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ABSTRACT

Adversarial training has been demonstrated as one of the most effective methods
for training robust models so as to defend against adversarial examples. However,
adversarially trained models often lack adversarially robust generalization on un-
seen testing data. Recent works show that adversarially trained models are more
biased towards global structure features. Instead, in this work, we would like to
investigate the relationship between the generalization of adversarial training and
the robust local features, as the robust local features generalize well for unseen
shape variation. To learn the robust local features, we develop a Random Block
Shuffle (RBS) transformation to break up the global structure features on nor-
mal adversarial examples. We continue to propose a new approach called Robust
Local Features for Adversarial Training (RLFAT), which first learns the robust
local features by adversarial training on the RBS-transformed adversarial exam-
ples, and then transfers the robust local features into the training of normal adver-
sarial examples. Finally, we implement RLFAT in two currently state-of-the-art
adversarial training frameworks. Extensive experiments on STL-10, CIFAR-10,
CIFAR-100 datasets show that RLFAT significantly improves both the adversari-
ally robust generalization and the standard generalization of adversarial training.
Additionally, we demonstrate that our models capture more local features of the
object on the images, aligning better with human perception.

1 INTRODUCTION

Deep learning has achieved a remarkable performance breakthrough on various challenging bench-
marks in machine learning fields, such as image classification (Krizhevsky et al., 2012) and speech
recognition (Hinton et al., 2012). However, recent studies (Szegedy et al., 2014; Goodfellow et al.,
2015) have revealed that deep neural network models are strikingly susceptible to adversarial ex-
amples, in which small perturbations around the input are sufficient to mislead the predictions of the
target model. Moreover, such perturbations are almost imperceptible to humans and often transfer
across diverse models to achieve black-box attacks (Papernot et al., 2017; Liu et al., 2017).

Though the emergence of adversarial examples has received significant attention and led to various
defend approaches for developing robust models (Madry et al., 2018; Dhillon et al., 2018; Wang
& Yu, 2019; Song et al., 2019; Zhang et al., 2019a), many proposed defense methods provide few
benefits for the true robustness but mask the gradients on which most attacks rely (Carlini & Wag-
ner, 2017a; Athalye et al., 2018; Uesato et al., 2018; Li et al., 2019). Currently, one of the best
techniques to defend against adversarial attacks (Athalye et al., 2018; Li et al., 2019) is adversarial
training (Madry et al., 2018; Zhang et al., 2019a), which improves the adversarial robustness by
injecting adversarial examples into the training data.

Among substantial works of adversarial training, there still remains a big robust generalization gap
between the training data and the testing data (Schmidt et al., 2018; Zhang et al., 2019b; Ding et al.,
2019). The robustness of adversarial training fails to generalize on unseen testing data. Recent
works (Geirhos et al., 2019; Zhang & Zhu, 2019) further show that adversarially trained models
capture more on global structure features but normally trained models are more biased towards lo-
cal features. Intuitively, global structure features tend to be robust against adversarial perturbations
but hard to generalize for unseen shape variations, instead, local features generalize well for un-
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seen shape variations but are hard to generalize on adversarial perturbation. It naturally raises an
intriguing question for adversarial training:

For adversarial training, is it possible to learn the robust local features , which have better adver-
sarially robust generalization and better standard generalization?

To address this question, we investigate the relationship between the generalization of adversarial
training and the robust local features, and advocate for learning robust local features for adversarial
training. Our main contributions are as follows:

• To our knowledge, this is the first work that sheds light on the relationship between adversarial
training and robust local features. Specifically, we develop a Random Block Shuffle (RBS)
transformation to study such relationship by breaking up the global structure features on normal
adversarial examples.

• We propose a novel method called Robust Local Features for Adversarial Training (RLFAT),
which first learns the robust local features, and then transfers the information of robust local
features into the training on normal adversarial examples.

• We implement RLFAT in two currently state-of-the-art adversarial training frameworks, PGD
Adversarial Training (PGDAT) (Madry et al., 2018) and TRADES (Zhang et al., 2019a). Ex-
periments show consistent and substantial improvements for both adversarial robustness and
standard accuracy on several standard datasets. Moreover, the salience maps of our models on
images tend to align better with human perception.

