
Under review as a conference paper at ICLR 2020

R2D2: REUSE & REDUCE VIA DYNAMIC WEIGHT
DIFFUSION FOR TRAINING EFFICIENT NLP MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose R2D2 layers, a new neural block for training efficient NLP models.
Our proposed method is characterized by a dynamic weight diffusion mechanism
which learns to reuse and reduce parameters in the conventional transformation
layer, commonly found in popular Transformer/LSTMs models. Our method is
inspired by recent Quaternion methods which share parameters via the Hamilton
product. This can be interpreted as a neural and learned approximation of the
Hamilton product which imbues our method with increased flexibility and expres-
siveness, i.e., we are no longer restricted by the 4D nature of Quaternion weight
sharing. We conduct extensive experiments in the NLP domain, showing that
R2D2 (i) enables a parameter savings of up to 2× to 16× with minimal degrada-
tion of performance and (ii) outperforms other parameter savings alternative such
as low-rank factorization and Quaternion methods.

1 INTRODUCTION

The transformation layer is one of the most ubiquitous and dominant component in existing and current
deep learning literature (Goodfellow et al., 2016). Its pervasiveness cannot be understated, given
its centrality to many core building blocks in neural network research. Given widespread adoptions
of FC layers, e.g., within Transformer (Vaswani et al., 2017) models and recurrent (Hochreiter &
Schmidhuber, 1997) networks, a further reduction in parameter complexity could be extremely useful
to many real world applications.

This paper proposes a new neural component for reusing and reducing parameter costs of the
transformation layer. Concretely, our proposed R2D2 layer is characterized by a new dynamic weight
diffusion mechanism. The central idea is that we start off with a core set of parameters (weights) and
learn dynamic ‘diffusion’ of these weight partitions to construct the final transformation weight W .
The key novelty lies in our method of incorporating soft weight reuse, i.e., taking inspiration from
multiplication in hypercomplex spaces.

Recent work in Quaternion spaces and Hamilton products have demonstrated reasonable success
(Parcollet et al., 2018; 2019; Tay et al., 2019). The Hamilton product, which multiples two Quaternions
by fusing latent inter-component representations, enables a four time parameter saving as compared to
the real-valued adaptation. Unfortunately, Hamilton products operate on 4D hypercomplex numbers,
which limits its expressiveness and utility. To this end, our proposed R2D2 layer can be viewed as a
neural approximation of the Hamilton product, learning the permutation of the inter-latent component
interactions in a soft differentiable fashion. Moreover, our method can operate on any arbitrary n,
aside from only on 4D Quaternion representations, facilitating up to n times parameter savings.

To demonstrate applicability, we equip two well-established models (LSTMs and Transformers)
with R2D2 layers. We conduct extensive experiments on flagship benchmarks, i.e., neural machine
translation for Transformers and natural language inference for LSTMs. Additionally, we include
further validation on text style transfer and subject-verb agreement tasks. All in all, we find that R2D2
generally enables up parameter savings up to approximately 1/16 ∼ 1/2 with minimal degradation
in performance. Moreover, our proposed method also enables slight speed-up in terms of inference
(decoding speed).

1



Under review as a conference paper at ICLR 2020

2 OUR PROPOSED METHOD

This section introduces our proposed R2D2 components.

2.1 VANILLA FC LAYERS

Before we delve into our proposed method, the standard FC transform layer is defined as:
y = FC(x) = Wx + b. (2.1)

The FC layer (equation 2.1) is fundamental to many modern and traditional neural network architec-
tures. Owing to its ubiquity and widespread usage, an efficient reduction of parameters in the FC
layer may result in massive parameter savings, especially for models that heavily use transformation
equation 2.1.

Remark 2.1 The degree of freedom for the weight parameters W in equation 2.1 is kd. Since W
dominates parameterization, the parameter size of the FC layer equation 2.1 is O(kd).

In the following, we describe the proposed R2D2 layer and its relationships with matrix multiplication
in real space and Hamilton product in hypercomplex space.

