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ABSTRACT

In this paper, we solve the arms exponential exploding issues in multivariate
Multi-Armed Bandit (Multivariate-MAB) problem when the arm dimension hi-
erarchy is considered. We propose a framework called path planning (TS-PP)
which utilizes decision graph/trees to model arm reward success rate with m-way
dimension interaction, and adopts Thompson sampling (TS) for heuristic search
of arm selection. Naturally, it is quite straightforward to combat the curse of di-
mensionality using a serial processes that operates sequentially by focusing on
one dimension per each process. For our best acknowledge, we are the first to
solve Multivariate-MAB problem using graph path planning strategy and deploy-
ing alike Monte-Carlo tree search ideas. Our proposed method utilizing tree mod-
els has advantages comparing with traditional models such as general linear re-
gression. Simulation studies validate our claim by achieving faster convergence
speed, better efficient optimal arm allocation and lower cumulative regret.

1 INTRODUCTION

Multi-Armed Bandit (MAB) problem, is widely studied in probability theory and reinforcement
learning which dates back to clinical trial studies by Thompson Thompson (1933). Robbins Rob-
bins (1952) formulated the setting in 1952: it includes a learner having K arms (options/choices)
to explore given little knowledge about the properties of each arm. At each step t in [1, T ], the
learner chooses an arm i and receives a reward Xt from the choice under the purpose to minimize
the regret as well as maximize cumulative reward. Binomial bandit is the most common bandit
formats by restricting the rewards being binary (Xt ∈ {0, 1}). The solution of MAB problem in-
volves balancing between acquiring new knowledge (exploration) and utilizing existing knowledge
(exploitation), to make arm selection at each round t based on the state of each arm. The upper
confidence bound (UCB) algorithm was demonstrated as optimal solution to manage regret bound
in the order of O(log(T))Lai & Robbins (1985)Lai et al. (1987)Agrawal (1995)Auer et al. (2002).
In online experiment, Thompson Sampling (TS) algorithm attracts a lot of attention due to its sim-
plicity at implementation and resistance in batch updating. TS algorithm for binomial bandit could
achieve optimal regret bound as well Kaufmann et al. (2012).

Many modern online applications (e.g. UI Layout) have configuration involving multivariate dimen-
sions to be optimized, such as font size, background color, title text, module location, item image
etc., each dimension contains multiple options Hill et al. (2017) Nair et al. (2018). In this paper, we
call it Multivariate-MAB problem. The exploring space faces exponentially exploding number of
possible configurations as dimensions are added into the decision making. TS algorithm is reported
to convergences slowly to the optimal solution Hill et al. (2017) when dealing with Multivariate-
MAB problem. To speed up convergence, one common enhanced TS solution is to model the ex-
pected reward as general linear model (TS-GLM) Chu et al. (2011)Bubeck et al. (2012)Scott (2010)
by probit/logit link function with m-way dimension interaction features. TS-GLM gives up the
ability to fit certain complex interactions, in exchange for focusing on lower-dimensional parame-
ter space and achieves better solution. However, updating derived posterior sampling algorithm in
TS-GLM demands imputing the multivariate coefficients and creates computation burden at each
iteration Scott (2010)Scott (2015)Hill et al. (2017). To release such burden, Daniel et. al. Hill et al.
(2017) proposed Hill-climbing multivariate optimization Casella & Berger (2002) for TS-GLM, and
recognized it obtained faster convergence speed with polynomial exhaustive parameter space.
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Different from TS-GLM, our proposal framework called ”Path Planning” (TS-PP) is quite straight-
forward to combat the curse of dimensionality by a serial processes that operates sequentially and
focuses on one dimension at each component process. Further more, it treats arm reward naturally
with m-way dimension interaction by m-dimensional joint distribution. Our novelty includes: (a)
modeling arm selection procedure under tree structure. (b) efficient arm candidates search strategies
under decision graph/trees. (c) remarkable convergence performance improvement by straightfor-
ward but effective arm space pruning. (d) concise and fast reward function posterior sampling under
beta-binomial even with m-way dimension interaction consideration. Compare to TS-GLM, TS-PP
avoids deriving complex and slow posterior sampling in GLM, while still effectively leveraging the
m-way dimension interactions and achieving even better performance by reducing arm space with
efficient search strategies.

