Under review as a conference paper at ICLR 2020

FRUSTRATINGLY EASY QUASI-MULTITASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose the technique of quasi-multitask learning (Q-MTL), a simple and easy
to implement modification of standard multitask learning, in which the tasks to be
modeled are identical. We illustrate it through a series of sequence labeling experi-
ments over a diverse set of languages, that applying Q-MTL consistently increases
the generalization ability of the applied models. The proposed architecture can be
regarded as a new regularization technique encouraging the model to develop an
internal representation of the problem at hand that is beneficial to multiple output
units of the classifier at the same time. This property hampers the convergence to
such internal representations which are highly specific and tailored for a classifier
with a particular set of parameters. Our experiments corroborate that by relying
on the proposed algorithm, we can approximate the quality of an ensemble of
classifiers at a fraction of computational resources required. Additionally, our re-
sults suggest that Q-MTL handles the presence of noisy training labels better than
ensembles.

1 INTRODUCTION

Ensemble methods are frequently used in machine learning applications due to their tendency of
increasing model performance. While the increase in the prediction performance is undoubtedly an
important aspect when we train a model, it should not be forgotten that the increased performance
of ensembling comes at the price of training multiple models for solving the same task.

The question that we tackle in this paper is the following: Can we enjoy the benefits of ensemble
learning, while avoiding its overhead for training models from scratch multiple times? This question
is highly relevant these days, since state-of-the-art neural models tend to be extremely resource-
intensive on their own (Strubell et al.| [2019), prohibiting their inclusion in a traditional ensemble
setting.

Our proposed architecture simultaneously offers the benefit of ensemble learning, while avoiding
its drawback of training multiple models. The method introduced here employs a special form of
multitask learning (MTL). (Caruanal (1997) argues in his seminal work that MTL can be a useful
source of introducing inductive bias into machine learning models. Standard MTL have been shown
to be fruitfully applicable in solving a series of NLP tasks: |Collobert & Weston| (2008); |Plank et al.
(2016); |Rei1| (2017); |[Kiperwasser & Ballesteros| (2018)); [Sanh et al.| (2018)), inter alia. We introduce
quasi-multitask learning (Q-MTL), where the goal is to simultaneously learn multiple neural models
that solve identical tasks, while relying on a shared representation layer.

Besides the considerable speedup that comes with the proposed technique, we additionally argue
that by applying multiple output units on top of a shared parameter set is beneficial, as we can
avoid converging to such degenerate internal representations that are highly tailored for a particular
classification model. In that sense, Q-MTL can also be viewed as an implicit regularizer, which
prevents neural networks to develop such an internal representation which is not generic enough to
provide useful input to multiple classification units simultaneously.

Our experiments with Q-MTL illustrate that the presence of multiple classifier layers for the same
task affect each other positively — similar to ensemble learning — without the additional overhead of
actually training multiple models.

Under review as a conference paper at ICLR 2020

i vt alte thnd olwlt alioee Mane ottthe olitn
A A A A A A A A A

A A A A A A
C Biil‘M (BiiTM (BiL;TM) \ C BiiTM (Bi:TM (BiL:M)
(coffee) (coffee) (coffee) (coffee) (coffee) (coffee)

(a) Sequence of STLs (b) Q-MTL (c) Ensemble

Figure 1: A schematic illustration of the different architectures employed in our experiments. Quasi-
Multitask Learning (Q-MTL) averages the predictions of multiple classification units similar to en-
sembling without the computational bottleneck of adjusting the parameters of multiple LSTM cells.

2 APPLIED MODELS

We release all our source code used for our experiments at anonymized. Our models are based
on the sequence classification framework from [Plank et al.| (2016) implemented in DyNet (Neubig
et al.l 2017). Figure [I] provides a visual summary of the different architectures we implemented.
Figure [1b| highlights that Q-MTL has the benefit of training multiple classification models over the
same internal representation, as opposed to traditional ensemble model, which requires the training
of multiple LSTM parameters as well (cf. Figure [Ic).

