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ABSTRACT

Accompanying with the flourish development in various fields, deep neural net-
works, however, are still facing with the plight of high computational costs and
storage. One way to compress these heavy models is knowledge transfer (KT), in
which a light student network is trained through absorbing the knowledge from a
powerful teacher network. In this paper, we propose a novel knowledge transfer
method which employs a Student-Teacher Collaboration (STC) network during
the knowledge transfer process. This is done by connecting the front part of the
student network to the back part of the teacher network as the STC network. The
back part of the teacher network takes the intermediate representation from the
front part of the student network as input to make the prediction. The difference
between the prediction from the collaboration network and the output tensor from
the teacher network is taken into account of the loss during the train process.
Through back propagation, the teacher network provides guidance to the student
network in a gradient signal manner. In this way, our method takes advantage
of the knowledge from the entire teacher network, who instructs the student net-
work in learning process. Through plentiful experiments, it is proved that our STC
method outperforms other KT methods with conventional strategy.

1 INTRODUCTION

Deep neural networks (DNNs) have produced breakthrough results in various fields, such as com-
puter vision (Krizhevsky et al., 2012; He et al., 2016) and natural language processing (Mikolov
et al., 2010) in recent years. Through a mass of studies (Neyshabur et al., 2017; Canziani et al.,
2016; Novak et al., 2018), researchers have proved that a DNN with larger capacity will have a bet-
ter generalizability, which leads to a better performance. However, larger capacity will also cause
heavier computational costs and storage, making these powerful models difficult to meet real-time
requirements on embedded systems.

One way to compress these heavy models is knowledge transfer (KT). As can be seen in Figure 1(a),
KT is a method to improve the performance of a light student network by absorbing the knowledge
from a strong teacher network. In the early studies of KT such as knowledge distillation (KD) (Hin-
ton et al., 2015), researchers took advantage of the output vector from teacher networks, converted
it into “soft target” and trained the student network with the soft target and the ground-truth. KD
can only be applied in classification task since the “soft target” is produced by the softmax function
with temperature T. In recent studies, many methods focused on the intermediate representation of
the teacher network, in which the feature map (Romero et al., 2015), attention map (Zagoruyko &
Komodakis, 2016a) or the factor (Kim et al., 2018) extracted from student network are induced to
mimic the corresponding one from teacher network by minimizing the difference between them.
Figure 1(b) and Figure 1(c) are the overview of AT and FT. As can be seen, the role of the teacher
network in these two methods is simply to provide an intermediate representation for imitation while
does not give extra help during the training process. Moreover, due to divergence of the structure
between the student and teacher networks, the student network usually cannot generate the same
intermediate representation as the teacher network. In this case, an intermediate representation with
the smallest difference does not equal to an accurate prediction.
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Figure 1: Overview of the proposed student-teacher collaboration method compared with other
methods. (a) Student and teacher network. (b) Attention transfer (c) Factor transfer (d) Student-
teacher collaboration. Different from the previous methods, we employ a collaboration network
which is a connection of the front part of the student network and the back part of the teacher
network. The difference between the predictions from the collaboration network and the teacher
network is taken into account of loss during the training process. It can be clearly seen that our STC
method additionally utilizes the knowledge from the top part of the teacher network.

To address the above problems, we propose a novel knowledge transfer method as illustrated in
Figure 1(d). Different from the previous methods, we employ a collaboration network which is a
connection of the front part of the student network and the back part of the teacher network during the
training process. Specifically, we select a set of corresponding layers from the student and teacher
networks. The front part and the back part of the selected layers of student and teacher networks are
called student sub-network and teacher sub-network respectively. The teacher sub-network takes the
intermediate representation from the student sub-network as input to make the prediction. Unlike
KD using the soft target, in our method, the output tensor from the teacher network is directly treated
as the target of the collaboration network. In this manner, our method can be applied to difference
tasks. During the training process, the difference between the predictions from the collaboration
network and the teacher network is taken into account of the loss. Through back propagation, the
gradient signal in the back part of the teacher network can be transferred to the student network and
supervises the training process. In this way, teacher network in our method instructs student network
on how to get the “answer”, rather than just give an intermediate representation for mimicking as
in previous methods. It can be clearly seen from Figure 1 that our method additionally utilizes the
knowledge from the teacher sub-network, compared with the previous methods. It is worth noting
that the collaboration network is only used during the training process, the student network with the
original structure is used for prediction during the inference time.

