v ∈ Rd, c ∈ R with f = hα,v,c, and

‖f‖R = ‖α‖1.

Proof. Suppose ‖f‖R is finite. Then by definition f belongs to Lip(Rd) and the linear functional
Lf is continuous on S(Pd) with norm ‖f‖R. Since S(Pd) is a dense subspace of C0(Pd), by
continuity there exists a unique extension L̃f to all of C0(Pd) with the same norm. Hence, by the
Riesz representation theorem, there is a unique measure α ∈M(Pd) such that L̃f (ψ) =

∫
ψ dα for

all ψ ∈ C0(Pd) and ‖f‖R = ‖α‖1.

We now show f = hα,v,c for some v ∈ Rd, c ∈ R. First, we prove ∆f = ∆hα as tempered
distributions (i.e., as linear functionals on the space of Schwartz functions S(Rd)). By Lemma 7 we
have 〈∆hα, ϕ〉 = 〈α,R{ϕ}〉 for any ϕ ∈ S(Rd), hence

〈∆hα, ϕ〉 = 〈α,R{ϕ}〉 (67)

= L̃f (R{ϕ}) (68)
= Lf (R{ϕ}) (69)

= γd〈f, (−∆)(d+1)/2R∗{R{ϕ}}〉 (70)

= −γd〈f,∆(−∆)(d−1)/2R∗{R{ϕ}}〉 (71)
= 〈f,∆ϕ〉 (72)
= 〈∆f, ϕ〉 (73)

where in (69) we used the fact that R{ϕ} ∈ S(Pd) for all ϕ ∈ S(Rd) (Helga-
son, 1999, Theorem 2.4), and in (72) we used the inversion formula for Radon transform:
−γd(−∆)(d−1)/2R∗{R{ϕ}} = ϕ for all ϕ ∈ S(Rd) (Helgason, 1999, Theorem 3.1).

Hence, we have shown ∆f = ∆hα as tempered distributions. This means f −hα is in null space of
the Laplacian acting on tempered distributions, which implies f−hα = pwhere p is some harmonic
polynomial (i.e., p is a polynomial in x = (x1, ..., xd) such that ∆p(x) = 0 for all x ∈ Rd). Finally,
since both f and hα are Lipschitz they have at most linear growth at infinity, so must p. This implies
p must be an affine function p(x) = v>x+ c, which shows f = hα,v,c as claimed.

Conversely, suppose f = hα,v,c for some α ∈ M(Pd),v ∈ Rd, c ∈ R. Let ψ ∈ S(Pd). By
Lemma 6, the function ϕ = −γd(−∆)(d−1)/2R∗{ψ} is in C∞(Rd) with ϕ(x) = O(‖x‖−d),
∆ϕ(x) = O(‖x‖−d−2) as ‖x‖ → ∞, and ψ = R{ϕ}. Hence, by Lemma 7 we have

Lf (ψ) = 〈f,∆ϕ〉 = 〈α,R{ϕ}〉 = 〈α,ψ〉. (74)

This shows

‖f‖R = sup{〈α,ψ〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1} (75)

= sup{〈α,ψ〉 : ψ ∈ C0(Pd), ‖ψ‖∞ ≤ 1} (76)
= ‖α‖1 (77)

where the second to last equality holds since S(Rd) is a dense subspace of C0(Rd), and the last
equality is by the dual characterization of the total variation norm.

Now we give the proof of our main theorem.

Proof of Theorem 1. Suppose R1(f) is finite. Then by Lemma 5 there exists a sequence of finite
width ReLU nets fn(x) :=

∑kn
i=1 an,i[w

>
n,ix − bn,i]+ + v>n x + cn that converge pointwise to

f . Let αn be the discrete measure αn =
∑kn
i=1 an,iδ(wn,i,bn,i), so that we can write fn(x) =
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∫
Sd−1×R[w>x − b]+dαn(w, b) + v>n x + cn. Then C(θn) = ‖αn‖1, and by finiteness of R1(f)

there exists an upper bound B > 0 such that ‖αn‖1 ≤ B for all n, while fn(0) = f(0).

Since R1(f) is invariant to additive constants, without loss of generality assume f(0) = 0 . Hence,
fn(0) =

∫
Sd−1×R[−b]+dαn(w, b) + cn = 0 and so cn =

∫
Sd−1×R[−b]+dαn(w, b), which gives

fn(x) =
∫
Sd−1×R([w>x− b]+ − [−b]+)dαn(w, b) + v>n x. Finally, letting α+

n be the even part of
α, we have fn = hα+

n ,v′n,0
for some v′n ∈ Rd.