2 PRELIMINARIES

In this section, we introduce some notations and provide a brief description on current advanced
methods for adversarial attacks and adversarial training.

2.1 NOTATION

Let F (x) be a probabilistic classifier based on a neural network with the logits function f(x) and the
probability distribution pF (·|x). Let L(F ;x, y) be the cross entropy loss for image classification.
The goal of the adversaries is to find an adversarial example x′ ∈ Bpε (x) := {x′ : ‖x′ − x‖p ≤ ε}
in the `p norm bounded perturbations, where ε denotes the magnitude of the perturbations. In this
paper, we focus on p =∞ to align with previous works.

2.2 ADVERSARIAL ATTACKS

Projected Gradient Descent. Projected Gradient Descent (PGD) (Madry et al., 2018) is a stronger
iterative variant of Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), which iteratively
solves the optimization problem maxx′:‖x′−x‖∞<ε L (F ;x′, y) with a step size α:

x0 ∼ U (B∞ε (x)) ,

xt+1 = ΠB∞
ε (x)

(
xt − α sign (∇xL(F ;x, y)|xt)

)
,

(1)

where U denotes the uniform distribution, and ΠB∞
ε (x) indicates the projection of the set B∞ε (x).

Carlini-Wagner attack. Carlini-Wagner attack (CW) (2017b) is a sophisticated method to directly
solve for the adversarial example xadv by using an auxiliary variable w:

xadv = 0.5 · (tanh(w) + 1) . (2)
The objective function to optimize the auxiliary variable w is defined as:

min
w

∥∥xadv − x∥∥+ c · F
(
xadv

)
, (3)

where F(xadv) = max
(
fytrue(xadv)−max

{
fi(x

adv) : i 6= ytrue
}
,−k

)
. The constant k controls

the confidence gap between the adversarial class and the true class.

Nattack. N attack (Li et al., 2019) is a derivative-free black-box adversarial attack and it breaks
many of the defense methods based on gradient masking. The basic idea is to learn a probability
density distribution over a small region centered around the clean input, such that a sample drawn
from this distribution is likely to be an adversarial example.
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2.3 ADVERSARIAL TRAINING

Despite a wide range of defense methods, Athalye et al. (2018) and Li et al. (2019) have broken
most previous defense methods (Dhillon et al., 2018; Buckman et al., 2018; Wang & Yu, 2019;
Zhang et al., 2019a), and revealed that adversarial training remains one of the best defense method.
The basic idea of adversarial training is to solve the min-max optimization problem, as shown in
Eq. (4):

min
F

max
x′:‖x′−x‖∞<ε

L (F ;x′, y) . (4)

Here we introduce two currently state-of-the-art adversarial training frameworks.

PGD adversarial training. PGD Adversarial Training (PGDAT) (Madry et al., 2018) leverage the
PGD attack to generate adversarial examples, and train only with the adversarial examples. The
objective function is formalized as follows:

LPGD(F ;x, y) = L(F ;x′PGD, y) , (5)
where x′PGD is obtained via the PGD attack on the cross entropy L(F ;x, y).

TRADES. Zhang et al. (2019a) propose TRADES to specifically maximize the trade-off of adver-
sarial training between adversarial robustness and standard accuracy by optimizing the following
regularized surrogate loss:

LTRADES(F ;x, y) = L(F ;x, y) + λDKL ( pF (·|x) ‖ pF (·|x′PGD[x]) ) , (6)

where x′PGD[x] is obtained via the PGD attack on the KL-divergence DKL ( pF (·|x) ‖ pF (·|x′) ),
and λ is a hyper-parameter to control the trade-off between adversarial robustness and standard
accuracy.

3 ROBUST LOCAL FEATURES FOR ADVERSARIAL TRAINING

Different from adversarially trained models, normally trained models are more biased towards the
local features but vulnerable to adversarial examples (Geirhos et al., 2019). It indicates that in
contrast to global structural features, local features seems be more well-generalized but less robust
against adversarial perturbation. Thus, in this work, we focus on the learning of robust local features
on adversarial training, and propose a novel form of adversarial training called RLFAT that learns
the robust local features and transfers the robust local features into the training of normal adversarial
examples. In this way, our adversarially trained models not only yield strong robustness against
adversarial examples but also show great generalization on unseen testing data.