This paper is organized as follows: We first introduce the problem setting and notation; then we
explain our approach in details, and further discuss the differences among several variations; we
also examine the algorithm performance in simulated study and concludes at the end.

2 MULTIVARIATE-MAB PROBLEM FORMULATION

We start with the formulation of contextual multivariate MAB: the sequential selection decision of
layout (e.g. web page) A, which contains a template with D dimensions and each dimension con-
tains N options, under context C (e.g. user preference) for the purpose of minimizing the expected
cumulative regret (R).

For each selected layout A, a reward X shall be received from the environment. Here only binary
reward (X ∈ {0, 1}) is discussed, but our approach can be extended to categorical/numeric rewards
as well. In the layout A template, there exists Ni alternative options for dimension i and fi is de-
noted as the selected option. We further assume Ni = N in our following description for simplicity
purpose. The chosen layoutA can be denoted as [f1, . . . , fD] ∈ {1, . . . , N}D, and it utilizes the no-
tation A[i] referring fi. Context C includes extra environment information that may impact layout’s
expected reward (e.g. device type, user segments, etc.).

At each step t = 1, . . . , T , the bandit algorithm selects arm At from ND search space with the
consideration of the revealed context Ct in order to minimize the cumulative regret over T rounds:

RT =

T∑
t=1

(E(X|A?t, Ct)− E(X|At, Ct))

where A?t stands for the best possible arm at step t. Generally, RT is on the order O(
√
T ) under

linear payoff settings Dani et al. (2008)Chu et al. (2011)Agrawal & Goyal (2013). Although the
optimal regret of non-contextual Multivariate MAB is on the order O(logT ) Lai & Robbins (1985).
In this paper, we focus on categorical-contextual multivariate MAB where C are purely categorical
variables. By solving multivariate MAB independently for each combination of C (assuming not
too many), it is trivial to show that the optimal regret bound of RT is still O(log(T )). Without loss
of generalization, we set context feature as constant and ignore C in the following discussion.

3 RELATED WORK

3.1 PROBABILISTIC MODEL FOR MULTIVARIATE-MAB

To model the multivariate bandit reward of layout At, we denote the features combining A and
interactions within A (possibly non-linearly) as BA ∈ RM with length M . The BA could involve
only upto m-way dimension interactions of A (O(Nm)) instead of capturing all (O(ND)) possible
interactions. The linear model with pairwise interactions is as follows:

B>Aµ = µ0 +

D∑
i=1

µ1
i (A) +

D∑
i=1

D∑
j=i+1

µ2
i,j(A) (1)

where µ are fixed but unknown parameter coefficients. In above function, it contains common bias
term µ0, weights for each dimension of layout µ1

i (A) and 2-way dimension interactions of layout
µ2
i,j(A). The sub-indexes i and j are referring dimension i and j correspondingly.
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Under the GLM setting, g(P (X = 1|BA)) = g(p) = B>Aµ, where p is the success rate of re-
ward X and g is the link function that can either be the inverse of normal CDF Φ−1(p) as a pro-
bit model or the ln( p

1−p ) as a logit model. For given BA, the likelihood of reward X would be

(Φ(B>Aµ))X(1 − Φ(B>Aµ))(1−X) or (exp(−B>Aµ) + 1)
−X

(exp(B>Aµ) + 1)
(−1+X) for probit or

logit model respectively. The posterior sampling distribution of reward is its likelihood integrates
with some fixed prior distribution of weights µ. Updating the posterior, at step t, requires solving
GLM for µ from cumulative historical rewards Ht−1 = [(X1, A1), . . . , (Xt−1, At−1)], which is
disturbing and creates computation burden with time.

Daniel et. al. Hill et al. (2017) proposed MVT2 by assuming probit model with interactions between
dimensions (Equation 1) and employing Hill-climbing multivariate optimization to achieve faster
convergence speed.