Our contributions can be summarized as follows:

• We propose a novel knowledge transfer method, additionally utilizes the knowledge from the back
part of the teacher network by employing a collaboration network structure. To the best of our
knowledge, the training strategy of injecting the feature map from student sub-network into the
teacher sub-network has never been used.

• The teacher network in our method instructs student network on how to get the right “answer”,
rather than just give an intermediate representation for mimicking as in previous methods.

• We take the output tensor from the teacher network as the target of the collaboration network,
brings good generalizability to our method on different tasks.

• We experimentally show that our method outperforms other methods with conventional strategy
on various datasets in different tasks.
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2 RELATED WORKS

To reduce the model size as well as the computational costs of deep neural networks (DNNs), a
variety of methods have been proposed. In early studies, researchers found that DNNs contain
large redundancy which is useless for predictions (LeCun et al., 1990). Han et al. (2015) pruned
the weights by removing the unimportant connections. Yamamoto & Maeno (2018) took attention
statistics provided by an attention model after each convolutional layer to define the importance
of each channel of these layers. Liu et al. (2018) proposed a frequency-domain dynamic pruning
scheme to further compress the DNNs by exploiting the spatial correlations. There are also methods
aiming at compressing the model by reducing the number of bits occupied by the weights or neurons.
Rastegari et al. (2016) trained a convolutional neural network using binary weights from scratch.
Han et al. (2016) optimized the model combined with network pruning, quantization and huffman
coding. Another way to accelerate model is network decomposition, which is to decompose the
complex function in the network into a series of simple functions, such as SqueezeNet (Iandola
et al., 2017), Mobilenet (Howard et al., 2017), ShuffleNet (Zhang et al., 2018) and Xception (Chollet,
2017).

In addition to the above three strategies that will partially change the components of the network,
knowledge transfer (Romero et al., 2015; Kim et al., 2018; Zagoruyko & Komodakis, 2016a; Bucilua
et al., 2006; Wang et al., 2018) is another way to compress the model by improving the performance
of a lighter student network with the knowledge from a stronger teacher network. To the best of our
knowledge, the earliest work of knowledge transfer is Bucilua et al. (2006), which to train a small
model with data labeled by an ensemble of large model. Hinton et al. (2015) proposed a method
called knowledge distillation (KD), utilizing the “soft targets” extracted from teacher network during
the training process of the student network. In Fitnets (Romero et al., 2015), they regarded the fea-
ture map extracted from the teacher network as hints, and trained the student network by mimicking
the corresponding feature maps of student and teacher networks. Attention transfer (AT) (Zagoruyko
& Komodakis, 2016a) computed the summations of the feature map across the channel to generate
the attention map and trained the student network by minimizing the difference between the atten-
tion map of corresponding blocks. Factor transfer (FT) (Kim et al., 2018) employed a paraphraser
and a translator to translate the knowledge in the feature maps into factors. The student network is
optimized by minimizing the l2 loss between student and teacher factors.

3 METHOD

An eminent teacher should not only give a referenced answer to a student, but also teach student
how to get the answer. Analogously, during the training process of the student network, a teacher
network should teach the student network how to make the right prediction to play a role as an
eminent teacher. In this section, we will firstly explain some concerns in the previous knowledge
transfer methods and then describe our method in detail to explain how the teacher network instructs
the student network’s learning process in our method.

3.1 CONCERNS IN THE PREVIOUS METHODS

Previous knowledge transfer methods, such as AT (Zagoruyko & Komodakis, 2016a) and FT (Kim
et al., 2018), train the student network by minimizing the difference between the intermediate rep-
resentations extracted from the corresponding layers of student and teacher networks. However, this
training strategy contains the following problems.

