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ABSTRACT

We consider the problem of generating configurations that satisfy physical con-
straints for optimal material nano-pattern design, where multiple (and often con-
flicting) properties need to be simultaneously satisfied. Consider, for example,
the trade-off between thermal resistance, electrical conductivity, and mechanical
stability needed to design a nano-porous template with optimal thermoelectric
efficiency. To that end, we leverage the posterior regularization framework and
show that this constraint satisfaction problem can be formulated as sampling from
a Gibbs distribution. The main challenges come from the black-box nature of
those physical constraints, since they are obtained via solving highly non-linear
PDEs. To overcome those difficulties, we introduce Surrogate-based Constrained
Langevin dynamics for black-box sampling. We explore two surrogate approaches.
The first approach exploits zero-order approximation of gradients in the Langevin
Sampling and we refer to it as Zero-Order Langevin. In practice, this approach can
be prohibitive since we still need to often query the expensive PDE solvers. The
second approach approximates the gradients in the Langevin dynamics with deep
neural networks, allowing us an efficient sampling strategy using the surrogate
model. We prove the convergence of those two approaches when the target distri-
bution is log-concave and smooth. We show the effectiveness of both approaches
in designing optimal nano-porous material configurations, where the goal is to
produce nano-pattern templates with low thermal conductivity and reasonable
mechanical stability.

1 INTRODUCTION

In many real-world design problems, the optimal design needs to simultaneously satisfy multiple
constraints, which can be expensive to estimate. For example, in computational material design, the
goal is to come up with material configurations, or samples, satisfying a list of physical constraints
that are given by black-box numerical Partial Differential Equations (PDE) solvers. Such solvers (for
example, the Boltzmann Transport Equation solver) are often complex, expensive to evaluate, and
offer no access to their inner variables or their gradients.

We pose this design-under-constraints problem as sampling from a Gibbs distribution defined on
some compact support. The problem of sampling from a distribution with unknown likelihood that
can only be point-wise evaluated is called black-box sampling (Chen & Schmeiser, 1998; Neal,
2003). We show in this paper that constrained black-box sampling can be cast as a constrained
Langevin dynamics with gradient-free methods. Zero-order optimization via Gaussian smoothing
was introduced in Nesterov & Spokoiny (2017) and extended to black-box sampling with Langevin
dynamics in Shen et al. (2019). We extend this approach to the constrained setting from a black-box
density with compact support.

However, one shortcoming of this approach is that it is computationally very expensive since it
requires repeatedly querying PDE solvers in order to get an estimate of the gradient. To alleviate
computational issues, we propose Surrogate Model Based Langevin dynamics, that consists of two
steps: (i) Learning (using training data) an approximation of the gradient of the potential of the Gibbs
distribution. We show that learning the gradient, rather than the potential itself, is important for the
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mixing of the Langevin dynamics towards the target Gibbs distribution. We devise several objective
functions, as well as deep neural-network architectures for parameterizing the approximating function
class, for learning the gradient of the potential function. (ii) We then use the surrogate gradient model
in the constrained Langevin dynamics in lieu of the black-box potential. Using the surrogate enables
more efficient sampling, since it avoids querying the expensive PDE solvers, and obtaining gradients
is as efficient as evaluating the functions themselves using automatic differentiation frameworks such
as PyTorch or TensorFlow.

To summarize, our main contributions are follows:

1. We cast the problem of generating samples under constraints in the black-box setting as sampling
from a Gibbs distribution.

2. We introduce Constrained Zero-Order Langevin Monte Carlo, using projection or proximal
methods, and provide the proof of its convergence to the target Gibbs distribution.

3. We introduce Surrogate Model Based Projected Langevin Monte Carlo via learning the gradient
of the potential of the Gibbs distribution using deep neural networks or reproducing kernel spaces,
and prove its convergence to the target distribution when used in conjunction with projection
or proximal based methods. We shed the light on the importance of the approximation of the
gradient of the potential, and we show how to achieve this using Hermite and Taylor learning.