3.2 THOMPSON SAMPLING

Thompson sampling (TS) Russo et al. (2018) is widely adapted in solving bandit and reinforcement
learning problems to balance between exploitation and exploration. It utilizes common Bayesian
techniques to form posterior distribution of rewards, hence allocates traffic to each arm proportional
to probability of being best arm under posterior distribution.

Normally we handle binary response as binomial distribution with Beta prior Beta(α0, β0) to form
posterior distribution Beta(αk + α0, βk + β0), where αk and βk are the number of successes and
failures it has been encountered so far at arm k, as well as α0 and β0 are prior parameters and would
been set as 1 for uniform prior. At selection stage in round t, it implicit allocates traffic as follows:
simulates a single draw of θk from posterior (Beta(αk + α0, βk + β0)) for each arm k and the arm
k∗ = arg maxk(θk) out of all arms will be selected. At update stage, it collects reward Xt ∈ {0, 1}
and the reward is used to update hidden state (αk∗ , βk∗) of selected arm.

Practically, to solve Multivariate-MAB problem, algorithm ND−MAB directly adopts TS in selec-
tion out ofND arms, while algorithm D-MABs decomposes Multivariate-MAB intoD (dimensions)
sub-MABs and implements TS in selection out ofN arms for each MAB (dimension) independently.
We would discuss more details of the two algorithms in following sections.

3.3 MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS)Browne et al. (2012)Chaslot et al. (2008a) is a best-first heuristic
search algorithm to quickly locate the best leaf node in a tree structure. In game tree problem, it
achieves great success especially when the number of leafs is large. Generally, each round of MCTS
consists of four steps Chaslot et al. (2008b): selection, expansion, simulation and back-propagation.
Essentially, a simplified case only need selection and back-propagation steps. At selection step of
MCTS, it starts from root of the tree and adopts a selection policy to select successive child nodes
until a leaf node L is reached. The back-propagation step of MCTS involves using the reward
to update information (like hidden states) in the nodes on the path from selected leaf to root. In
artificial intelligence literature, the most successful (MCTS algorithm) UCT utilizes UCB Kocsis &
Szepesvári (2006) as its node selection policy. Applying TS as node selection policy in MCTS (TS-
MCTS) is not well investigated in literature Imagawa & Kaneko (2015) from our best knowledge.

By introducing the hierarchical dimensional structure of bandit arms, we can build tree structure
over bandit arms and deploy MCTS with TS techniques for arm selection. We prefer TS node
selection policy due to its resistance in performance for batch update situation. Inspired by this idea,
we establish TS Path Planning algorithm to solve Multivariate-MAB problem.

4 APPROACH

In this paper, we propose TS path planning algorithm (TS-PP) for Multivariate-MAB problem to
overcome the exponential explosion in arm searching space of ND− MAB algorithm. Stimulated
by MCTS idea, we utilize similar heuristic search strategy to locate best arm under a tree structure.
We call such tree structure as “decision tree” which is constructed purely byD dimensions. Notably
there are D! decision trees constructed in different sequential dimension order over same leaf nodes
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and they assemble a “decision graph”. Under a decision tree/graph, the arm selection procedure is
decomposed into a serial processes of decision making that operates sequentially and focuses on
value selection within one dimension per each process. At each sequential decision process, we
would apply TS as successive child nodes (dimension value) selection policy. The sequential order
of dimensions (“decision path”) is determined by the path planning strategy.

Figure 1 shows an example of decision graph, decision tree as well as decision path. Without loss
of generality, we assume that dimensions are tagged in order of [d1 : dD], which is an arbitrary
order of [1, . . . , D]. Decision tree in Figure 1b compactly represents the joint probabilities of all
arms [fd1:dD

] (leaf nodes) and internal nodes. Here we borrow notations in Kochenderfer (2015).
[d1 : dD] and [fd1:dD