3.1 ROBUST LOCAL FEATURE LEARNING

It’s known that adversarial training tends to capture global structure features so as to increase invari-
ance against adversarial perturbations (Zhang & Zhu, 2019; Ilyas et al., 2019). To advocate for the
learning of robust local features on adversarial training, we propose a simple and straight-forward
image transformation called Random Block Shuffle (RBS) to break up the global structure features
of the images, at the same time retaining the local features. Specifically, for an input image, we ran-
domly split the target image into k blocks horizontally and randomly shuffle the blocks, and then we
perform the same split-shuffle operation vertically on the resulting image. As illustrated in Figure 1,
RBS transformation can destroy the global structure features of the images to some extent and retain
the local features of the images.

Then we apply the RBS transformation on adversarial training. Different from normal adversarial
training, we use the RBS-transformed adversarial examples rather than normal adversarial examples
as the adversarial information to encourage the models to learn robust local features. Note that we
only use the RBS transformation as a tool to learn the robust local features during adversarial training
and will not use RBS transformation in the inference phase. we refer to the form of adversarial
training as RBS Adversarial Training (RBSAT).

We consider two currently state-of-the-art adversarial training frameworks, PGD Adversarial Train-
ing (PGDAT) (Madry et al., 2018) and TRADES (Zhang et al., 2019a), to demonstrate the effective-
ness of the robust local features.
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Figure 1: Illustration of the RBS transformation for k = 3. For a better understanding on the RBS
transformation, we paint the split image blocks with different colors.

We use the following loss function as the alternative to the objective function of PGDAT:

LRLFL
PGDAT(F ;x, y) = L(F ; RBS(x′PGD), y) , (7)

where RBS(·) denotes the RBS transformation; x′PGD is obtained via the PGD attack on the cross
entropy L(F ;x, y).

Similarly, we use the following loss function as the alternative to the objective function of TRADES:

LRLFL
TRADES(F ;x, y) = L(F ;x, y) + λDKL [ pF (·|x) ‖ pF (·|RBS (x′PGD[x])) ] , (8)

where x′PGD[x] is obtained via the PGD attack on the KL-divergence DKL ( pF (·|x) ‖ pF (·|x′) ).

3.2 ROBUST LOCAL FEATURE TRANSFER

To transfer the knowledge of the robust local features learned by RBSAT to the normal adversarial
examples, we present a knowledge transfer scheme, called Robust Local Feature Transfer (RLFT).
The goal of RLFT is to learn the representation that minimizes the feature shift between the normal
adversarial examples and the RBS-transformed adversarial examples.

In particular, we apply RLFT on the logit layer for high-level feature alignment. Formally, the ob-
jective functions of robust local feature transfer for PGDAT and TRADES are formalized as follows,
respectively:

LRLFT
PGDAT(F ;x, y) = ‖f(RBS(x′PGD))− f(x′PGD)‖22 ,

LRLFT
TRADES(F ;x, y) = ‖f(RBS(x′PGD[x]))− f(x′PGD[x])‖22 ,

(9)

where f(·) denotes the mapping of the logit layer, and ‖·‖22 denotes the squared Euclidean norm.

3.3 OVERALL OBJECTIVE FUNCTION

Since the quality of robust local feature transfer depends on the quality of the robust local features
learned by RBSAT, we integrate RBSAT and RLFT into an end-to-end training framework, which
we refer to as RLFAT (Robust Local Features for Adversarial Training). The general training process
of RLFAT is summarized in Algorithm 1.

We implement RLFAT in two currently state-of-the-art adversarial training frameworks, PGDAT
and TRADES, and have new objective functions to learn the robust and well-generalized feature
representations, which we call RLFATP and RLFATT:

LRLFATP
(F ;x, y) = LRLFL

PGDAT(F ;x, y) + ηLRLFT
PGDAT(F ;x, y),

LRLFATT
(F ;x, y) = LRLFL

TRADES(F ;x, y) + ηLRLFT
TRADES(F ;x, y),

(10)

where η is a hyper-parameter to balance the two terms.
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Algorithm 1 Robust Local Features for Adversarial Training (RLFAT).