2.1 BASELINE ARCHITECTURE

Our baseline classifier is a bidirectional LSTM (Hochreiter & Schmidhuber; [1997) incorporating
character and word level embeddings. We first compute the input embedding for the network at
position ¢ as
e =wiHc e,

where & is the concatenation operator, w; denotes the word embedding, ?1 and E refers to the
left-to-right and right-to-left character-based embeddings, respectively. We subsequently feed e;
into aE}—LSTM, which determines a hidden representation h; € R"™ for every token position as
h; = h; @ h;, i.e., the concatenation of the hidden states of the two LSTMs processing the input
from its beginning to the end, and in reverse direction.

The final output of the network for token position ¢ gets computed as
vi = softmax(ReLU(Vh; + byv)W + bw) (D

with V' € R"*™ and by € R denoting the weight matrix and the bias of a perceptron unit,
whereas W € R"*¢ and bw € R€ are the parameters of the neuron performing classification over
the c target classes.

2.2 Q-MTL ARCHITECTURE

The Q-MTL network behaves similarly to the model introduced in Section [2.1] with the notable
exception that it trains k distinct classification models, all of which operate over the same hidden
representation as input obtained from a single bi-LSTM unit.

anonymized

Under review as a conference paper at ICLR 2020

More concretely, we replace the single prediction of the STL model from Eq. [I] by a series of
predictions for Q-MTL according to

yij = softmaz(ReLU(VWh; + b(\j,))W(j) + bg&), ()
with j € {1,...,k}. As argued before, this approach behaves favorably from a computational point

of view, as it relies on a shared representation h; for all the k classification units.

The loss of the network for token position 7 and gold standard class label y; can be conveniently

generalized as
k

lo-mri(i) =Y CE(yi,vij),
j=1
where C'E denotes categorical cross entropy loss and k is the number of (identical) tasks in the
Q-MTL model, with the special case of k£ = 1 resulting in standard single task learning (STL).

Losses from the different outputs can be aggregated efficiently during backpropagation, hence the
shared LSTM cell benefit from multiple error signals without the actual need of going through
multiple individual forward and backward passes.

Q-MTL outputs k predictions by all of its prediction units, however, we can as well derive a com-
bined prediction from the distinct outputs of Q-MTL according to

k
1) .) .
Z Z softmaz(ReLU(VWh; + b(‘J,))W(j) + b&}), (3)

j=1

which essentially is a weighted average according to the predicted probabilities of the distinct mod-
els. As introducing averaging at the model-level would eliminate diversity of the individual classi-
fiers (Lee et al., [2015), this kind of averaging took place in a post-hoc manner, only when making
predictions.

2.3 TRADITIONAL ENSEMBLE MODEL

As an additional model, we also employ a traditional ensemble of k independently trained STL mod-
els. We define the prediction of the ensemble model by averaging the predictions of & independent
models as

k
1 N : , :
£ s0 ftmaz(ReLU(VORY + b yw@ 4 b))y, @)
j=1
The distinctive difference between Eq.[d]and the Q-MTL model formulation in Eq. [3]is that ensem-
bling relies on the hidden representations originating from % independently trained LSTM models

as denoted by the superscripts of the hidden states in hi(J). Such an ensemble necessarily requires
approximately k-times as much computational resources compared to Q-MTL, due to the LSTM
models being trained in total isolation. For the above reason, ensembling is a strictly more expen-
sive form of training a model, for which reason we regard its performance as a glass ceiling for
Q-MTL.

3 EXPERIMENTS

Our model uses character embeddings of 100 dimensions and the word representations get initialized
by the 64-dimensional pre-trained polyglot word embeddings (Al-Rfou et al.}[2013) as suggested by
Plank & Agic|(2018). We use a one-layered bi-LSTM which outputs hidden vectors h; € R?°Y as

a concatenation of hj, h; € R0, Instead of directly applying a fully-connected layer to perform
classification based on h;, we first transform h; by an intermediate perceptron unit with ReLU
activation. The perceptron transforms h; into 20 dimensions, that is, we have V' € R29%200 Qur
motivation with the extra non-linearity introduced by ReLU is to encourage an increased diversity
in the behavior of the different output units.