2.2 REUSE AND REDUCE WITH DYNAMIC WEIGHT DIFFUSION (R2D2)

Preserving the same notation from the FC layer equation 2.1, a R2D2 layer transforms an input
x ∈ Rd into an output y ∈ Rk with H ∈ Rk×d and b ∈ Rk:

y = R2D2 (x) = Hx + b. (2.2)
The distinct difference in R2D2 is that we construct the parameter H in equation 2.2 with a reduced
degree of freedom in order to reduce the parameter size. This is achieved by our Dynamic Weight
Diffusion method described as follows:

2.2.1 DYNAMIC WEIGHT DIFFUSION

This section describes our proposed Dynamic Weight Diffusion mechanism. The central idea is to
operate on partitioned1 weight blocks and learn a dynamic diffusion of weights. There are two key
parameter blocks A and S which are central to our approach. Intuitively, A ∈ Rn×n×n controls the
weight diffusion process and learns the soft interaction between S partitions.

Suppose that both d and k are divisible by n ∈ Z>0. For i = 1, . . . , n and j = 1, . . . , d
n , denote by

each partitioned parameter block Sj ∈ Rn× k
n . Ai ∈ Rn×n is the weight diffusion matrix assigned to

each of n blocks. The parameter H in equation 2.2 is constructed by column-wise concatenation (;):

H = [s(A1); s(A2); . . . ; s(An)], (2.3)

where each segment s(Ai) is also formed by column-wise concatenation:

s(Ai) = [ψ(AiS1);ψ(AiS2); . . . ;ψ(AiS d
n

)]. (2.4)

In equation 2.4, function ψ : Rp×q → Rpq, where ψ(X) flattens the matrix X ∈ Rp×q by concate-
nating each row of X then transposes the concatenated row vector into a column vector of dimension
pq. It is easy to see that, ψ(AiSj) ∈ Rk, s(Ai) ∈ Rk× d

n , thus H ∈ Rk×d.

As illustrated in Figure 1, the reuse of partitioned parameter blocks S1, . . . ,S d
n

in the n segments
s(Ai) (i = 1, . . . , n) in equation 2.3 and the reuse of the partitioned parameter block Ai in each
individual s(Ai) segment in equation 2.4 may reduce the degree of freedom for H.

1Here, the partitioning (or splitting) of weights into different components is analogous to complexification,
i.e., splitting real vectors into real and imaginary components.

2



Under review as a conference paper at ICLR 2020

A1 S1 A1 S3

A1 S2 A1 S4

A2 S1 A2 S3

A2 S2 A2 S4

Columns of H:

A1

A2

S1 S3

S2 S4

Parameters for H: Parameter size of H:

Size of H:

Figure 1: Illustration of our proposed Dynamic Weight Diffusion. Reusing partitioned parameter
blocks Ai (i = 1, 2) and Sj (j = 1, . . . , 4) leads to a reduction in the parameter size of H (n =
2, d = 8, k = 6). Best viewed in color.

Remark 2.2 It is partitioned parameter blocks Ai (i = 1, . . . , n) and Sj (j = 1, . . . , d
n ) that

determine the degree of freedom for H, which is kd
n + n3. Since H dominates parameterization, the

parameter size of the R2D2 in equation 2.2 is O(kd
n ), where kd ' n4 is assumed: this condition is

mild for real-world problems, such as in our experiments (e.g., d = 512, k = 2048, n = 2, 4, 8, 16).
Thus, for the same input and output sizes, the parameterization cost of a R2D2 layer is approximately
1
n of that of an FC layer under mild assumptions.

2.3 RELATIONSHIP WITH MATRIX MULTIPLICATION IN REAL SPACE

The R2D2 layer subsumes matrix multiplication in real space. Thus, it is a generalization of the FC
layer via hyperparameter n. To explain, referring to equation 2.2, when n = 1, H = aW, where
scalar a is the single element of the 1 × 1 matrix A1 and elements of W ∈ Rk×d come from the
concatenation of S1, . . . ,Sd ∈ R1×k. Since learning a and W separately is equivalent to learning
their multiplication jointly, scalar a can be dropped, which is learning the single weight matrix in
an FC layer. Therefore, a R2D2 layer is degenerated to an FC layer when n = 1, where there is no
parameter saving.

2.4 RELATIONSHIP WITH HAMILTON PRODUCT IN HYPERCOMPLEX SPACE

Next, we explore the relationship between the R2D2 layer and Hamilton product in hypercomplex
space.