1: Randomly initialize network F (x);
2: Number of iterations t← 0;
3: repeat
4: t← t+ 1;
5: Read a minibatch of data {x1, ..., xm} from the training set;
6: Generate the normal adversarial examples {xadv1 , ..., xadvm }
7: Obtain the RBS-transformed adversarial examples {RBS(xadv1 ), ...,RBS(xadvm )} ;
8: Calculate the overall loss following Eq. (10).
9: Update the parameters of network F through back propagation;

10: until the training converges.

4 EXPERIMENTS

In this section, to validate the effectiveness of RLFAT, we empirically evaluate our two implementa-
tions, denoted as RLFATP and RLFATT, and show that our models make significant improvement
on both robust accuracy and standard accuracy on standard benchmark datasets, which provides
strong support for our main hypothesis. Codes are available online1.

4.1 EXPERIMENTAL SETUP

Baselines. Since most previous defense methods provide few benefit in true adversarially robust-
ness (Athalye et al., 2018; Li et al., 2019), we compare the proposed methods with state-of-the-
art adversarial training defenses, PGD Adversarial Training (PGDAT) (Madry et al., 2018) and
TRADES (Zhang et al., 2019a).

Adversarial setting. We consider two attack settings with the bounded `∞ norm: the white-box
attack setting and the black-box attack setting. For the white-box attack setting, we consider existing
strongest white-box attacks: Projected Gradient Descent (PGD) (Madry et al., 2018) and Carlini-
Wagner attack (CW) (Carlini & Wagner, 2017b). For the black-box attack setting, we perform the
powerful black-box attack, N attack (Li et al., 2019), on a sample of 1,500 test inputs as it is time-
consuming.

Datasets. We compare the proposed methods with the baselines on widely used benchmark
datasets, namely CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). Since adversarially
robust generalization becomes increasingly hard for high dimensional data and a little training
data (Schmidt et al., 2018), we also consider one challenging dataset: STL-10 (Coates et al.), which
contains 5, 000 training images, with 96× 96 pixels per image.

Neural networks. For STL-10, the architecture we use is a wide ResNet 40-2 (Zagoruyko & Ko-
modakis, 2016). For CIFAR-10 and CIFAR-100, we use a wide ResNet w32-10. For all datasets,
we scale the input images to the range of [0, 1].

Hyper-parameters. To avoid posting much concentrates on optimizing the hyper-parameters, for
all datasets, we set the hyper-parameter λ in TRADES as 6, set the hyper-parameter η in RLFATP

as 0.5, and set the hyper-parameter η in RLFATT as 1. For the training jobs of all our models, we
set the hyper-parameters k of the RBS transformation as 2. More details about the hyper-parameters
are provided in Appendix A.

4.2 EVALUATION RESULTS

We first validate our main hypothesis: for adversarial training, is it possible to learn the robust local
features that have better adversarially robust generalization and better standard generalization?

In Table 1, we compare the accuracy of RLFATP and RLFATT with the competing baselines on
three standard datasets. The proposed methods lead to consistent and significant improvements
on adversarial robustness as well as standard accuracy over the baseline models on all datasets.

1https://drive.google.com/drive/folders/183Sb5q_RQbzeZkw-uQbpBd7S1yTnn-Au?usp=sharing
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With the robust local features, RLFATT achieves better adversarially robust generalization and
better standard generalization than TRADES. RLFATP also works similarly, showing a significant
improvement on the robustness against all attacks and standard accuracy than PGDAT.

Table 1: The classification accuracy (%) of defense methods under white-box and black-box attacks
on STL-10, CIFAR-10 and CIFAR-100.

(a) STL-10. The magnitude of perturbation is 0.03 in `∞ norm.

Defense No attack PGD CW N attack

PGDAT 67.05 30.00 31.97 34.80
TRADES 65.24 38.99 38.35 42.07
RLFATP 71.47 38.42 38.42 44.80
RLFATT 72.38 43.36 39.31 48.13

(b) CIFAR-10. The magnitude of perturbation is 0.03 in `∞ norm.