Upon training the LSTMs, we used the default architectural settings employed by [Plank et al.| (2016),
i.e., we relied on a word dropout rate of 0.25 (Kiperwasser & Goldberg, 2016) and an additive

Under review as a conference paper at ICLR 2020

Table 1: Statistics on training data size.

el en eu fi hr hu id nl ta tr

sentences 1662 2738 5369 14980 6983 910 4477 12269 400 3685
word forms 9035 7436 19222 39717 33382 7767 19223 26665 2637 13781
#total words 42326 50096 72974 127602 154055 20166 97531 186046 6329 38082

Table 2: Results of Q-MTL on the dev sets for varying number of tasks employed (k).
k el en eu fi hr hu id nl ta tr Avg.

1 9561 9499 9449 093.19 96.84 9395 93.05 96.05 8274 93.61 9345
10 9584 9523 94.81 9330 9699 9425 9298 96.53 8448 93.78 93.82
30 9586 9521 9459 93.09 9693 9379 9325 96.27 83.85 9346 93.63

Gaussian noise (with o = 0.2) over the input embeddings. We trained all our models for 20 epochs
using stochastic gradient descent with a batch size of 1. First, we assess the quality of Q-MTL
towards POS tagging, then we evaluate it on named entity recognition as well.

When comparing the performance of different approaches, Q-MTL models are compared against the
average performance of k¥ STL models, where k£ denotes the number of task in the case of Q-MTL.
The k£ STL models are also used to derive a single prediction by the ensemble model.

3.1 POS TAGGING EXPERIMENTS

We set our POS tagging related experiments on 10 treebanks from the Universal Dependencies
dataset v2.2 (Nivre et al.| 2018), namely the Greek-GDT (el), English-LinES (en), Basque-BDT
(eu), Finnish-FTB (fi), Croatian-SET (hr), Hungarian-Szeged (hu), Indonesian-GSD (id), Dutch-
Alpino (nl), Tamil-TTB (ta) and Turkish-IMST (tr) treebanks. These treebanks not only cover a
typologically diverse set of languages, but they also vary substantially in the number of available
training sequences, as illustrated in Table|l| Table|l|also illustrates the typological diversity of the
investigated languages, as the average number of occurrences per distinct word forms vary substan-
tially, i.e., between 2.4 for Tamil and 6.9 for Dutch.

3.1.1 EXPERIMENTS WITH THE NUMBER OF TASKS

We first investigate how does changing the value for k, i.e., the number of simultaneously learned
tasks, affects the performance of Q-MTL. We experimented with k£ € {1, 10, 30}. Based on the re-
sults in Table[2] we set the number of tasks to be employed as k& = 10 for all upcoming experiments.
In order to choose k£ without overfitting to the training data, this experiment was conducted on the
development set.

3.1.2 COMPARING Q-MTL wWITH STL

Following the recommendation in (Dodge et al., [2019), we report learning curves over the develop-
ment set as a function of the number epochs in Figure 2| As a general observation, we can see that
Q-MTL tends to perform consistently better than STL models right from the beginning of training.

Directly comparing the classifiers One benefit of Q-MTL is that it learns k different classifica-
tion models during training with only a marginal computational overhead compared to training a
STL baseline, since all the tasks share a common internal representation. As discussed earlier, we
can combine the predictions from the k classifiers from Q-MTL according to Eq.[2] It is also pos-
sible, however, to use the k distinct predictions of Q-MTL. In what follows next, we compare the
performance of the £k STL models we train to the £ classifiers that are incorporated within a Q-MTL
model.

Upon comparing the performance of a Q-MTL classifier with a STL model, we made it sure that
the overlapping parameters (matrices V' and W) were initialized with the same values and that they
receive the training instances in the exact same order. This way the performance achieved by the i'"

Under review as a conference paper at ICLR 2020

— STL — Q-MTL
el en eu fi hr
—_ 97
X 95.0 94
§92.5 o4 92 90 96
5
Y 90.0 90
% 92 85 95
88
hu id nl ta tr
95
X 93 96 80
>‘90 90
& 70
585 9 94
S 85
£80 60
10 20 10 20 10 20 10 20 10 20

Number of iterations Number of iterations Number of iterations Number of iterations Number of iterations

Figure 2: The accuracy of the different model types over the training epochs on the dev set.

output of Q-MTL is directly comparable with the i*"* STL baseline. Comparison of the results of the
individual outputs of Q-MTL and their corresponding STL counterpart are included in Figure 3]

dataset e test L]