For background, in hypercomplex space, inputs are represented by multiple imaginary components.
For example, a Quarternion has 1 real component and 3 imaginary components, while an Octonion has
1 real component and 7 imaginary components. For the sake of illustration, let us take a Quarternion
Q as an example, which is a 4-dimensional hypercomplex number

Q = Qr +Qxi +Qyj +Qzk, (2.5)

where Qr, Qx, Qy, Qz are real numbers, ijk = i2 = j2 = k2 = −1, ij = k, jk = i,ki =
j, ji = −k,kj = −i, ik = −j. The Hamilton product, which represents the multiplication of two
Quaternions S = Sr + Sxi + Syj + Szk and Q equation 2.5, is defined as

Sr −Sx −Sy −Sz

Sx Sr −Sz Sy

Sy Sz Sr −Sx

Sz −Sy Sx Sr


Qr

Qx

Qy

Qz

 , (2.6)

3



Under review as a conference paper at ICLR 2020

where the 4 output elements are the real values for the Quaternion unit basis [1, i, j,k]>. Denoting
that s = [Sr, Sx, Sy, Sz]>, equation 2.6 can be rewritten as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 s;

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 s;

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 s;

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 s


Qr

Qx

Qy

Qz

 .
(2.7)

It can be observed that, when n = k = d = 4, the R2D2 layer may perform Hamilton Product of
Quarternions. Specifically, partitioned parameter blocks A1, . . . ,A4 in equation 2.3 parameterize
the 4 permutation blocks (matrices composed of −1, 0, 1 in equation 2.7) that reflect the rules of
Hamilton product, while S1 in equation 2.4 are s in equation 2.7, and the layer input x in equation 2.2
is [Qr, Qx, Qy, Qz]> in equation 2.7. Likewise, Hamilton product of Octonions or Sedenions in
hypercomplex space may also be performed by the R2D2 layer when n, k, d are equally set to 8 or
16.

2.5 GENERALIZING HYPERCOMPLEX MULTIPLICATION WITH NEURAL APPROXIMATION

In fact, weight reuse by component-wise partitioning in Quaternion space has demonstrated reasonable
success (Parcollet et al., 2018; Zhu et al., 2018; Parcollet et al., 2019; Tay et al., 2019). However, one
key problem is that Hypercomplex algebra cannot be generalized to arbitrary n values simply because
algebraic axioms cannot hold when n takes values apart from power of 2. At this point, it is easy
to see that 5-dimensional complex numbers cannot exist due to a clear inability to multiply two 5-
dimensional complex numbers. Within the context of hypercomplex space, specialized multiplication
rules, such as Hamilton product, have to be devised and encoded in the network as a fixed inductive
bias. In sharp contrast, the R2D2 layer learns such specialized multiplication rules from data, as
manifested in partitioned parameter blocks Ai (i = 1, . . . , n) in equation 2.3. Thus, R2D2 subsumes
and is degenerated to hypercomplex multiplication when such partitioned parameter blocks are set
to reflect those predefined multiplication rules in hypercomplex space. Moreover, the proposed
R2D2 layer can be seen as a trainable and parameterized form of n-dimensional hypercomplex
multiplication, where n can be values other than power of 2.

To sum up, the R2D2 layer reduces parameterization cost by reusing partitioned parameter blocks. It
also offers a way to bridging multiplication between real space and hypercomplex space.

3 EFFICIENT NEURAL NLP MODELS WITH R2D2 LAYERS

To demonstrate the applicability of the R2D2 layers, we develop two popular neural network models,
LSTM and Transformer, which are able to benefit from R2D2 layers.

3.1 R2D2-LSTMS

Recurrent neural networks such as LSTMs are gated recurrent networks where gating functions are
parameterized by linear transformations. We introduce the our efficient LSTM (R2D2-LSTM), which
replace such linear transformations in the LSTM with the R2D2 layers:

yt = R2D2 (xt) + R2D2 (ht−1) + b

ft, it,ot,x
′
t = φ(yt)

ct = σs(ft) ct−1 + σs(it) σt(x
′
t)

ht = ot � ct

where σs is the sigmoid activation function and σt is the tanh activation function, φ : R1×d → R4× d
4

is a four way split on the last dimension, ct, ht are the cell state and hidden state of the R2D2 -LSTM
unit at time step t.