Defense No attack PGD CW N attack

PGDAT 82.96 46.19 46.41 46.67
TRADES 80.35 50.95 49.80 52.47
RLFATP 84.77 53.97 52.40 54.60
RLFATT 82.72 58.75 51.94 54.60

(c) CIFAR-100. The magnitude of perturbation is 0.03 in `∞ norm.

Defense No attack PGD CW N attack

PGDAT 55.86 23.32 22.87 22.47
TRADES 52.13 27.26 24.66 25.13
RLFATP 56.70 31.99 29.04 32.53
RLFATT 58.96 31.63 27.54 30.86

The results demonstrate that, the robust local features can significantly improve both the adver-
sarially robust generalization and the standard generalization over the state-of-the-art adversarial
training frameworks, and strongly support our hypothesis. That is, for adversarial training, it is
possible to learn the robust local features, which have better robust and standard generalization.

4.3 LOSS SENSITIVITY UNDER DISTRIBUTION SHIFT

Motivation. Ding et al. (2019) and Zhang et al. (2019b) found that the effectiveness of adversarial
training is highly sensitive to the “semantic-loss” shift of the test data distribution, such as gamma
mapping. To further investigate the defense performance of the proposed methods, we consider to
quantify the smoothness of the models on different test data distributions. In particular, we consider
uniform noise and gamma mapping to shift the testing data distribution.

ε-neighborhood loss sensitivity. To quantify the smoothness of models on the shift of the uniform
noise, we propose to estimate the Lipschitz continuity constant `F by using the gradients of the
loss function with respect to the ε-neighborhood region of the test data. A smaller value indicates a
smoother loss function.

`uF =
1

m

m∑
i=1

Ex′
i∼U(B∞

ε (xi))[‖∇xL(F ;x′i, ytrue)‖2] (11)

Gamma mapping loss sensitivity. Gamma mapping (Szeliski, 2011) is a nonlinear element-wise
operation used to adjust the exposure of images by applying x̃(γ) = xγ on the original image x.
Similarly, we approximate the loss sensitivity under gamma mapping, by using the gradients of the
loss function with respect to the gamma mapping of the testing data. A smaller value indicates a
smoother loss function.

`gF (γ) =
1

m

m∑
i=1

‖∇xL(F ;xγi , ytrue)‖2 (12)
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Sensitivity analysis. The results for the ε-neighborhood loss sensitivity of the adversarially trained
models are reported in Table 2a, where we use 100 Monte Carlo samples for each testing data. In
Table 2b, we report the loss sensitivity of the adversarially trained models under various gamma
mappings. We observe that RLFATT provides the smoothest model under the distribution shifts
on various datasets. The results suggest that, as compared to PGDAT and TRADES, RLFATP and
RLFATT both show lower gradients of the models on different data distributions, which we can
directly attribute to the robust local features.

Table 2: The loss sensitivity of defense methods under different testing data distributions.

(a) The ε-neighborhood loss sensitivity of the adversarially trained models.

Dataset
ε-neighborhood loss sensitivity `uF

PGDAT TRADES RLFATP RLFATT

STL-10 0.76 0.43 0.20 0.20
CIFAR-10 1.17 0.76 0.63 0.49
CIFAR-100 2.74 1.73 1.03 0.91

(b) The gamma mapping loss sensitivity of the adversarially trained models.

Dataset
Gamma mapping loss sensitivity `gF (0.8) / `gF (1.2)

PGDAT TRADES RLFATP RLFATT

STL-10 0.77 / 0.79 0.44 / 0.42 0.30 / 0.29 0.21 / 0.19
CIFAR-10 1.27 / 1.20 0.84 / 0.76 0.69 / 0.62 0.54 / 0.48
CIFAR-100 2.82 / 2.80 1.78 / 1.76 1.09 / 1.01 0.95 / 0.88

4.4 ABLATION STUDIES

To further gain insights on the performance obtained by the robust local features, we perform ab-
lation studies to dissect the impact of various components (robust local feature learning and robust
local feature transfer). As shown in Figure 2, we conduct additional experiments for the ablation
studies of RLFATP and RLFATT on STL-10, CIFAR-10 and CIFAR-100, where we report the
standard accuracy over the clean data and the average robust accuracy over all the attacks for each
model.