First we show the pointwise convergence of fn implies α+
n converges weakly to a measure α ∈

M(Pd) such that ‖f‖R = ‖α‖1, meaning
∫
ϕdα+

n →
∫
ϕdα for all ϕ ∈ C0(Pd). To prove weak

convergence of α+
n it suffices to show there exists a dense set D ⊂ C0(Pd) such that

∫
ϕdα+

n

converges for all ϕ ∈ D (Malliavin, 2012, Chapter 2, Theorem 6.8); we will do this for D = S(Pd)
using the range characterization for the dual Radon transform given in Lemma 6.

Fix any ψ ∈ S(Pd) and set ϕ = γd(−∆)(d−1)/2R∗{ψ}. Let gn = fn∆ϕ and g = f∆ϕ so
that gn → g pointwise. Also, since we have the bound |fn(x)| ≤ ‖α+

n ‖1‖x‖ ≤ B‖x‖, and by
Lemma 6 we know |∆ϕ(x)| = O(‖x‖−d−2) we have |gn(x)| ≤ B‖x‖|∆ϕ(x)| = O(‖x‖−d−1) is
integrable. Therefore by the Lebesgue dominated convergence theorem

lim
n→∞

∫
fn ∆ϕdx =

∫
f ∆ϕdx <∞. (78)

By Lemma 7, and the fact thatR{ϕ} = ψ, we have∫
fn ∆ϕdx =

∫
R{ϕ} dα+

n =

∫
ψ dα+

n . (79)

Hence,

lim
n→∞

∫
ψdα+

n =

∫
f ∆ϕdx. (80)

Since S(Pd) is dense in C0(Pd), and ‖α+
n ‖1 ≤ ‖αn‖1 ≤ B, this shows α+

n converges weakly to a
measure α ∈M(Pd).

Now, by definition of weak convergence we have∫
ψ dα = lim

n→∞

∫
ψ dα+

n =

∫
f ∆ϕdx = −γd

∫
f (−∆)(d+1)/2R∗{ψ} dx (81)

This shows the functional Lf (ψ) = γd〈f, (−∆)(d+1)/2R∗{ψ}〉 =
∫
ψdα for all ψ ∈ S(Pd).

Therefore, by uniqueness of α in Lemma 8, we have ‖f‖R = ‖α‖1 and f = hα,v,0 for some
v ∈ Rd.

Finally, note that α+
n → α weakly implies ‖α‖1 ≤ lim infn→∞ ‖α+

n ‖1 ≤ lim infn→∞ ‖αn‖1.
Since αn was an arbitrary sequence from the infimum over all such sequences, we have R1(f) ≥
‖α‖1 = ‖f‖R. Also, by Lemma 4 we know that there exists a sequence of discrete α′n ∈ M(Pd)
with ‖α′n‖1 ≤ ‖α‖1 such that the sequence of finite width nets f ′n = hα′n,v,0 converges pointwise to
f with f ′n(0) = f(0), and so R1(f) ≤ ‖α‖1. Hence we have shown R1(f) = ‖α‖1 = ‖f‖R.

D OPTIMIZATION CHARACTERIZATION OF R(f) AND R1(f)

Here we establish the optimization equivalents of R(f) and R1(f) given in (9) and (13).

First, we prove a lemma:
Lemma 9. Suppose f = hα,v,c for some α ∈ M(Sd−1 × R), v ∈ Rd, c ∈ R. If f = hβ,v′,c′ for
any other β ∈M(Sd−1 × R), v′ ∈ Rd, c′ ∈ R then α+ = β+ where α+ and β+ are the even parts
of α and β, respectively.

Proof. Note that f = hα,c = hα+
+ hα−,v,c = hα+,v1,c for some v1 ∈ Rd. Similarly, f =

hβ,v′,d = hβ+,v′1,d
for some v′1 ∈ Rd. Therefore, by the uniqueness of the even mesaure generating

an infinite-width net established in Lemma 8, we have α+ = β+
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We now prove the equivalence of R(f) with (9). (Note: the following proof reuses many pieces
from the proof of Theorem 1 given above in Appendix C.)