] are compact ways to write [d1, . . . , dD] and [fd1
, . . . , fdD

] respectively. The
sub-index di of fdi

refers that this dimension value f? comes from dimension di. The structure
of decision tree consists of nodes and directed edges. Each level of the decision tree represents a
dimension di and each node at that level corresponds to a value fdi for dimension di. Directed edges
connect parent node to child node where the arrow represents conditional (jointly) relationship.
Associated with each node fdi is a jointly probability P (fdi , prePath(fdi)), where prePath(fdi)
represents all predecessor nodes of fdi in red arrows (Figure 1b). We denote prePath(fdi) as fd1:di−1

in our example, and path(fdi
) as fd1:di

. Based on the chain rule, the likelihood of arm [fd1:dD
] is

P (fd1:dD
) =

∏D
i=1 P (fdi

|fd1:di−1
) ∝ P (fdi

|fd1:di−1
) ∝ P (fd1:di

). In practice, P (fd1:di
) could

be represented by hidden states (α, β) from Beta distribution (binary rewards) for node fdi
(given

its prePath(fdi
)) and node’s states could be updated in back-propagation stage (like in MCTS).

As in TS, the chance of arm fd1:dD
being the best arm depends on P (fd1:dD

), hence it is also
partially related with P (fd1:di

). Instead of sampling directly from posterior distributions of ND

arms, sampling from distribution associated with each node fdi
could also provide guidance on value

selection for dimension di. Figure 1a utilizes decision graph to compactly represent D! decision
trees. Once a decision path (red arrow in Figure 1a) is determined, decision graph is degenerated
to decision tree for detailed view. With such abstraction, we further extended the naive MCTS idea
with several other path planning strategies.

(a) Decision Graph
(b) Decision Tree under dimensions order
[d1, . . . , dD]

Figure 1: Path Planning Overview

4.1 TS-PP TEMPLATE

Algorithm 1 provides TS-PP template for better understanding of our proposal over big picture.
The proposed path planning algorithms utilize different path planning strategies to obtain candidate
arm, by navigating the path from one node to next node originating from start to destination of the
decision graph and applying TS within selected node (dimension) to pick the best value per each
dimension, condition on fixing selected multivariate options in predecessor nodes unchanged. This
conditional posterior sampling distribution as mentioned previously would rely on the hidden states
of dimension values within current node given predecessor nodes dimensional value choices.
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Algorithm 1 TS-PP Template

1: Input D, N, S ∈ R1, α0 = 1, β0 = 1
2: for step t = 1, 2, . . . do
3: for search c = 1→ S do . Candidates Construction Stage
4: Ac ← Path Planning Procedure
5: Sample θc ← Sample(Ac)

6: Select Arm At ← arg maxAc(θc)
7: Update History Rewards Ht ← Ht−1 ∪ (Xt, At)

8: function SAMPLE(Path=[fd1:dL
] )

9: Get α, β from Node(fdL
|fd1:dL−1

)
10: Sample θ ∼ Beta(α+ α0, β + β0)
11: Return θ

We understand that searching candidates in this way might be stacked in sub-optimal arms. To
address this issue, we intentionally repeat our candidate searching for (S) times and re-apply TS
tricks among these S candidates for final arm selection. Once the arm is chosen at step t, we would
back-propagate the collected reward Xt to update the hidden states of nodes (Node(fdL

|fd1:dL−1
))

within all the possible paths from selected leaf to root in decision trees. Here the notation
Node(fdL

|fd1:dL−1
) is used to load the node fdL

’s (with prePath fd1:dL−1
) hidden states in to mem-

ory, which corresponds the joint density P (fd1:dL
). It worth to note that any relative order of [fd1:dL

]
represents the same joint distribution (with same hidden states). In practice, Node(fdL

|fd1:dL−1
)

requires O(1) computation complexity. But it could also be implemented in O(T ) computation
complexity for lazy back-propagation with cache memory saving.

4.2 PATH PLANNING PROCEDURE

We propose four path planning procedures for candidates searching: Full Path Finding (FPF), Par-
tial Path Finding (PPF), Destination Shift (DS) and Boosted Destination Shift (Boosted-DS). To
construct arm-candidate under decision graph (figure 1a), FPF starts from the root and sequentially
optimizes dimensions one-by-one in a completely random order, which utilizes the depth-first search
(DFS) strategy. With sticking with top-down flavor while extending the D-MABs, PPF utilizes the
breath-first search (BFS) strategy with m−dimensional joint distribution independence (explained
later) for all m-sub dimensions out of D. Finally, inspired by hill-climbing Casella & Berger (2002)
Hill et al. (2017), which start from a random initial arm (bottom node in decision graph) and opti-
mize value for one dimension with all other dimension value fixed, such bottom-up flavor DS and the
advanced version Boosted-DS would be discussed. The following explains four methods in details.