The first problem is that the teacher network in the previous methods simply provided an interme-
diate representation for imitation but did not teach student network how to get it. Therefore, the
guidance from teacher network is limited in the previous methods. Another problem is the inter-
mediate representation from teacher network is treated as the target in these method. However, due
to divergence of the structure between the student and teacher networks, the student network usu-
ally cannot generate the same intermediate representation as the teacher network. In this case, an
intermediate representation with the smallest difference does not equal to an accurate prediction.
What’s more, the intermediate representation is extracted from the hidden layer of the network, so
the knowledge in the subsequent layers of the teacher network cannot be utilized.
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Figure 2: Training process of the proposed student-teacher collaboration method. We take the out-
put tensor from the teacher network as the target of the collaboration network. The student network
is trained with the collaboration loss and the classification loss. During the training process, the
weights of the teacher network and teacher sub-network are fixed, only the weights of student net-
work are updated.

3.2 STUDENT-TEACHER COLLABORATION

To address the above problems, we proposed a novel training strategy for knowledge transfer in
our method. Different from the previous knowledge transfer methods, we employ a student-teacher
collaboration network which is a connection of the front part of the student network and the back
part of the teacher network during the training process. As illustrated in Figure 2, our method
consists of three steps. Firstly, we forward propagate a pretrained teacher network T with the input
data I to get the target Ot. Secondly, we connect the front part of the student network which we
called student sub-network to the corresponding layer of the teacher network as a collaboration
network. The subsequent layers of the teacher network which we called teacher sub-network takes
the intermediate representation from the student sub-network as input to produce the prediction Oc.
The forward propagation of the collaboration network can be formulated as:

Oc = T sub(x
ls
s ) = T sub ◦ f(wls

s xls−1
s ) (1)

where c and s are the symbol for collaboration and student network respectively. T sub denotes
the calculations of the teacher sub-network. f denotes the activation function. l, x and w denotes
the layer number, intermediate representation and weights of the network respectively. Biases are
omitted for simplifying notations.

After forward propagate the collaboration network, we compute the difference between the predic-
tions from the collaboration network and the teacher network as the STC loss LSTC . The back
propagation of STC loss can be formulated as:

∂LSTC(Oc,Ot)

∂wls
=
∂LSTC(Oc,Ot)

∂Oc

∂Oc

∂xls
s

∂xls
s

∂wls
s

(2)

where Ot denotes the output tensor from teacher network. Biases are omitted for simplifying nota-
tions.

As can be seen in Eq. 2, the teacher network instructs the training process of the student network in
a gradient signal manner. To be specific, the gradient signal of the teacher sub-network ∂Oc

∂xls
s

plays
a role of weight parameters in the backward propagation formula, which indicates that the teacher
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network provides guidance to the student network on which element in the weights wls should be
paid more attention to during the training process. Since we directly take the output tensor of the
teacher network as the target of the collaboration network, this training strategy is more accelerate
than minimizing the difference between the intermediate representations as previous methods did.
Moreover, it can be clearly seen from Figure 2 that our method additionally utilizes the back part
of the teacher network, which will bring more knowledge for student network during the training
process.

There are also optional selections of target in our method, which are soft target as in Hinton et al.
(2015) and the ground-truth target. However, since there is no knowledge of the teacher network
in the ground-truth target, it is not a good choice for our method. As for the soft target, it can only
be applied to classification task, because it is generated by the softmax function with temperature T.
We will demonstrate the experimental results of different selections of the target in Sec. 4.

3.3 LOSS FUNCTION

The loss function Ltotal for training student network in classification task can be separated into two
items, i.e. the classification loss LCF and the student-teacher collaboration (STC) loss LSTC :

Ltotal = αLSTC + (1− α)LCF (3)
LSTC = C(T sub ◦ Sls(I)− T (I)) (4)

LCF = C(S(I),G) (5)
where C denotes the cross entropy loss, Sls denotes the front part calculations of the student network
and G denotes the ground-truth label respectively.