96.0 97.4

97.2

95.5
97.0

STL accuracy (%)
©o
o

95.0 96.8

93.0 935 94.0

©
»
wn

93.50 94.5

©
»
o

93.25 94.0

©
w
wn

93.00

STL accuracy (%)

©
w
=}

92.75

©
N
wn

93.0
93 94 93.0 93.5 95.5 96.0 96.5 82.5 85.0 87.5 93 94
Q-MTL accuracy (%) Q-MTL accuracy (%) Q-MTL accuracy (%) Q-MTL accuracy (%) Q-MTL accuracy (%)

Figure 3: Scatter plot comparing the accuracy of the individual classifiers from Q-MTL (k = 10)
and their corresponding STL counterpart. Each model that is above the diagonal line performs better
after training in the Q-MTL setting.

Training Q-MTL models with k tasks simultaneously is not only faster than training & distinct STL
models separately, but the individual Q-MTL models typically outperform their baseline counter-
parts evaluated against both the development and the test data.

The regularizing effect of Q-MTL We have argued earlier that Q-MTL has an implicit regular-
izing effect. Among most recent techniques, such as dropout (Srivastava et al., 2014)), weight decay
(Krogh & Hertzl [1992)) is one of the most typical form of regularization for fostering the gener-
alization capability of the learned models. When employing weight decay, we add an extra term
penalizing the magnitude of the values learned by our model, which results in an overall shrinkage
in the values of the model parameters.

Figure []illustrates that the effects of employing Q-MTL is similar to applying weight decay, as the
Frobenius norm of the parameter matrices from the classifiers of Q-MTL are substantially smaller
than those of the STL classifiers. This observation holds for both the of parameter sets V' and W.
Recall that the initial values for these matrices were identical for both Q-MTL and STL.

Under review as a conference paper at ICLR 2020

LAY s W

N
o

Frobenius norm
=
o

0
hu ta
£
220
%]
=
“C’”III III ||I i
Q
2 | | 0 |
w 0
STL Q-MTL STL Q-MTL STL Q-MTL STL Q-MTL STL Q-MTL

Figure 4: The average Frobenius norms of the learned parameter matrices V' and W for the different
approaches and treebanks.

3.1.3 COMPARISON TO AN ENSEMBLE OF CLASSIFIERS

We have provided a detailed comparison of the STL and Q-MTL models so far. We next extend their
comparative evaluation with the ensemble model. Upon providing a comparison for the different
approaches, we also assess their sensitivity towards the presence of noisily labeled tokens during
training. To do so, we conducted multiple experiments for each language, for which we randomly
replaced the true class label of a token by some predefined probability p € {0,0.1,0.2,0.3}. During
the random replacement of the class labels, we ensured that the same tokens got randomly relabeled
by the same label for the different approaches.

Figure [5] contains the performance of the three different models in conjunction with the different
amounts of noisy labels introduced to the training set. We can observe from Figure [5] that Q-MTL
outperforms STL for all the languages irrespective to the amount of noisy tokens being present en-
countered during training. Figure |3|further reveals that the performances of the ensemble models —
which are based on the predictions of the STL classifiers — are dominantly better than the average
performance of the individual STL models. When mislabeled tokens are not present in the training
data at all, ensemble also has a slight advantage over Q-MLT, however, this advantage of the ensem-
bling model gradually fades out as the proportion of noisy training labels increases. Indeed, for the
case when 30% of the training labels are randomly replaced, the performance of Q-MTL reaches
that of the ensemble model (cf. the rightmost subplot in Figure[5). The Q-MTL approach has the
additional benefit over the ensemble model that it requires a fraction of computational resources as
we will demonstrate it in Section[3.2]

— STL — Q-MTL ensemble

el en eu i hr Average
—_ 97.75
9 96.5 o5 95.00
>97.0 = | N 97.50
] 96.0 A\ \ 94.75
3 94 97.25
© 96.5 95.5 94.50
<

hu 0400 id o nl tr 94.25
$95.0 .
8 > N % 95 94.00
> 93.75 ——
g 94> 93.75
5 95 e 94 :
2 93.50
£ 94.0 93.50

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Label noise (%) Label noise (%) Label noise (%) Label noise (%) Label noise (%) Label noise (%)

Figure 5: Model performances obtained by the different approaches when a varying amount of
noisy training samples are introduced during training. The rightmost plot (titled Average) contains
the averaged accuracies over the 10 treebanks.