Full Path Finding FPF is the direct application of MCTS and describes DFS algorithm in graph
search. Starting from top, FPF randomly picks a permutation of D dimensions denoting as [d1:D]
with equal chance to construct a decision tree, and recursively applies TS policy from nodes on
the path from root to leaf in that decision tree. It follows dimensions order to sequentially op-
timize value f?di

for each dimension di. The upper index ? refers the optimized value for target
dimension di. Since we repeat FPF S times, each iteration c picks different decision tree (per-
mutation of D dimensions) and construct one candidate Ac. The computational complexity for
full path finding is O(SND) with S times searching and space complexity is O(ND). For lazy
back-propagation implementation, the computation and space complexity could be improved to
O(SNDT ) and O(SDT ) separately.

Partial Path Finding In contrast, PPF describes a kind of BFS algorithm. A mth-partial path
finding (PPFm) recursively applies TS policy from nodes on pre-path [d1:(m−1)] up to level m− 1
in decision graph, then it simultaneously visits the remaining (D −m + 1) dimensions (un-visited
nodes) in parallel at levelm and apply TS policy correspondingly. Specifically, the D-MABs method
is equivalent to PPF1, which adopts the dimension independent assumption. The Pseudo code in
Algorithm 2 between line 5 and 10 illustrates a PPF2 algorithm, which assumes pairwise joint
distribution independence. Mathematically, variables A and B are conditionally independent give
C (A ⊥ B|C) if and only if P (A,B|C) = P (A|C)P (B|C), and would call joint distribution of
(A, C) and (B, C) are independent. So pairwise dimensional joint distribution independence means
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Algorithm 2 Path Planning Procedures
1: procedure FULL PATH FINDING
2: for index i = 1→ D in (random order) [d1:D] do
3: f∗

di
← TS(tgtDim=di, prePath=[f∗

d1:di−1
]) and Ac[di] = f∗

di

4: Constructed Candidate Ac

5: procedure PARTIAL PATH FINDING
6: Random Pick Dimension di ∈ [d1:D]
7: f∗

di
← TS(tgtDim= di, prePath= ∅) and Ac[di] = f∗

di
8: for index (j = 1→ D) and (j 6= i) do
9: f∗

dj
← TS(tgtDim=dj , prePath=[f∗

dj
]) and Ac[dj ] = f∗

dj

10: Constructed Candidate Ac

11: procedure DESTINATION SHIFT
12: Initial Ac = random layout A
13: for k = 1→ K do
14: Random Pick Dimension di ∈ [d1:D]
15: f∗

di
← TS(tgtDim=di, prePath=Ac[−di]) and Ac[di] = f∗

di

16: Constructed Candidate Ac

17: procedure BOOSTED DESTINATION SHIFT
18: Initial Ac = random layout A
19: for k = 1→ K do
20: Random Pick Dimension di ∈ [d1:D]
21: f∗

di
← bstTS(tgtDim=di, prePath=Ac[−di]) and Ac[di] = f∗

di

22: Constructed Candidate Ac

23: function TS(tgtDim = dL, prePath=[fd1:dL−1 ] )
24: for f = 1→ N do
25: θf ← Sample(Path=[fd1:dL−1 , f(dL)])

26: Return f∗
dL
← argmaxf (θ

f )

27: function BSTTS(tgtDim = dL, prePath=[fd1:dL−1 ] )
28: for f = 1→ N do
29: µ1

dL
← Sample(Path=[fdL ])

30: for index i = 1→ L− 1 do
31: µ2

di,dL
← Sample(Path= [fdi , fdL ])

32: θf ← µ1
dL

+
∑L−1

i=1 µ
2
di,dL

33: Return f∗
dL
← argmaxf (θ

f )

that d(1:D)−i
⊥ |di for ∀i ∈ (1 : D), where d(1:D)−i

⊥ stands for all dimensions are independent
except for dimension di. Intuitively, PPF2 assumes pairwise interactions between dimensions, as it
draws samples from pairwise dimensional joint distribution. Generally PPFm maps up to (m)-way
interactions in regression model. The optimal computational complexity of PPF2 is O(SND) with
S times searching and space complexity is O(ND2), if we only load all hidden states from top 2
levels of decision graph into memory.