We train the student network by minimizing the weighted sum of two loss as shown in Eq. 3, where
weight α is a hyper-parameter. Specifically, the STC loss is the cross-entropy between the predic-
tions from collaboration and teacher networks, the classification loss is the cross-entropy between
the prediction from student network and ground-truth. During the training process, the weights of
the teacher sub-network are fixed, only the weights of the student network are updated.

For other types of tasks, the training process can be achieved by replacing the cross-entropy loss
with the corresponding loss, such as smooth-L1 loss for bounding-box regression (Girshick, 2015).

3.4 INTEGRATING WITH KD

Knowledge distillation (KD) Hinton et al. (2015) trains the student network with the soft target from
teacher network. The definition of soft target is p = softmax( o

T ), where o is the output tensor
of teacher logits (pre-softmax activations) and T is a temperature. Since KD takes no additional
storage and computational costs during training, it can be integrated with other knowledge transfer
methods, such as AT Zagoruyko & Komodakis (2016a) and FT Kim et al. (2018) in the classification
task. However, these methods result in performance degradation when integrating with KD in some
cases, because of the fact that mimicking the intermediate representations does not equal to a good
prediction of student network.

In contrast, our method takes the output tensor from teacher network as the target, which is consistent
with KD. During experiments, our method shows good synergy integrating with KD, thus further
improves the performance of student network. We will demonstrate these results in Sec. 4.

4 EXPERIMENTS

In this section, we demonstrate the performance of proposed STC method in classification task
on CIFAR-10 (Krizhevsky et al., 2014), CIFAR-100 (Krizhevsky et al., 2009), ImageNet LSVRC
2012 (Deng et al., 2009) datasets and object detection task on PASCAL VOC 2007 (Everingham &
Winn, 2006) dataset. Firstly, we evaluate the STC performance integrated with or without KD (Hin-
ton et al., 2015) of various student and teacher models on CIFAR-10, CIFAR-100 and ImageNet
ILSVRC2012 datasets, compared with AT (Zagoruyko & Komodakis, 2016a) and FT (Kim et al.,
2018). Secondly, we evaluate our method on PASCAL VOC 2007 dataset for object detection task
compared with FT to show the generalizability of our method. Finally, we illustrate the result of
different types of target on CIFAR-10 dataset.
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Table 1: Top-1 classification error (%) on CIFAR-10 dataset. The first 7 columns are from
manuscript of Kim et al. (2018).

Student Teacher KD AT +KD FT +KD STC +KD
ResNet-20 (7.78) ResNet-56 (6.36) 7.19 7.13 6.89 6.85 7.04 6.53 6.3
ResNet-20 (7.78) WRN-40-1 (6.52) 7.09 7.34 7.00 6.85 6.95 6.30 6.22
VGG-13 (5.99) WRN-46-4 (4.22) 5.71 5.54 5.30 4.84 4.65 4.82 4.63

WRN-16-1 (8.62) WRN-16-2 (5.99) 7.64 8.10 7.52 7.64 7.59 7.15 7.05

Table 2: Top-1 classification error (%) on CIFAR-100 dataset. The first 7 columns are from
manuscript of Kim et al. (2018).

Student Teacher KD AT +KD FT +KD STC +KD
ResNet-20 (31.24) ResNet-110 (26.99) 33.14 31.04 34.78 29.08 32.19 28.75 28.53
ResNet-56 (28.04) ResNet-110 (26.99) 27.96 27.28 28.01 25.62 26.93 25.33 24.92