Proof. By Lemma 9, the minimization problem (9) is equivalent to

M(f) := min
α−odd,c

‖α+ + α−‖1 s.t. f = hα+ + hα−,c, (82)

First we show M(f) ≤ R(f). Assume R(f) is finite. Without loss of generality we assume
f(0) = 0. Following the same steps as in the proof of Theorem 1, we can show there exists a
sequence of discrete measures αn ∈M(Sd−1×R) such that fn = hαn

with fn → f pointwise, and
such that ‖αn‖1 ≤ B. Letting αn = α+

n +α−n be the even/odd decomposition, we have fn = hα+
n ,vn

where vn = 1
2

∫
Sd−1×Rw dα−n (w, b).

By the same steps in the proof of Theorem 1, we can show this implies α+
n converges weakly to a

unique even measure α+ and f = hα+,v,0 for some v ∈ Rd. Let α− be any odd measure such that
v = 1

2

∫
Sd−1×Rw dα−(w, b) and set α = α+ + α−. Then we have f = hα,0. By similar argument

to that in Theorem 1, this implies M(f) ≤ R(f).

Finally, by Lemma 4 there exists a sequence of discrete measures α′n ∈M(Sd−1×R) (correspond-
ing to parameters θ′n ∈ Θ′) converging narrowly to α, while hα′n converges to f pointwise, with
C(θ′n) = ‖α′n‖1 ≤ ‖α‖1. Since the choice of α was arbitrary, we see that R(f) ≤M(f).

Now we show that R1(f) is also equivalent to the optimization problem in (13).
Proposition 10. Suppose f = hα,v,c for some α ∈ M(Sd−1 × R), v ∈ Rd, c ∈ R. Write
α = α+ + α− where α+ is even and α− is odd. Then

‖α+‖1 = min
β,v′,c′

‖β‖1 s.t. f = hβ,v′,c′ (83)

and so R1(f) = ‖α+‖1 = ‖f‖R.

Proof. By Lemma 9, the minimization problem (10) reduces to

min
α−odd,v′,c′

‖α+ + α−‖1 s.t. f = hα+
+ hα−,v′,c′ , (84)

By Proposition 7, we have ‖α+‖1 ≤ ‖α+ + α−‖1 for any α− odd. Since f = hα+,v1,c, we see
that a global minimum is reached at α− = 0, v′ = v1, and c′ = c, which gives the objective value
‖α+‖1 = ‖f‖R.

Proof of Lemma 1 Let f(x) =
∑k
i=1 ai[w

>
i x− bi]+ + v>x+ c. Then f = hα+,v′,c′ for some

v′ ∈ Rd and c′ ∈ R where α+ is the even measure

α+(w, b) =

k∑
i=1

ai
2

(δ(w −wi, b− bi) + δ(w +wi, b+ bi)) (85)

Hence, by Proposition 10, and using the fact that the (wi, bi) are distinct under (under the identifi-
cation (w, b) = (−w,−b)), we have

R1(f) = ‖f‖R = ‖α+‖1 =

k∑
i=1

|ai| (86)

E PROOF OF THEOREM 2

We show how our results change without the addition of the unregularized linear unit v>x in (3).
Specifically, we want to characterize R(f) given in (7) (or equivalently its optimization formula-
tion (9)). Unlike in the 1D setting, R(f) does not have a simple closed form expression in higher
dimensions. However, for any f ∈ Lip(Rd) we prove the bounds

max{‖f‖R , 2‖∇f(∞)‖2} ≤ R(f) ≤ ‖f‖R + 2‖∇f(∞)‖2 (87)
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where ∇f(∞) ∈ Rd can be thought of as the gradient of the function f “at infinity”; see below
for a formal definition. In particular, if f(x) vanishes at infinity then ∇f(∞) = 0 and we have
R(f) = ‖f‖R = R1(f).

For any f ∈ Lip(Rd), define ∇f(∞) ∈ Rd by

∇f(∞) := lim
r→∞

1

cdrd−1

∮
‖x‖=r

∇f(x) ds(x), (88)

We relate ∇f(∞) to the “linear part” of an infinite width net. Towards this end, define V :
M(Sd−1 × R)→ Rd to be the linear operator given by

V(α) =
1

2

∫
Sd−1×R

w dα(w, b). (89)

Note that if α = α+ + α− where α+ is even and α− is odd, then V(α) = V(α−) since∫
Sd−1×Rw dα+(w, b) = 0. In particular, if we set v0 = V(α−), then hα−(x) = v>0 x.

Lemma 10. Suppose f = hα,c for any α ∈M(Sd−1 × R), c ∈ R. Then,∇f(∞) = V(α).