Destination Shift DS randomly picks an initial arm (bottom node in decision graph) and performs
Hill-climbing method cycling through all dimensions for K rounds. At each round k, we randomly
choose an dimension di to optimize and return the best dimension value f∗di

based on posterior
sampling distribution condition on the rest of the dimension values prefixed (Ac[−di]). We then use
f∗di

to generate Ac
(k) from Ac

(k−1) by Ac
(k−1)[di] = f∗di

. The computational complexity is O(SNK)

and space complexity is O(ND).

Boosted Destination Shift Boosted-DS utilizes bstTS instead of TS function for value optimiza-
tion on each target dimension node di. It extends our previous intuition that sampling from m-
dimensional joint distribution is 1-to-1 mapping to m-way interaction weights in regression model.
Pseudo code in Algorithm 2 between line 17 and 22 describes 2nd-Boosted-DS (Boosted-DS2) sam-
pling strategy which follows equation 1 with pairwise (2 − way) interaction assumption. Instead
of single draw from arm P (Ac[−di], fdi

), at round k with target dimension di, it sums samples
drawing from 1-way joint density (P (fi)) and all pairwise (2 − way) joint distributions with fdi

(P (fdi , fd·) for all sub-index · ∈ [1 : D] and · 6= di). Generally, mth-Boosted-DS (Boosted-DSm)
would take the sums of drawing samples upto m−dimensional joint distributions. The computa-
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tional complexity of Boosted-DS2 is O(SKND) and space complexity is O(ND2) if we store all
needed hidden states instead.

In summary, FFP utilizes hidden states from same decision tree at each iteration; PFP and Boosted-
DS only utilizes hidden states on top levels of decision graph; DS utilizes hidden states on leaf
nodes. DS and Boosted-DS randomly pick an layout A to start and keep improving itself dimension
by dimension till converge, while FFP and PFP do not randomly guess other dimension values. All
four algorithm approximate the process of finding best bandit arm by pruning decision search trees
and greedy optimization of sequential process through all dimensions. As the greedy approach sig-
nificantly reduce search space, hence the converge performances are expected to beat the traditional
Thompson sampling method ND−MAB.

5 EMPIRICAL VALIDATION AND ANALYSIS

We illustrate the performance of our algorithm (FPF, PPF, DS and Boosted-DS) on simulated data
set, comparing with MVTHill et al. (2017), ND− MABHill et al. (2017) and D-MABsHill et al.
(2017) base models mentioned before. Specially, we evaluate (a) the average cumulative regret,
(b) the convergence speed and (c) the efficiency of best optimal arm selection among these models
under same simulation environment settings. To access fairly appreciative analysis, the mechanism
and parameters for generating the simulation data set are completely at random. We would also
replicate all algorithms multiple (H) times and take the average to eliminate evaluation bias due to
TS probabilistic randomness. Furthermore, we extensively exam the cumulative regret performance
of proposed algorithms by varying (1) the relative strength of interaction between dimensions and
(2) complexity in arm space (altering N and D) to gain comprehensive understanding of our model.

5.1 SIMULATION SETTINGS

Simulated reward data is generated in Bernoulli simulator with success rate being linear withm-way
dimension interactions:

Φ(θ) =
1

β
[µ0 + α1

D∑
i=1

µ1
i (A) + · · ·+ αm

D∑
d1=1

· · ·
D∑

dm=dm−1+1

µm
d1,...,dm

(A)] (2)

where β is scaling variable and α1, . . . , αm are control parameters. It is trivial to set µ0 = 0.
We intentionally generate weights µ independently from N(0, 1), and set β = m and αm =

m!
D(D−1)...(D−m+1) to control the overall signal to noise ratio as well as related strength among
m-way interactions.