3.2 R2D2 TRANSFORMERS

Transformers (Vaswani et al., 2017), the state-of-the-art model for sequence transduction task, is
a stacked neural network architecture that aggressively exploits linear transformations. Each self-

4



Under review as a conference paper at ICLR 2020

attention layer comprises of three Q,K,V transformations, along with Nh heads per self-attention
layer. Each layer also comprises of a two layered FC layer with nonlinearities. A large majority of the
Transformer parameters stem from the FC layers. In R2D2 Transformers, we replace all FC layers
with R2D2 layers. The single-headed self-attention module is rewritten as:

Q,K,V = Φ(R2D2(X)) , A = softmax(
QK>√
dk

)V,

where dk is the key dimension, Φ : R1×d → R3× d
3 is a three way split on the last dimension, X

is the input sequence, and A is the self-attentive representation. For multi-headed2 attention, the
transformation of multiple heads are also projected with R2D2 layers:

X = R2D2([H1; . . . ;HNh
]),

where Nh is the number of heads and (; ) is the column-wise concatenation. Finally, the position-wise
FC layer is now defined as

Y = R2D2(ReLU(R2D2(X))),

which transforms X with 2 R2D2 layers.

4 EXPERIMENTS

This section reports the experimental results of R2D2-LSTMs and R2D2 Transformers that are
equipped with R2D2 layers. Overall, we conduct 4 main experiments. We evaluate R2D2 LSTMs on
natural language inference (NLI) and compare them with standard LSTMs. Next, we evaluate R2D2
Transformers and compare them with standard Transformers on neural machine translation (NMT),
text style transfer, and subject verb agreement (SVA) tasks.

4.1 NATURAL LANGUAGE INFERENCE

The task of natural language inference is to determine if two sequences entail or contradict with each
other (MacCartney, 2009). NLI is a fundamental task pertaining to language understanding. To this
end, they serve as a suitable benchmark for evaluating recurrent models.

Table 1: Experimental results on natural language inference. Saving cost considers only the cell
unit (other parts of architecture remains constant). R2D2-LSTM reduces the parameter costs of the
standard LSTM model and improves performance on 4 out of 5 datasets.

Model #Params MNLI QNLI SNLI DNLI SciTail

LSTM 721K 71.82 / 71.89 84.44 84.18 85.16 74.36
Quaternion LSTM 180K (-75.0%) 71.57 / 72.19 84.73 84.21 86.45 75.58

R2D2-LSTM (n = 2) 361K (-49.9%) 71.82 / 72.08 84.39 84.38 85.77 77.47
R2D2 LSTM (n = 5) 146K (-79.7%) 71.80 / 71.77 83.87 84.58 86.47 74.64
R2D2-LSTM (n = 10) 81K (-88.7%) 71.59 / 71.59 84.25 84.40 86.21 77.84

Datasets and Setup We run experiments on 5 NLI datasets, i.e., (1) SNLI (Bowman et al., 2015),
(2) MultiNLI (Williams et al., 2017), (3) Dialogue NLI (Welleck et al., 2018), (4) QNLI (Quora)
(Wang et al., 2017), and (5) Scitail (Science Entailment) (Khot et al., 2018). We implement 300-
dimensional unidirectional encoders with shared parameters for both premise/hypothesis. We take
the concatenation of max and mean pooled representations as input to a two-layered 300-dimensional
MLP for prediction. Our model is trained with the Adam with a learning rate of 0.0004 with a batch
size of 256. Word embeddings are initialized with GloVe (Pennington et al., 2014) and are fixed. No
cross sentence attention (Parikh et al., 2016) is used, mainly to observe the effectiveness of standalone
encoders. For R2D2-LSTM, we use n = {2, 5, 10} and report the results accordingly. In this task,
since word embeddings are 300-dimensional, we select multiples of 5 instead of 4 for simplicity and
ease of divisibility.

2Note that since multi-headed self-attention is usually implemented with a single matrix multiplication (to
save computation time by paralleling computation), using R2D2 layers also enables weight sharing not only
among Q,K,V but also among heads.

5



Under review as a conference paper at ICLR 2020

Experimental Results Table 1 reports the results on all the 5 natural language inference datasets.
All in all, results are extremely encouraging, showing that the R2D2 layer can not only reduce the
parameterization cost but also improve performance (4 out of 5 datasets show reasonable improve-
ment). On QNLI (the only exception), the performance drop is marginal (< 1%), which is decent
considering the parameter savings. It is also noteworthy that on SNLI, DNLI, and SciTail, all the
R2D2 -LSTM variants outperform the base LSTM model. Overall, we think that the parameter reuse
properties, in addition to learning to share such reused parameter blocks amongst recurrent gating
functions, may contribute to a regularizing effect.