Proof. A simple calculation shows the weak gradient of f = hα,c is given by

∇f(x) =

∫
Sd−1×R

H(w>x− b)w dα(w, b) (90)

where H is defined as H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0 otherwise. Therefore, we have

lim
r→∞

1

rd−1

∮
‖x‖=r

∇f(x) ds(x) = lim
r→∞

∫
Sd−1×R

∫
Sd−1

H(rw>w′ − b)w dw′dα(w, b) (91)

= lim
r→∞

∫
Sd−1×R

w

(∫
w>w′≥b/r

dw′

)
dα(w, b) (92)

=

(
1

2

∫
Sd−1

dw′
)∫

Sd−1×R
w dα(w, b) (93)

Finally, dividing both sides by cd =
∫
Sd−1 dw gives the result.

Lemma 11. If f(x) = v>0 x+ c then R(f) = 2‖v0‖.

Proof. Note that f = hα,c only if α is odd and V(α) = v0. Hence, we have

R(f) = min
α odd
‖α‖1 s.t. V(α) = v0 (94)

The adjoint V∗ : Rd → Cb(Sd−1 × R) is given by [V∗y](w, b) = 1
2w
>y. The dual of the convex

program above is given by

max
y∈Rd

‖V∗y‖∞≤1

v>0 y = max
‖y‖≤2

v>0 y = 2‖v0‖ (95)

where we used the fact that ‖V∗y‖∞ = maxw∈Sd−1
1
2‖w

>y‖ ≤ 1 holds if and only if ‖y‖ ≤ 2.
This means 2‖v0‖ is a lower bound for R(f). Since this bound is reached with the primal feasible
choice α defined by

α(w, b) = ‖v0‖
(
δ

(
w − v0

‖v0‖
, b

)
− δ

(
w +

v0

‖v0‖
, b

))
(96)

we have R(f) = 2‖v0‖ as claimed.

Now we give the proof of Theorem 2.
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Proof of Theorem 2. Suppose ‖f‖R is finite. Then by Lemma 8, there is a unique even measure α+

such that f = hα+,v0,c for some unique v0 ∈ Rd, c ∈ R, with ‖f‖R = ‖α+‖1. Therefore, R(f) is
equivalent to the optimization problem

R(f) = min
α−odd

‖α+ + α−‖1 s.t. V(α−) = v0 (97)

Since ‖α+ + α−‖1 ≤ ‖α+‖1 + ‖α−‖1, by Lemma 11 we see that R(f) ≤ ‖α+‖1 + 2‖v0‖2. Now
we show the lower bound. The above optimization problem is equivalent to

R(f) = min
α
‖α‖1 s.t. V(α) = v0, E(α) = α+ (98)

where E(α) projects onto the even part of α. Note the Banach space adjoint of E∗ : Cb(Sd−1×R)→
Cb(Sd−1 × R) is also projection onto the even part, i.e., [E∗ϕ](w, b) = 1

2 (ϕ(w, b) + ϕ(−w,−b)).
Therefore, the dual problem is given by

sup
ϕ∈Cb(Sd−1×R),y∈Rd

‖W∗y+E∗ϕ‖∞≤1

v>0 y +

∫
Sd−1×R

ϕ(w, b)dα+(w, b) (99)

We can constrain ϕ to be even without changing the maximum since α+ is even. Thus the dual
feasible set reduces to pairs (ϕ,y) with ϕ ∈ Cb(Sd−1×R) even and y ∈ Rd are such that |ϕ(w, b)+
1
2w
>y| ≤ 1 for all (w, b).

Taking the supremum over all dual feasible pairs (ϕ,0) such that ‖ϕ‖∞ ≤ 1, we see R(f) ≥
‖α+‖1 = ‖f‖R. Likewise, if we choose the dual feasible pair (ϕ,y) = (0, 2v0/‖v0‖) then the dual
objective is 2‖v0‖, hence R(f) ≥ 2‖v0‖. This gives R(f) ≥ max{‖f‖R , 2‖v0‖}, as desired.

Finally, we show there are examples where the upper bound in Theorem 2 is attained.

Proposition 11. There exist infinite nets f : Rd → R in all dimensions d such that

R(f) = ‖f‖R + 2‖∇f(∞)‖, (100)

For example, this holds for f(x, y) = x+ |y| in d = 2.