@)}

Under review as a conference paper at ICLR 2020

k=10 k=30
V102
5 10
o
<
. method
g10 . STL
s
kel s Q-MTL
Q
7. I Ensemble
(_%10 “ “ || “ “ “ || “
w
k I
el eneu fi hrhuid nl ta tr el eneu fi hrhuid nl ta tr

Figure 6: Training times of the different approaches for the different languages.

As a final interesting note, the Q-MTL has an improved performance for Indonesian as the amount
of noisy training labels increases. A possible explanation for this is that corrupting the class labels
of the training data can be viewed as an alternative form of label smoothing (Szegedy et al.,|2016),
which is known to increase the generalization ability of neural models.

3.2 COMPARISON OF TRAINING TIMES

One of the main benefits of Q-MTL resides in its training efficiency compared to traditional en-
semble models as also demonstrated by Figure[6] which includes the training times for the different
approaches. We plot the training times on the logarithmic scale for better readability for both £ = 10
and k = 30. We can see that the training times for STL and Q-MTL practically concur, whereas the
overall costs of ensembling exceeds the training time of STL and Q-MTL models by a factor of k.

The training times reported in Figure[6 were obtained without GPU acceleration — on an Intel Xeon
E7-4820 CPU —in order to simulate a setting with limited computational resources. We also repeated
training on a TITAN Xp GPU. The GPU-based training was 3 to 10 times quicker depending on the
languages, but the relative performance between the different approaches remained the same, i.e.,
STL and Q-MTL training times did not differ substantially, whereas the ensemble model took k-
times as much time to be created.

3.3 EVALUATION ON NAMED ENTITY RECOGNITION

We also conducted experiments on the CoNLL 2002/2003 shared task data on named entity recogni-
tion (NER) in English, Spanish and Dutch (Tjong Kim Sang}, 2002} Tjong Kim Sang & De Meulder,
2003). For these experiments, we report performance in terms of overall F1 scores calculated by
the official scorer of the shared task. We trained models with £ = 10 and compared the average
performance of the individual STL models to the performance of the Q-MTL and ensemble models.

Table [#a] shows the results for NER over the different languages, corroborating our previous obser-
vation that Q-MTL is capable of closing the gap between the performance of STL models and the
much more resource-intensive ensemble model derived from % independent models.

In our POS tagging experiment, we trained models on treebanks of radically differing sizes (cf. Ta-
ble [T), whereas during our NER experiments, we had access to training data sets of comparable
sizes (ranging between 218K and 273K tokens). In order to simulate the effects of having access
to limited training data on NER as well, we artificially relied on only 10% of the available training
sets.

These results for the limited training data setting are included in Table b} from which we can
see that Q-MTL manages to preserve a larger fraction of its original performance, i.e., 87.5% on
average as opposed to the ensemble and STL models, which preserved only 86.7% and 86.4% of
their original F-scores, respectively.

Under review as a conference paper at ICLR 2020

Table 3: F1 performance scores for the NER experiments.

Avg. STL Q-MTL Ensemble Avg. STL Q-MTL Ensemble
en 86.68 86.88 87.86 en 77.54 80.24 78.52
es 82.28 82.35 83.76 es 70.71 71.57 72.56
nl 81.84 83.15 83.61 nl 68.47 69.16 70.33
Avg. 83.60 84.13 85.07 Avg. 72.42 73.66 73.80
(a) 100% training data used (b) 10% training data used

4 RELATED WORK

Caruanal (1997) showed that neural networks can be trained for multiple tasks, leveraging cross
domain information. More recently, |Segaard & Goldberg| (2016)); Sanh et al.| (2018) argues that
solving low-level NLP tasks can improve the performance of high level tasks. Additionally, Plank
et al.[(2016)); Bingel & Sggaard|(2017) show that better performing models can be trained by intro-
ducing multiple auxiliary tasks. [Rei| (2017) proposes an auxiliary task for NLP sequence labeling
tasks, where the auxiliary tasks is to predict the previous and next word in the sequence. Our results
complement these findings by showing that better generalization can also be achieved if we learn
multiple models for the same task concurrently.