(a) STL-10 (b) CIFAR-10 (c) CIFAR-100

Figure 2: Ablation studies for RLFATP and RLFATT to investigate the impact of Robust Local
Feature Learning (RLFL) and Robust Local Feature Transfer (RLFT).

7



Under review as a conference paper at ICLR 2020

Does robust local feature learning help? We first analyze that as compared to adversarial training
on normal adversarial examples, whether adversarial training on RBS-transformed adversarial ex-
amples produces better generalization and more robust features. As shown in Figure 2, we observe
that Robust Local Features Learning (RLFL) exhibits stable improvements on both standard accu-
racy and robust accuracy on all datasets for RLFATP and RLFATT, providing strong support for
our hypothesis.

Does robust local feature transfer help? We further add Robust Local Feature Transfer (RLFT),
the second term in Eq. (10), to get the overall loss of RLFAT. The robust accuracy further increases
on all datasets for RLFATP and RLFATT. The standard accuracy further increases also, except for
RLFATP on CIFAR-100, but it is still clearly higher than the baseline model PGDAT. It indicates
that transferring the robust local features into the training of normal adversarial examples does help
promote the standard accuracy and robust accuracy in most cases.

4.5 VISUALIZING THE SALIENCE MAPS

We would like to investigate the features of the input images that the models are mostly focused
on. Following the work of Zhang & Zhu (2019), we generate the salience maps using Smooth-
Grad (Smilkov et al., 2017) on STL-10 dataset. The key idea of SmoothGrad is to average the
gradients of class activation with respect to noisy copies of an input image. As illustrated in Fig-
ure 3, all the adversarially trained models basically capture the global structure features of the object
on the images. As compared to PGDAT and TRADES, RLFATP and RLFATT both capture more
local feature information of the object, aligning better with human perception. Note that the images
are correctly classified by all these models. For more visualization results, see Appendix B.

Original PGDAT TRADES RLFATP RLFATT Original PGDAT TRADES RLFATP RLFATT

Figure 3: Salience maps of the four models on sampled images. For each group of images, we have
the original image, and the salience maps of the four models sequentially.

5 CONCLUSION

Differs to existing adversarially trained models that are more biased towards the global structure
features of the images, in this work, we hypothesize that robust local features can improve the gener-
alization of adversarial training. To validate this hypothesis, we propose a new stream of adversarial
training approach called Robust Local Features for Adversarial Training (RLFAT) and implement
it in currently state-of-the-art adversarial training frameworks, PGDAT and TRADES. Extensive
experiments show that the proposed methods based on RLFAT not only yield better standard gen-
eralization but also promote the adversarially robust generalization. Furthermore, we show that the
salience maps of our models on images tend to align better with human perception, uncovering
certain unexpected benefit of the robust local features for adversarial training.
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A HYPER-PARAMETER SETTING

Here we show the details of the training hyper-parameters and the attack hyper-parameters for the
experiments.

Training Hyper-parameters. For all training jobs, we use the Adam optimizer with a learning rate
of 0.001 and a batch size of 32. For CIFAR-10 and CIFAR-100, we run 79,800 steps for training. For
STL-10, we run 29,700 steps for training. For STL-10 and CIFAR-100, the adversarial examples are
generated with step size 0.0075, 7 iterations, and ε = 0.03. For CIFAR-10, the adversarial examples
are generated with step size 0.0075, 10 iterations, and ε = 0.03.

Attack Hyper-parameters. For the PGD attack, we use the same attack parameters as those of
the training process. For the CW attack, we use PGD to minimize its loss function with a high
confidence parameter (k = 50) following the work of Madry et al. (2018). For the N attack, we
set the maximum number of optimization iterations to T = 200, b = 300 for the sample size, the
variance of the isotropic Gaussian σ2 = 0.01, and the learning rate η = 0.008.

B MORE FEATURE VISUALIZATION

We provide more salience maps of the adversarially trained models on sampled images in Figure 4.

Original PGDAT TRADES RLFATP RLFATT Original PGDAT TRADES RLFATP RLFATT

Figure 4: More Salience maps of the four models. For each group of images, we have the original
image, and the salience maps of the four models sequentially.
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