Proof. Let w+,w− ∈ Sd−1 be orthogonal. Consider f = hα,0 defined by α = α+ + α− with

α+ = δ(w −w+, b) + δ(w +w+, b) (101)
α− = δ(w −w−, b)− δ(w +w−, b) (102)

Hence, f(x) = |w>+x| + w>−x (e.g., in 2D one such function is f(x, y) = x + |y|). The dual
problem for R(f) in this instance is given by:

sup
ϕ∈Cb(Sd−1×R),y∈Rd

‖W∗y+E∗ϕ‖∞≤1

w>−y +

∫
Sd−1×R

ϕ(w, b)dα+(w, b) (103)

Set y∗ = 2w+
−, and let ϕ∗ be a continuous approximation to sign(α+) whose support is localized

to an arbitrarily small neighborhood of ±(w+, 0). Then the pair (y∗, β∗) is feasible since

ψ(w, b) :=W∗y∗(w, b)+E∗ϕ∗(w, b) = ϕ∗(w, b)+w>w− =

{
1 if w = ±w+ and b = 0

w>w− else

and so |ψ(w, b)| ≤ 1. For these choices of (β∗,y∗) the dual objective is 2‖w−‖+‖f‖R, which gives
a lower bound onR(f). But this is also an upper bound onR(f) henceR(f) = ‖f‖R+2‖w−‖.

F PROPERTIES OF THE R-NORM

Here we prove the properties ofR-norm discuseed in Section 4.1, including Proposition 2.

Proposition 12. TheR-norm has the following properties:
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• (1-homogeneity and triangle inequality) If ‖f‖R , ‖g‖R < ∞, then ‖c · f‖R = |c| ‖f‖R
for all c ∈ R and ‖f + g‖R ≤ ‖f‖R + ‖g‖R, i.e., ‖·‖R is a semi-norm.

• (Annihilation of affine functions) ‖f‖R = 0 if and only if f is affine, i.e., f(x) = v>x+ c
for some v ∈ Rd, c ∈ R.

• (Translation and rotation invariance) If g(x) = f(Ux+y) where y ∈ Rd andU ∈ Rd×d
is any orthogonal matrix, then ‖g‖R = ‖f‖R.

• (Scaling with dilations/contractions – Proposition 2) Suppose ‖f‖R < ∞. Let fε(x) :=
f(x/ε), then ‖fε‖R = ε−1‖f‖R.

Proof. The 1-homogenity and triangle inequality properties follow immediate from the linearity of
all operations and the definition by way of a set supremum.

Clearly ‖f‖R = 0 if f is affine. Conversely, suppose ‖f‖R = 0 then by the uniqueness in Lemma
8, we have α = 0, and so f = h0,v,c for some v ∈ Rd and c ∈ R, hence f is affine.

For simplicity we demonstrate proofs of the remaining properties in the case where f is smooth and
has sufficient decay so that ‖f‖R = γd‖R{(−∆)(d+1)/2f}‖1 = γd‖L(d+1)/2R{f}‖1 < ∞. We
also assume d is odd, so (−∆)(d+1)/2 is a integer power of the negative Laplacian and L(d+1)/2

is an integer power of the negative partial derivative in b, i.e., L(d+1)/2 = (−1)(d+1)/2∂d+1
b . The

general case follows from standard duality arguments.

To show translation invariance, define f(y)(x) := f(x − y). Then we have (−∆)(d+1)/2f(y) =

[(−∆)(d+1)/2f ](y). Also, for any function g we see that

R{g(y)}(w, b) = R{g}(w, b+w>y), (104)

Therefore, ∥∥f(y)

∥∥
R =

∫
Sd−1×R

|R{(−∆)(d+1)/2f(y)}(w, b)| dw db (105)

=

∫
Sd−1×R

|R{(−∆)(d+1)/2f}(w, b+w>y)| dw db (106)

=

∫
Sd−1×R

|R{(−∆)(d+1)/2f}(w, b)| dw db = ‖f‖R . (107)

To show rotation invariance, let fU (x) = f(Ux) where U is any orthogonal d ×
d matrix. Then, using the fact that the Laplacian commutes with rotations, we have
(−∆)(d+1)/2fU (x) = (−∆)(d+1)/2f(Ux), and since R{gU}(w, b) = R{g}(Uw, b), we see
thatR{(−∆)(d+1)/2fU}(w, b) = R{(−∆)(d+1)/2f}(Uw, b), and so

‖fU‖R = ‖f‖R (108)

To show the scaling under contractions/dilations (i.e., Proposition 2), let fε(x) = f(x/ε) for ε > 0.
Then

R{fε}(w, b) =

∫
w>x=b

f(x/ε)ds(x) (109)

= εd−1

∫
w>x̃=b/ε

f(x̃)ds(x̃) (110)