4.2 NEURAL MACHINE TRANSLATION

Machine translation (MT) is concerned with translating between source-target language pairs. To this
end, sequence transduction models are central to this problem domain. In this experiment, the key
goal is to compare R2D2 Transformers against the standard Transformer model.

Table 2: Experimental results on neural machine translation (BLEU scores). † represents up-sampling
with a factor of 2. R2D2 Transformers do not lose much performance despite enjoying huge saving
in parameterization cost. Re-scaling to equal parameters can lead to improvement in results. Savings
do not account for token embedding parameters.

Setting #Params En-Vi En-Id De-En Ro-En En-Et En-Mk En-Ro

Transformer 44M 28.43 47.40 36.68 34.60 14.17 13.96 22.79

Factorized 11M (-75.0%) 27.21 29.72 22.93 20.23 6.70 9.36 15.55
Quaternion 11M (-75.0%) 28.00 42.22 32.83 30.53 13.10 13.67 18.50

R2D2 n = 2 22M (-50.0%) 29.25 46.32 35.52 33.40 14.98 13.60 21.73
R2D2 n = 4 11M (-75.0%) 29.13 44.13 35.53 32.74 14.11 13.01 21.19
R2D2 n = 8 5.5M (-87.5%) 29.34 40.81 34.16 31.88 13.08 12.95 21.66
R2D2 n = 16 2.9M (-93.4%) 29.04 33.48 33.89 31.53 12.15 11.97 19.63

R2D2† n = 2 44M 29.54 49.05 34.32 33.88 14.05 14.41 22.18
R2D2† n = 4 22M (-50.0%) 29.17 46.24 34.86 33.80 14.43 13.78 21.91
R2D2† n = 8 11M (-75.0%) 29.47 43.49 34.71 32.59 13.75 13.78 21.43

Table 3: Experimental results on neural machine
translation (BLEU scores) on WMT’16 En-De.

Reported Models

Transformer (Vaswani et al., 2017) 27.30
DynamicConv (Wu et al., 2019) 29.70
Transformer (our run) 27.86

Compressed Models

Quaternion (Tay et al., 2019) 25.14
R2D2 Transformer (n = 2) 26.43
R2D2 Transformer (n = 4) 26.52
R2D2 Transformer (n = 8) 24.11
R2D2 Transformer (n = 16) 23.01

Table 4: Training time (seconds per 100 steps)
and Decoding Time (seconds to decode test set)
with Beam size of 4 and length penalty of 0.6 on
IWSLT 2014 German-English.

Model Train Decoding

Vanilla 7.79 341
Factorized 7.26 291
Quaternion 8.31 297

R2D2 (n = 4) 8.09 303
R2D2 (n = 8) 7.89 287

Datasets and Setup We run experiments on 8 NMT datasets. The datasets are (1) IWSLT’15
English-Vietnamese (En-Vi)†, (2) IWSLT’17 English-Indonesian (En-Id)†, (3) IWSLT’14 German-
English (En-De)†, (4) IWSLT’14 Romanian-English (Ro-En)†, (5) WMT’18 English-Estonian (En-
Et)∗, (6) Setimes English-Macedonian (En-Mk)∗, (7) WMT’18 English-Romanian (En-Ro)∗ and (8)
WMT’16 English-German (En-De).

Datasets with † are run with 50K steps while datasets with ∗ are trained for 100K steps also on a
single GPU. For all tasks, we specify that Transformers have 4 layers, 8 heads, and a hidden size
512. We use beam size of 5 and α = 0.6 for evaluating all the models. For all R2D2 models, we

6



Under review as a conference paper at ICLR 2020

benchmark several settings for the hyperparameter n = {2, 4, 8, 16}. Likewise, we also re-scale the
parameters by increasing the dimensions to match the original number of parameters. This is denoted
by hyperparameter U . In the experiments, the upsampling factor is fixed at 2.

We benchmark against two baselines that are also concerned with reducing parameterization of the
FC layer. The first, is the Factorized Transformer which approximates each FC layer with low-rank
approximation. In this case, the number of latent factors is set to d

4 to enable direct comparison to the
Quaternion Transformer. The second is the Hamilton product based Transformer proposed in (Tay
et al., 2019).