In this paper, we set m = 2 (pairwise dimension interaction), D = 3 and N = 10 in above simu-
lator settings, which yields 1000 possible layouts. To observe the convergence of each model and
eliminate the randomness, our simulation is generated with T = 100, 000 time steps and H = 100
replications. On each simulation replica and at time step t, layout At is chosen by each algorithm,
and a binary reward Xt is sampled from Bernoulli simulator with success rate θ, which is coming
from Equation 2 with pre-generated randomly weights µ. We choose S = 45 and K = 10 as the
same Hill climbing model parameter settings to compare between FPF, PPF2, DS, Boosted-DS2
and MVT2 methods.

5.2 NUMERICAL RESULTS

Figure 2 shows the histograms of arm exploration and selection activities for 7 algorithm as well
as distribution of success rate for arms in our simulator. The horizontal axis is the success rate of
selected arm, while the vertical axis is the probability density in histogram. The success rate density
of Bernoulli simulators is symmetrically distributed, which coincides with our simulation setting.
However, the severity of right skewness reveals the efficiency and momentum algorithms recog-
nizing bad performance arms and quickly adjusting search space to best possible arms. Although
ND-MAB is theoretically guaranteed to archive optimal performance in the long run, the histogram
graph might empirically explains why MVT2, FPF, PPF2 and Boosted-DS2 outperform ND-MAB
in many ways. It is worth to mention that the search behavior (performance) of DS is similar to ND-
MAB, but DS consists simpler computational complexity (O(SNK)). This concludes us that DS
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strategy itself starting path planning from bottom has limited improvement on arm heuristic search
than ND-MAB. The underline reason could be that only small fraction of arms is explored at early
stage and little information is known for each arm, starting from top strategy can resemble dimen-
sional analogues and learn arm’s reward distribution from other arms with similar characteristics. In
turns, it helps to rapidly shift to better performed arms. The proposed Boosted-DS2 overcomes DS’s
issue by using TS samples from top levels. The heavily right skewness in Boosted-DS2 histogram
confirms our suspects.

Figure 2: Histogram of expected reward for historical arm search.
Algorithm FPF PPF2 DS Boosted-DS2 MVT2

Iteration Speed (it/s) 7.04 22.39 2.01 1.38 0.25

Table 1: Algorithm Speed Comparison

To recognize the effectiveness of optimal selection, we leverage the average regret, convergence rate
and best arm rate. We define convergence rate as proportion of trials with the most selected layout
over a moving window with batch size (t1 − t0 =) 1000. We further specify best arm rate as the
proportion of trials with the best possible layout in one batch.

Average Regret =

H∑
h=1

1

H

T∑
t=1

E(XA?)−Xt

T
, Convergence Rate[t0, t1] =

H∑
h=1

1

H

t1∑
t=t0

1Ao(At)

t1 − t0
,

Best ArmRate[t0, t1] =
H∑

h=1

1

H

t1∑
t=t0

1A?(At)

t1 − t0
,

where Ao and A? stand for most often selected layout and best possible layout respectively within
a batch. Ideally, we prefer convergence rate and best arm rate both approaching to 1, which means
the algorithm converges selection to single arm (convergence) as well as best arm. In practice, a
fully converged batch trials almost surely select the same layout (sub-optimal) but not necessarily
the global optimal layout.

Simulated performance results are displayed in Figure 3 where x-axis is the time steps. Path planning
algorithms demonstrate advantages over base models, especially for FPF, PPF2 and Boosted-DS2.
We see that PPF2 and Boosted-DS2 quickly jump to low regret (and high reward) within 5000 steps,
followed by FPF and MVT2 around 10000 steps. Although Boosted-DS2 and MVT2 share fastest
convergence speed followed by PPF2 then FPF, but FPF holds the highest best arm rate. FPF
performance in cumulative regret (and reward) catches up for longer iterations as well. The intuition
behind these is that FPF includes the most complex model space with considering full dimension
interactions, in which it not only look from top level of decision graph to quickly eliminate bad
performed dimension values but also drill down to leaf arms to correct negligence from higher levels.
The exponential space complexity or computational complexity proportional to T is our concern of
FPF compared with PPF2 and Boosted-DS2.