4.1 CIFAR

CIFAR-10 and CIFAR-100 both are the basic image classification datasets and are used to evaluate
the performance in many knowledge transfer methods (Zagoruyko & Komodakis, 2016a; Kim et al.,
2018; Huang & Wang, 2017). For these two sets, we train the student network for 500 epochs
with a mini-batch size of 128 and weight decay of 10−4. The learning rate starts from 0.1 and
is divided by 10 at 150, 300 and 400 epochs. α is set to 0.3 on CIFAR-10 and 0.5 on CIFAR-
100 empirically. For data augmentation, we following the policy in He et al. (2016). In order to
make the experimental results more convincing, we use the same student and teacher networks as
FT (Kim et al., 2018) did, including ResNet (He et al., 2016), Wide ResNet (WRN) (Zagoruyko &
Komodakis, 2016b) and VGG (Simonyan & Zisserman, 2014). For CIFAR-10, the corresponding
student and teacher networks are 1) ResNet-20 and ResNet-56, which have same width (number of
channels) and different depth (number of layers). 2) ResNet-20 and WRN-40-1, which have different
width and depth. 3) WRN-16-1 and WRN-16-2, which have same depth and different width. 4)
VGG-13 and WRN-46-4, where residual block exists in WRN but not in VGG. For CIFAR-100, the
corresponding student and teacher networks are 1) ResNet-56 and ResNet-110. 2) Resnet-20 and
ResNet-110.

In Table 1 and Table 2, “Student” column shows the type of student network and the number in
parentheses is the performance of student network trained from scratch. “Teacher” column provides
the type of teacher network and the performance of pretrained teacher network by our implementa-
tion. “+KD” column provides the performance of the corresponding method combined with KD.

Performance on CIFAR-10 is shown in Table 1, for all the cases our STC method outperforms other
knowledge transfer methods no matter with or without KD. We can find another result that AT and
our method show good synergy when integrating with KD on CIFAR-10 dataset, while KT has
conflicts with KD in some cases.

As shown in Table 2, on CIFAR-100 dataset, our method achieves the best performance among all
the methods in both cases of integrated with or without KD. Different from CIFAR-10 dataset, after
combining with KD, both AT and FT have an obvious performance degradation on CIFAR-100.
This is because the data of CIFAR-100 are more complex than CIFAR-10 and the teacher network
(ResNet-110) is deeper than that of CIFAR-10. In this case, the knowledge from the teacher sub-
network is vital for the student network.

4.2 IMAGENET

To demonstrate the performance of our method on large dataset, we choose ResNet-18 as student
network and ResNet-34 as teacher network training on ImageNet ILSVRC2012 dataset, which con-
sists of 1.2 million training images and 50 thousand validation images. We optimize the student
network with a mini-batch size of 512 and weight decay of 10−4 on 4 GPUs. The α are set to
0.5 empirically. The learning rate starts from 0.1 and is divided by 10 when the error plateaus. A
224×224 crop is randomly sampled from an image or its horizontal flip for data augmentation. We
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evaluate the performance of KD, AT, FT and proposed method STC. Top-1 and Top-5 error rates as
shown in Table 3.

As can be seen, our STC method consistently outperforms other methods on both Top-1 and Top-
5 error rates on ImageNet dataset. KD method suffers from the gap of depths between teacher
and student network, leads to an even worse performance than training the student from scratch.
KT and AT, again, show the conflicts when combined with KD, since they target at mimicking
the intermediate representation but not the prediction. In contrast, our STC method improve the
performance of student network by 1.36% Top-1 error rate without KD and 1.61% Top-1 error rate
combined with KD, consistently shows good synergy integrated with KD.

Table 3: Top-1 and Top-5 classification error (%) on ImageNet ILSVRC2012 dataset. Pretrained
student and teacher network are from PyTorch (Paszke et al., 2017) model zoo. Other statistics are
gathered from our implementations.

error (%) Student Teacher KD AT +KD FT +KD STC +KD
Top-1 ResNet-18 (30.24) ResNet-34 (26.69) 33.77 29.52 32.80 29.08 30.30 28.88 28.63
Top-5 ResNet-18 (10.92) ResNet-34 (8.58) 12.29 9.95 11.89 9.75 10.47 9.66 9.54