= εd−1R{f}(w, b/ε). (111)

Hence, by the Fourier slice theorem we have

|L(d+1)/2R{fε}(w, b)| = |∂d+1
b R{fε}(w, b)| (112)

= εd−1ε−d−1|∂d+1
b R{f}(w, b/ε)| (113)

= ε−2|∂d+1
b R{f}(w, b/ε)| (114)
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and so∫
R×Sd−1

|L(d+1)/2R{fε}(w, b)| db dw = ε−2

∫
R×Sd−1

|(∂d+1
b R{f}(w, b/ε)| db dw (115)

= ε−1

∫
R×Sd−1

|(∂d+1
b R{f}(w, b̃)| db̃ dw (116)

= ε−1 ‖f‖R (117)

Fourier estimates For any Lipschitz function f we can always interpret ∆f in a distributional
sense. An interesting special case is when ∆f is a distribution of order zero, i.e., a finite measure.
In this case, the Fourier transform of ∆f , defined as ∆̂f(ξ) := 〈∆f, e−j2πx>ξ〉 for all ξ ∈ Rd, is a
continuous and bounded function, and we can make use of an extension of the Fourier slice theorem
to Radon transforms of measures (see, e.g., Boman & Lindskog (2009)) to analyze properties of
‖f‖R. In particular, the following result shows that in order for ‖f‖R to be finite, the Fourier
transform of ∆f (or the Fourier transform of f if it exists classically) must decay at a certain rate.

Proposition 13. Suppose ∆f is a finite measure. Then ‖f‖R is finite only if ∆̂f(σ · w) =

O(|σ|−(d−1)) as |σ| → ∞ for all w ∈ Sd−1. If additionally f ∈ L1(Rd), then ‖f‖R is finite
only if f̂(σw) = O(|σ|−(d+1)) as |σ| → ∞ for all w ∈ Sd−1.

Proof. If ∆f ∈ M(Rd) is a finite measure then its Radon transform R{∆f} ∈ M(Pd) exists as a
finite measure, i.e., we can define R{∆f} via duality as 〈R{∆f}, ϕ〉 = 〈∆f,R∗{ϕ}〉 for all ϕ ∈
C0(Rd) (see, e.g., Boman & Lindskog (2009)). Additionally, the restriction R{∆f}(w, ·) ∈ M(R)
is well-defined finite measure for all w ∈ Sd−1, and its 1D Fourier transform in the b variable is
given by

FbR{∆f}(w, σ) = ∆̂f(σ ·w) for all w ∈ Sd−1, σ ∈ R. (118)

By Lemma 8, ‖f‖R is finite if and only if the functional Lf (ψ) = −γd〈f, (−∆)(d+1)/2R∗{ψ}〉
defined for all ψ ∈ S(Pd) extends to a unique measure α ∈ M(Pd). We compute its Fourier
transform of α in the b variable via duality: for all ϕ ∈ S(Pd) we have

〈Fbα,ϕ〉 = 〈α,Fbϕ〉 (119)

= γd〈f, (−∆)(d+1)/2R∗{Fbϕ}〉 (120)

= −γd〈∆f, (−∆)(d−1)/2R∗{Fbϕ}〉 (121)

= −γd〈∆f,R∗{(−L)(d−1)/2Fbϕ}〉 (122)

= −γd〈∆f,R∗{Fb(|σ|d−1ϕ)}〉 (123)

= −γd〈R{∆f},Fb(|σ|d−1ϕ)〉 (124)

= −γd〈FbR{∆f}, |σ|d−1ϕ〉 (125)

= −γd〈|σ|d−1FbR{∆f}, ϕ〉 (126)

Since FbR{∆f} is defined pointwise for all (w, b) ∈ Sd−1 × R so is Fbα and we have

(Fbα)(w, σ) = −γd|σ|d−1FbR{∆f}(w, σ) = −γd|σ|d−1∆̂f(σ ·w). (127)

Finally, since α is a finite measure, we know ‖Fbα‖∞ ≤ ‖α‖1 = O(1), which gives the first
result. If additionally f ∈ L1(Rd) then we have ∆̂f(ξ) = ‖ξ‖2f̂(ξ), and so (Fbα)(w, b) =

|σ|d+1∆̂f(σ ·w) which gives the second result.