Experimental Results Table 3 reports our results on machine translation. Across 5 out of 7 NMT
benchmarks, R2D2 Transformer outperforms the standard Transformer model. Overall, the empirical
results are promising. On one hand, we observe that increasing n all the way to 16 does not cause
significant degradation in performance on datasets such as En-Vi. On the other hand, for most
datasets, even with significant parameter reduction, we find that the decrease in the BLEU score is
overall manageable (≈ 1–3 BLEU points). However, we also note a rare occurrence where n = 16
results in significant decrease in the BLEU score, such as on the En-Id dataset.

On several datasets, the R2D2 Transformer model improves the performance. For example, datasets
such as En-Vi and En-Et enjoy a performance boost of about 1 BLEU point with n = 2. Generally,
there is only marginal performance degradation at n = 4 or n = 8 for most datasets. Finally, by
upsampling with hyperparameter U , we are able to improve the performance of three datasets: En-Vi,
En-Id, and En-Mk.

Additionally, we note that Factorized Transformer performs substantially worse than the vanilla
Transformer or our R2D2-Transformer. On the other hand, our proposed R2D2 also makes reasonable
gains over the Quaternion Transformer (Tay et al., 2019), signifying that flexible approximation of
Hamilton products are effective.

Table 4 reports the decoding and training time for each Transformer variant. We observe that R2D2
with n = 8 has the fastest decoding speed amongst all variants. All in all, the training speed is also
approximately similar. As such, this ascertains that our proposed dynamic weight diffusion method is
not computationally expensive, despite its complexity.

4.3 TEXT STYLE TRANSFER

We experiment with sequence transduction for text style transfer. The goal of this task is to convert
text of a certain style to another style.

Datasets and Setup We use the Modern→Shakespeare corpus3 in the experiments. The key goal
here is to convert modern writing into Shakespeare writing. This dataset comprises of 18395 parallel
sentences for training, 1218 parallel sentences for evaluation (dev set), and 1462 parallel sentences
for testing. We still specify that Transformers have 4 layers, 8 heads, and a hidden size 512. Similar
to NMT, we experiment with n = {2, 4, 8, 16}. We train all the models for 10K steps.

Table 5: Experimental results on text
style transfer with Transformer models.

Model #Params BLEU

Transformer 44M 11.65

R2D2 (n = 2) 22M (-50.0%) 12.20
R2D2 (n = 4) 11M (-75.0%) 12.42
R2D2 (n = 8) 5.5M (-87.5%) 11.66

R2D2 (n = 16) 2.9M (-93.4%) 10.76

Experimental Results Table 5 reports the re-
sults on text style transfer. We observe that the best
performance is achieved with R2D2 Transformer
(n = 4). Notably, all except the n = 16 variant
outperforms the standard Transformer model. This
ascertains the effectiveness of the proposed R2D2
layer. This not only enables parameter savings but
improves the performance of Transformer.

3https://github.com/tlatkowski/st

7

https://github.com/tlatkowski/st


Under review as a conference paper at ICLR 2020

4.4 SUBJECT VERB AGREEMENT

We conduct additional experiments on subject-verb agreement task (Linzen et al., 2016). The task is a
binary classification problem. It predicts if the sentence, e.g., ‘The keys to the cabinet .’ follows
by a plural or a singular.

Dataset and Setup This dataset can be found online (Linzen et al., 2016). We evaluate the R2D2
Transformer encoder against the standard Transformer encoder for the subject verb agreement task. In
contrast to the previous experimental settings, we use a smaller Transformer architecture. Specifically,
Transformers here have 2 layers, 4 head, and a hidden size 128. Since the hidden size is smaller than
those in the previous experimental settings, we experiment with n = {2, 4, 8}.

Table 6: Experimental results on subject verb
agreement (SVA) with Transformer models.

Model #Params Acc

Transformer 400K 94.80
Quaternion 100K 94.70

R2D2 (n = 2) 200K (-50.0%) 95.14
R2D2 (n = 4) 101K (-74.8%) 95.05
R2D2 (n = 8) 56K (-86.0%) 95.62

Experimental Results Table 6 reports the re-
sults on the SVA task. Results are promising,
demonstrating that all variants with R2D2 layers
outperform the standard Transformer. The best
performance peaks at n = 8, despite parame-
ter saving to up to 1/8. R2D2 also outperforms
Quaternion Transformers.