Ruder & Plank| (2018) has shown that self-learning and tri-training can be adapted to deep neural
nets in the semi-supervised regime. Their tri-training architecture resembles our approach in that
they were utilizing multiple classifier units that were built on top of a common representation layer
for providing labels to previously unlabeled data.

Cross-view training (CVT) (Clark et al., | 2018) resembles Q-MTL in that it also employs a shared bi-
LSTM layer used by multiple output layers. The main difference between CVT and Q-MTL is that
we are utilizing an bi-LSTM to solve the same task multiple times in a supervised setting, whereas
Clark et al.|(2018) used it to solve different tasks in a semi-supervised scenario.

A series of studies have made use of ensemble learning in the context of deep learning (Hansen
& Salamon, [1990; Krogh & Vedelsbyl [1995; |Lee et al., 2015; Huang et al., [2017)). Our proposed
model is also related to the line of research on mixture of experts proposed by Jacobs et al.| (1991),
which has already been applied successfully in NLP before (Le et al.l |2016). The main difference
in our proposed architecture is that the internal LSTM representation that we train are shared across
the classifiers, hence a more efficient training could be achieved as opposed to training multiple
independent expert models as it was done in (Shazeer et al., 2017).

Model distillation (Hinton et al.l [2015) is an alternative approach for making computationally de-
manding models more effective during inference, however, the approach still requires training of a
“cumbersome” model first.

5 CONCLUSIONS

We proposed quasi-multitask learning (Q-MTL), which can be viewed as an efficiently trainable
alternative of traditional ensembles. We additionally demonstrated that it acts as an implicit form of
regularization as well. In our experiments, Q-MTL consistently outperformed the single task learn-
ing (STL) baseline for both POS tagging and NER. We have also illustrated that Q-MTL generalizes
better on smaller and noisy datasets compared to both STL and ensemble models.

The computational overhead for the additional classification units in Q-MTL is infinitesimal due
to the effective aggregation of the losses and the shared recurrent unit between the identical tasks.
Although we evaluated our approach over sequence classification tasks, the general idea can be
applied for other network architectures and beyond NLP applications as well.

Under review as a conference paper at ICLR 2020

REFERENCES

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Polyglot: Distributed word representations
for multilingual nlp. In Proceedings of the Seventeenth Conference on Computational Natu-
ral Language Learning, pp. 183—-192. Association for Computational Linguistics, 2013. URL
http://aclweb.org/anthology/W13-3520.

Joachim Bingel and Anders Sggaard. Identifying beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers, pp. 164—169. Association for
Computational Linguistics, 2017. URL http://aclweb.org/anthology/E17-2026.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41-75, Jul 1997. ISSN 1573-0565. doi:
10.1023/A:1007379606734. URL https://doi.org/10.1023/A:1007379606734.

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc Le. Semi-supervised se-
quence modeling with cross-view training. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 1914-1925. Association for Computational Lin-
guistics, 2018. URL http://aclweb.org/anthology/D18-1217.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference
on Machine Learning, ICML °08, pp. 160-167, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-205-4. doi: 10.1145/1390156.1390177. URL http://doi.acm.org/10.1145/
1390156.1390177.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show your
work: Improved reporting of experimental results. CoRR, abs/1909.03004, 2019. URL http:
//arxiv.orqg/abs/1909.03004.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (10):993-1001, 1990.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9:1735—
80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get M for free. CoRR, abs/1704.00109, 2017. URL http://
arxiv.orqg/abs/1704.001009.

Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Comput., 3(1):79-87, March 1991. ISSN 0899-7667. doi: 10.1162/neco.
1991.3.1.79. URL http://dx.doi.org/10.1162/neco.1991.3.1.79.

Eliyahu Kiperwasser and Miguel Ballesteros. Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computational Linguistics, 6:225-240, 2018. URL
http://aclweb.org/anthology/Q18-1017.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirec-
tional Istm feature representations. Transactions of the Association for Computational Linguistics,
4:313-327,2016. URL http://aclweb.org/anthology/Q16-1023.

Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann (eds.), Advances in Neural Information Processing Sys-
tems 4, pp. 950-957. Morgan-Kaufmann, 1992. URL http://papers.nips.cc/paper/
563-a-simple-weight-decay—-can-improve—generalization.pdf.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
In Advances in neural information processing systems, pp. 231-238, 1995.

http://aclweb.org/anthology/W13-3520
http://aclweb.org/anthology/E17-2026
https://doi.org/10.1023/A:1007379606734
http://aclweb.org/anthology/D18-1217
http://doi.acm.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177
http://arxiv.org/abs/1909.03004
http://arxiv.org/abs/1909.03004
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.00109
http://arxiv.org/abs/1704.00109
http://dx.doi.org/10.1162/neco.1991.3.1.79
http://aclweb.org/anthology/Q18-1017
http://aclweb.org/anthology/Q16-1023
http://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf
http://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf

Under review as a conference paper at ICLR 2020

Phong Le, Marc Dymetman, and Jean-Michel Renders. Lstm-based mixture-of-experts for
knowledge-aware dialogues. In Proceedings of the 1st Workshop on Representation Learning for
NLP, pp. 94-99. Association for Computational Linguistics, 2016. doi: 10.18653/v1/W16-1611.
URLhttp://aclweb.org/anthology/Wl6-1611.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv Batra. Why M
heads are better than one: Training a diverse ensemble of deep networks. CoRR, abs/1511.06314,
2015. URL http://arxiv.org/abs/1511.06314.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anasta-
sopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav
Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980, 2017.

Joakim Nivre, Mitchell Abrams, and et al. Universal dependencies 2.2, 2018. URL |http://hdl.
handle.net/11234/1-2837. LINDAT/CLARIN digital library at the Institute of Formal
and Applied Linguistics (UFAL), Faculty of Mathematics and Physics, Charles University.

Barbara Plank and Zeljko Agi¢. Distant supervision from disparate sources for low-resource part-
of-speech tagging. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 614-620. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/D18-1061.

Barbara Plank, Anders Sggaard, and Yoav Goldberg. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxiliary loss. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
412-418. Association for Computational Linguistics, 2016. doi: 10.18653/v1/P16-2067. URL
http://aclweb.org/anthology/P16-2067.

Marek Rei. Semi-supervised multitask learning for sequence labeling. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2121-2130. Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1194. URL
http://aclweb.org/anthology/P17-1194.

Sebastian Ruder and Barbara Plank. Strong baselines for neural semi-supervised learning under
domain shift. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1044—1054. Association for Computational Linguistics,
2018. URLhttp://aclweb.org/anthology/P18-1096.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. A hierarchical multi-task approach for learning
embeddings from semantic tasks, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
2017. URL https://openreview.net/pdf?id=BlckMDglg.

Anders Sggaard and Yoav Goldberg. Deep multi-task learning with low level tasks supervised at
lower layers. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 231-235. Association for Computational Linguistics,
2016. doi: 10.18653/v1/P16-2038. URL http://aclweb.org/anthology/P16-2038.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929-1958, 2014. URL http://Jjmlr.org/papers/v15/
srivastavald4a.htmll

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 36453650, Florence, Italy, July 2019. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P19-1355|

10

http://aclweb.org/anthology/W16-1611
http://arxiv.org/abs/1511.06314
http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
http://aclweb.org/anthology/D18-1061
http://aclweb.org/anthology/P16-2067
http://aclweb.org/anthology/P17-1194
http://aclweb.org/anthology/P18-1096
https://openreview.net/pdf?id=B1ckMDqlg
http://aclweb.org/anthology/P16-2038
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.aclweb.org/anthology/P19-1355

Under review as a conference paper at ICLR 2020

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, pp. 2818-2826. IEEE Computer
Society, 2016.

Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of CoNLL-2002, pp. 155—158. Taipei, Taiwan, 2002.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL °03, pp. 142-147,
Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. doi: 10.3115/1119176.
1119195. URL http://dx.doi.orqg/10.3115/1119176.1119195.

11

http://dx.doi.org/10.3115/1119176.1119195

	Introduction
	Applied models
	Baseline architecture
	Q-MTL architecture
	Traditional ensemble model

	Experiments
	POS tagging experiments
	Experiments with the number of tasks
	Comparing Q-MTL with STL
	Comparison to an ensemble of classifiers

	Comparison of training times
	Evaluation on Named Entity Recognition

	Related work
	Conclusions