G UPPER AND LOWER BOUNDS

Here we prove several upper and lower bounds for the R-norm. Proposition 3 is an immediate
corollary of the following upper bound:
Proposition 14. If (−∆)(d+1)/2f is a finite measure, then

‖f‖R ≤ γdcd‖(−∆)(d+1)/2f‖1, (128)

In particular, if (−∆)(d+1)/2f exists in a weak sense then ‖ · ‖1 can be interpreted as the L1-norm.
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Proof. Straight from definitions we have

‖f‖R = sup
{
γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(129)

= sup
{
γd〈(−∆)(d+1)/2f,R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(130)

≤ sup
{
γd〈(−∆)(d+1)/2f, ϕ〉 : ϕ ∈ C0(Rd), ‖ϕ‖∞ ≤ cd

}
(131)

= γdcd‖(−∆)(d+1)/2f‖1 (132)

where we used the fact thatR∗{ϕ} ∈ C0(Rd) for ϕ ∈ S(Pd) (Solmon, 1987, Corollary 3.6) and we
have ‖R∗{ϕ}‖∞ ≤ cd for all ϕ ∈ S(Pd) such that ‖ϕ‖∞ ≤ 1 since

|R∗{ϕ}(x)| ≤
∫
Sd−1

|ϕ(w,w>x)| dw ≤
∫
Sd−1

dw = cd. (133)

The following result also gives a useful lower bound on theR-norm.
Proposition 15. If f ∈ Lip(Rd) then

‖f‖R ≥ sup
{
〈f,∆ϕ〉 : ϕ ∈ S(Rd), ‖R{ϕ}‖∞ ≤ 1

}
. (134)

Proof. Let SH(Pd) ⊂ S(Pd) denote the image of S(Rd) under the Radon transform. Then

‖f‖R = sup
{
γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ S(Pd), ‖ψ‖∞ ≤ 1

}
(135)

≥ sup
{
γd〈f, (−∆)(d+1)/2R∗{ψ}〉 : ψ ∈ SH(Pd), ‖ψ‖∞ ≤ 1

}
(136)

= sup
{
γd〈f, (−∆)(d+1)/2R∗{R{ϕ}}〉 : ϕ ∈ S(Rd), ‖R{ϕ}‖∞ ≤ 1

}
(137)

= sup
{
〈f,∆ϕ〉 : ϕ ∈ S(Rd), ‖R{ϕ}‖∞ ≤ 1

}
(138)

where in the last step we used the inversion formula: ϕ = γd(−∆)(d−1)/2R∗{R{ϕ}} for all ϕ ∈
S(Rd).

Furhter simplifying the lower bound above gives the following.
Proposition 16. If f ∈ Lip(Rd) then

‖f‖R ≥ sup
{
〈f,∆ϕ〉 : ϕ ∈ S(Rd), ‖ϕ‖1 ≤ 1

}
. (139)

In particular, if ∆f exists in a weak sense then ‖f‖R ≥ ‖∆f‖∞.

Proof. If ‖ϕ‖1 =
∫
|ϕ(x)| dx ≤ 1 then clearly |R{ϕ}(w, b)| = |

∫
w>x=b

ϕ(x)dx| ≤∫
w>x=b

|ϕ(x)| dx ≤ 1. Hence ‖ϕ‖1 ≤ 1 implies ‖R{ϕ}‖∞ ≤ 1. Combining this with the
previous proposition gives the first bound. Additionally, by the dual definition of the L∞ norm, and
since S(Rd) is dense in L1(Rd), the second bound follows.

H RADIAL BUMP FUNCTIONS

Proof of Proposition 4. Assume f ∈ L1(Rd) so that its Radon transform R{f} is well-
defined, and for simplicity assume d is odd. Note that for a radially symmetric function we have
R{f}(w, b) = ρ(b) for some even function ρ ∈ L1(R), i.e., the Radon transform of a radially
symmetric function does not depend on the unit direction w ∈ Sd−1. Supposing ∂(d+1)ρ(b) exists
either as a function or a measure, we have

‖f‖R = γd‖∂d+1
b R{f}‖1 = γdcd

∫
|∂d+1ρ(b)|db, (140)

where cd =
∫
Sd−1 dw = 2πd/2

Γ(d/2) .
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Now we derive an expression for ρ(b) in terms of g. First, since ρ(b) = R{f}(w, b) for any
w ∈ Sd−1, we can choose w = e1 = (1, 0, ..., 0), which gives

ρ(b) = R{f}(e1, b) =

∫
x1=b

g(‖x‖)dx2 · · · dxd =

∫
Rd−1

g(
√
b2 + ‖x̃‖2)dx̃ (141)

where we have set x̃ = (x2, ..., xd). Changing to polar coordinates over Rd−1, we have

ρ(b) =

∫
Rd−1

g(
√
b2 + ‖x̃‖2)dx̃ = cd−1

∫ ∞
0

g(
√
b2 + r2)rd−2dr. (142)

By the change of variables t2 = b2 + r2, t > 0, we have

ρ(b) = cd−1

∫ ∞
b

g(t)(t2 − b2)(d−3)/2t dt. (143)

Hence, we see that

‖f‖R =
1

(d− 2)!