5 RELATED WORK

FC layers are ubiquitous in deep learning research (Goodfellow et al., 2016). Many, if not all neural
building blocks incorporate this functionality, i.e., transforming input vectors to an output space using
a parameterized linear transformation matrix. Recurrent neural networks (Hochreiter & Schmidhuber,
1997), multilayer perceptrons, attention (Bahdanau et al., 2014), and Transformer models (Vaswani
et al., 2017) are all heavily grounded in these transformation operations. Notably, recent state-of-the-
art models in language domains aggressively exploit transformation layers, achieving very exceptional
results (Devlin et al., 2018; Radford et al., 2019).

Our work can be interpreted as a form of soft parameter sharing, albeit dynamic and learned. A recent
work (Savarese & Maire, 2019) proposed soft-weight sharing across stacked convolution layers,
effectively simulating recurrence, i.e., RNNs can be considered to be weight sharing across time.
Quaternion networks (Zhu et al., 2018; Parcollet et al., 2018; 2019) are also known to inhibit weight
sharing qualities and have demonstrated reasonable success despite having fewer parameters.

Low-rank approximations (Markovsky, 2012) and factorization methods are known techniques to
reduce parameters and improve generalization. Majority of techniques aimed at reducing parameters
of neural networks belong to this class (Sainath et al., 2013; Chen et al., 2018; Si et al., 2017).
Within the context of language, GroupReduce (Chen et al., 2018) applies low-rank approximations to
compress neural language models. (Si et al., 2017) proposed memory efficient kernels using low-rank
approximation.

6 CONCLUSION

We propose R2D2 layers, which can reduce the parameterization cost of their FC counterparts
without significantly compromising performance. The R2D2 layer also offers a way to bridging
multiplication between real space and hypercomplex space by subsuming and generalizing both
matrix multiplication in real space and Hamilton product in hypercomplex space. It is highly modular
and applicable to many dominant models such as LSTMs and Transformers. We evaluate such models
equipped by R2D2 layers on comprehensive tasks, demonstrating substantial parameter savings with
minimal degradation or improvement in performance.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking. In Advances in Neural Information Processing
Systems, pp. 10988–10998, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Tushar Khot, Ashish Sabharwal, and Peter Clark. Scitail: A textual entailment dataset from science
question answering. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–535,
2016.

Bill MacCartney. Natural language inference. Citeseer, 2009.

Ivan Markovsky. Low rank approximation. Springer, 2012.

Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb Trabelsi, Re-
nato De Mori, and Yoshua Bengio. Quaternion recurrent neural networks. arXiv preprint
arXiv:1806.04418, 2018.

Titouan Parcollet, Mohamed Morchid, and Georges Linarès. Quaternion convolutional neural net-
works for heterogeneous image processing. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8514–8518. IEEE, 2019.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.

Pedro Savarese and Michael Maire. Learning implicitly recurrent cnns through parameter sharing.
arXiv preprint arXiv:1902.09701, 2019.

Si Si, Cho-Jui Hsieh, and Inderjit S Dhillon. Memory efficient kernel approximation. The Journal of
Machine Learning Research, 18(1):682–713, 2017.

Yi Tay, Aston Zhang, Luu Anh Tuan, Jinfeng Rao, Shuai Zhang, Shuohang Wang, Jie Fu, and
Siu Cheung Hui. Lightweight and efficient neural natural language processing with quaternion
networks. arXiv preprint arXiv:1906.04393, 2019.

9

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Under review as a conference paper at ICLR 2020

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natural
language sentences. arXiv preprint arXiv:1702.03814, 2017.

Sean Welleck, Jason Weston, Arthur Szlam, and Kyunghyun Cho. Dialogue natural language
inference. arXiv preprint arXiv:1811.00671, 2018.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430, 2019.

Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen. Quaternion convolutional neural networks.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 631–647, 2018.

10


	Introduction
	Our Proposed Method
	Vanilla FC Layers
	Reuse and Reduce with Dynamic Weight Diffusion (R2D2)
	Dynamic Weight Diffusion

	Relationship with Matrix Multiplication in Real Space
	Relationship with Hamilton Product in Hypercomplex Space
	Generalizing Hypercomplex Multiplication with Neural Approximation

	Efficient Neural NLP Models with R2D2 Layers
	R2D2-LSTMs
	R2D2 Transformers

	Experiments
	Natural Language Inference
	Neural Machine Translation
	Text Style Transfer
	Subject Verb Agreement

	Related Work
	Conclusion