4.3 PASCAL VOC 2007

To verify the generalizability of our method on different tasks, we evaluate the performance of
our method on PASCAL VOC 2007 detection dataset. We use Faster-RCNN (Ren et al., 2015)
pipeline for evaluation as Kim et al. (2018) did, which are VGG-16 backbone for student network
and ResNet-101 backbone for teacher network specifically. We train the student network for 15
epochs with a mini-batch size of 16. The learning rate starts from 0.01 and is divided by 10 at
6 and 11 epochs. The α are set to 0.5 empirically. Since the proposal boxes from RPN module
in teacher and student network are of different spatial positions, we extract the RPN and detector
module of the teacher network as the teacher sub-network and the backbone of student network as
student sub-network, which can be seen in Figure 3.
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Figure 3: STC method on object detection task. We take the backbone of the student network as
student sub-network and RPN, ROI pooling, detector module of teacher network as teacher sub-
network.

Table 4 is the performance of our method compared with FT on PASCAL VOC 2007 dataset. As
can be seen, the mAP of the student network is promoted by 1.6% in our method, while that in FT
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is 0.8%. This result proves that our method can be applied to various tasks and is superior to the
previous methods.

Table 4: Mean average precision (%) on PASCAL VOC 2007 dataset. Both student and teacher
network follow the Faster-RCNN pipeline. The backbone of student and teacher networks are VGG-
16 and ResNet-101 respectively.

Method Student Teacher mAP
FT VGG-16 backbone(69.4) ResNet-101 backbone (75.2) 70.3

STC VGG-16 backbone(69.4) ResNet-101 backbone (75.2) 71.0

4.4 ABLATION STUDY

In this paragraph, we evaluate the performance of different selections of the target in our method on
CIFAR-10 dataset, using the same student and teacher network as Sec. 4.1.

The performance of various target can be seen in Table 5. In Table 5, “output tensor (t)” and “soft
target (t)” denote the output tensor and the soft target are generated from the teacher networks.
“ground-truth (d)” denotes the ground-truth target is from the dataset. For the generating of the soft
target, we follow the fashion in Hinton et al. (2015).

As can be seen, the selection of ground-truth target gets the worst results among all the cases. This
is because the ground-truth target does not contain knowledge in the teacher network, so there is
limited help in improving the performance of the student network.

For the selection of soft target, even though it can get about the same performance, it can only be
employed on classification task, because the soft target is produced by the softmax function with
temperature T. Considering the generalizability of our method on different tasks, we choose the
output tensor from teacher network as the target.

Table 5: Top-1 classification error(%) of different selections of the target on CIFAR-10 dataset.
“output tensor (t)” and “soft target (t)” denote the hard target and the soft target are generated from
the teacher networks. “ground-truth (d)” denotes the ground-truth target is from the dataset.

Student Teacher output tensor (t) soft target (t) ground-truth (d)
ResNet-20 (7.78) ResNet-56 (6.39) 6.53 6.59 6.78
ResNet-20 (7.78) WRN-40-1 (6.84) 6.30 6.55 6.83
VGG-13 (5.99) WRN-46-4 (4.44) 4.82 4.80 5.17

WRN-16-1 (8.62) WRN-16-2 (6.27) 7.15 7.39 8.01

5 CONCLUSION

In this paper, we proposed a novel knowledge transfer method called student-teacher collaboration
(STC). Different from previous methods, our method employs a collaboration network by connect-
ing the front part of the student network and the back part of the teacher network during the training
process. We take the difference between the output predictions from the collaboration network and
the teacher network into account of the loss to train the student network. Through back propagation,
the knowledge of the teacher sub-network can be additionally utilized in a gradient signal manner.
Specifically, the teacher network provides guidance to the student network on which element in the
weights should be paid more attention to during the training process.

Through plentiful experiments, it is proved that our STC method outperforms previous knowledge
transfer methods on various datasets and has good generalizability on different tasks. What’s more,
our method has good synergy integrated with KD to further improve the performance of the student
network, while other methods result in accuracy degradation in some cases.

To the best of our knowledge, the training strategy which injects the feature map from student
network into the corresponding layer of teacher network in our method has never been used in other
knowledge transfer methods. We believe that this novel idea will further promote the development
of knowledge transfer.
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