∥∥∥∥∂(d+1)
b

[∫ ∞
b

g(t)(t2 − b2)(d−3)/2t dt

]∥∥∥∥
1

(144)

where we used the fact that γdcdcd−1 = 1
(d−2)! .

Calculations in Example 3. Let f(x) = gd,k(‖x‖) with x ∈ Rd where

gd,k(r) =

{
(1− r2)k if 0 ≤ r < 1

0 if r ≥ 1.
(145)

for any k > 0. Then a straightforward calculation using (143) gives

ρ(b) =

{
Cd,k(1− b2)k+ d−1

2 if |b| < 1

0 if b ≥ 1.
(146)

where Cd,k = Γ((d−3)/2)·Γ(1+k)
2Γ((d+1)/2)+k) . Hence, we have ‖f‖R finite if and only if ∂db ρ(b) has bounded

variation, which is true if and only if k − d + d−1
2 ≥ 0, or equivalently, k ≥ d+1

2 . For example, if
d = 3 then we need k ≥ 2 in order for ‖f‖R to be finite, consistent with the previous example.

To illustrate scaling of ‖f‖R with dimension d, we set k = (d + 1)/2 + 2 = (d + 5)/2 so that
ρ(b) = Cd,(d+5)/2(1 − b2)d+2 for |b| ≤ 1 and ρ(b) = 0 otherwise. Then we can show that
|∂d+1ρ(b)| ≤ |∂d+1ρ(0)| for |b| ≤ 1 and ∂d+1ρ(b) = 0 for all |b| ≥ 1. Therefore,

‖f‖R =
1

(d− 2)!

∫ 1

−1

|∂d+1ρ(b)| ≤ 2

(d− 2)!
|∂d+1ρ(0)| (147)

Performing a binomial expansion of ρ(b) and taking derivatives, we obtain

2

(d− 2)!
|∂d+1ρ(0)| = 2Cd,(d+5)/2

(
d+ 2

(d+ 1)/2

)
(d+ 1)d(d− 1) = 2d(d+ 5) (148)

for all odd d ≥ 3. By the lower bound in Proposition 16, we also have ‖f‖R ≥ ‖∆f‖∞ =
|∆f(0)| = d(d+ 5). Hence ‖f‖R = Θ(d2).

I PIECEWISE LINEAR FUNCTIONS

Proof of Proposition 5

Proof. Assume f is continuous and piecewise linear with compact support. Then the distributional
Laplacian ∆f decomposes into a sum of Dirac measures supported on restricted hyperplanes Hi

defining boundaries between piecewise linear regions, i.e., we have

〈∆f, ϕ〉 =

n∑
i=1

ci

∮
Hi

ϕ(x) ds(x). (149)
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for some coefficients ci ∈ R, where ds indicates the d − 1 dimensional surface measure on Hi.
Hence, ∆f is a distribution of order-0, i.e., it can be identified with a measure having finite total
variation and its Fourier transform is given by

∆̂f(ξ) =

n∑
i=1

ci

∫
Hi

ej2πξ
>x ds(x). (150)

Without loss of generality, assume there is at least one Hi whose normal vector w ∈ Sd−1,
i.e., w>x = 0 for all x ∈ Hi, is distinct (up to sign) from the normal vectors of all the other
Hi (if this is not the case, then we can perturb the function slightly and obtain the same result). If
we let ξ = σw for any σ ∈ R, then the integral

∫
Hi
ej2πξ

>xds(x) =
∮
Hi
ds(x) = s(Hi), where

s(Hi) the is (d− 1)-dimension surface measure of Hi, and in particular it is Θ(1) (upper and lower
bounded by a constant) as |σ| → ∞, while the remainder of the integrals are at leastO(|σ|−1), since
they reduce to a product of d sinc functions, at least one of which is non-constant.

Hence for all σ ∈ R we have ∆̂f(σw) = Θ(1), and by Proposition 13 this implies ‖f‖R must be
infinite.
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