In our experiment, PPF2, Boosted-DS2 and MVT2 assume models with pairwise interactions in
one way or the other, and it happens to be our simulator setting. In practice extra effort is needed for
correct modeling the reward function, which is out of this paper’s scope. PPF2 and Boosted-DS2
both efficiently achieve lower regret comparing with MVT2. However, PPF2 carries better best
arm rate than Boosted-DS2. Our take-away from this is that Hill-climbing strategy contains two
drawbacks. First, it is equivalent to a bottom-up path planning strategy in our framework, which

8



Under review as a conference paper at ICLR 2020

(a) Average Regret. (b) Convergence Rate

(c) Best Arm Rate

Figure 3: Performance on simulated data with D = 3, N = 10, β = 3, m = 2, α1 = 1
3

and α2 = 1
3

.

is not as efficient as top-down strategy as discussed before. Boosted-DS2 combats such weakness
using TS samples on top levels to mimic sample draw from lower level. Second, Hill-climbing starts
with randomly guess other dimension values which easily ends up with good enough arm selection
(low regret and high convergence) but not always the best (low best arm rate). In the meanwhile,
D-MABs struggles in performance as its assumption of independence between dimensions doesn’t
match with our simulator.

Although PPF2, Boosted-DS2 and MVT2 all share simplified model complexity (both in compu-
tation and parameter space), however MVT2 takes longer time period per iteration compared with
the other two. Table 1 shows the iteration speed of these algorithms in our implementation. In
fact, MVT2 is the slowest algorithm as the heavy computation burden when updating regression
coefficients in posterior sampling distribution.

We further extend our simulation results of average cumulative regret by varying α2 to change the
strength of interactions as well as varying N and D to change space complexity in Fig 4. We skip
MVT2 due to the time limitation (MVT2 takes 5 days per experiment). As α2 varies from 1

6 to
1 with step size 1

6 , we see the pattern consists with prior result at Fig 4a. The only exception is
D-MABs gets dominant regret when interaction strength is weak (α2 = 1

6 ), as D-MABs’s no inter-
action assumption close to the truth at that time. D-MABs is equivalent with PPF1. So D-MABs
should perform similarly with PPF2 when interaction strength is weak. Next we analyze the im-
pact on performance with model complexity. We systematically swap N in (2, 4, 6, 8, 10, 12) and
D in (2, 3, 4, 5) at Fig 4b and 4c respectively. We observe that the relative performance still holds:
FPF ' PPF2 > Boosted DS > DS ' ND-MAB > D-MABs. Based on these extensive
experiments, we assert that our proposed method is superior consistently.

In summary, our simulated results suggest that TS-PP has good performance overall for multivariate
bandit problem with large search space when dimension hierarchy structure exists. FPF accom-
plishes the best performance, however PPF2 attracts implementation attention due to its computa-
tion efficiency with comparable performance.
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(a) Performance when α2 varies (b) Performance when D varies

(c) Performance when N varies

Figure 4: Cumulative Averaged Regret over number of iterations when D, N and α2 varies.

6 CONCLUSIONS

In this paper, we presented TS-PP algorithms taking advantage of the hierarchy dimension structure
of bandit arms to quickly find the best arm. It utilizes decision graph/trees to model arm reward
success rate with m-way dimension interaction, and adopts TS with MCTS for heuristic search of
arm selection. Naturally, it is quite straightforward to combat the curse of dimensionality using a
serial processes that operates sequentially by focusing on one dimension per each process. Based on
our simulation results, it achieves superior results in terms of cumulative regret and converge speed
comparing with MVT, ND-MAB and D-MABs on large decision space. We listed 4 variations of
our algorithm, and concluded that FPF and PPF conduct the best performance. We highlight PPF
due to its implementation simplicity but high efficiency in performance.

It is trivial to extend our algorithm to contextual bandit problem with finite categorical context
features. But how to extend our algorithm from discrete to continuous contextual variables worth
us further exploration. We notice some related work of TS-MCTS Bai et al. (2014) dealing with
continuous reward in this area. Finally, fully understanding the mechanism of using heuristic greedy
approach (in our method) to approximate TS from ND arms is still under investigation.
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