4. We showcase the usability and effectiveness of the proposed methods for the design of nano-
porous configurations with improved thermoelectric efficiency. The design consists of finding new
configurations with optimized pore locations, such that the resulting configurations have favorable
thermal conductivity (i.e., minimal κ) and desired mechanical stability (von Mises Stress σ ≤ τ ,
where τ is some preset threshold). 1

2 FROM CONSTRAINTS SATISFACTION TO SAMPLING FROM A GIBBS
DISTRIBUTION: POSTERIOR REGULARIZATION

In black-box optimization problems (such as the material design under consideration), the goal is
to find a posterior distribution q : Rd → R of samples satisfying a list of equality and inequality
constraints: ψj(x) = yk, j = 1 . . . Ce, and φk(x) ≤ bk, k = 1 . . . Ci where x ∈ Ω and Ω ∈ Rd is a
bounded domain. We assume a prior distribution p0 : Rd → R (whose analytical form is known).
The main challenge in black-box optimization is that the functions ψj and φk can be only evaluated
point-wise, and neither do we have functional forms nor access to their gradients. For example, ψ
and φ might be obtained via aggregating some statistics on the solution of a nonlinear PDE given by
a complex solver.

To make the problem of learning under constraints tractable, we choose Lagrangian parameters
λj > 0 and obtain the following relaxed objective:

min
q,
∫
Ω
q(x)=1

KL(q, p0) +

Ce∑
j=1

λjEx∼q(ψj(x)− yk)2 +

Ci∑
k=1

λkEx∼q(φk(x)− bk)+ (1)

The formulation in Eq. 1 is similar in spirit to the posterior regularization framework of Ganchev
et al. (2010); Hu et al. (2018). However, we highlight two differences: (i) our focus is on constrained
settings (where Ω is bounded), and (ii) we assume a black-box setting. We first obtain:

Lemma 1 (Constraint Satisfaction as Sampling from a Gibbs Distribution). The solution to the
distribution learning problem given in Eq. 1 is given by:

π(x) =
exp(−U(x))

Z
1x∈Ω (2)

where U(x) = − log p0(x) +
∑Ce
j=1 λj(ψj(x) − yk)2 +

∑Ci
k=1 λk(φk(x) − bk)+ and Z =∫

x∈Ω
exp (−U(x)) dx.

1Note that both properties κ and σ for a given configuration are obtained by numerically solving highly
non-linear PDEs. The material configuration is defined by the pore locations, the material used, and the response
of the material to heat (thermal) or stress (mechanical) flows.
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Lemma 1 shows that the constraint satisfaction problem formulated in Eq. 1 amounts to sampling
from a Gibbs distribution defined on a compact support given in Eq. 2. Sampling from a Gibbs
distribution (also known as Boltzmann distribution) has a long history using Langevin dynamics. In
the white-box setting when the functions defining the constraints have explicit analytical forms as
well as their gradients, Langevin dynamics for Gibbs distribution sampling defined on a compact
domain Ω and their mixing properties were actively studied in Bubeck et al. (2015); Brosse et al.
(2017). In the next Section, we provide a more detailed review.
Remark 1 (Relation to Bayesian Optimization). While in Bayesian optimization we are interested in
finding a point that satisfies the constraints, in our setting we are interested in finding a distribution
of candidate samples that satisfy (black-box) constraints.

Remark 2. For the rest of the paper, we will assume p0 to be the uniform distribution on Ω, which
means that its gradients are zero on the support of the domain Ω. Otherwise, if p0 is known and
belongs to, for instance, an exponential family or a generative model prior (such as normalizing
flows), we can sample from π using a mixture of black-box sampling on the constraints (ψj , φk) and
white-box sampling on log(p0).

3 WHITE-BOX SAMPLING: CONSTRAINED LANGEVIN DYNAMICS

We review in this section Langevin dynamics in the unconstrained case (Ω = Rd) and the constrained
setting (Ω ⊂ Rd). Below, ‖·‖ denotes the Euclidean norm unless otherwise specified. We are
interested in sampling from

π(x) =
1

Z
exp(−U(x))1x∈Ω, (3)

Preliminaries. We give here assumptions, definitions and few preliminary known facts that will be
useful later. Those assumptions are commonly used in Langevin sampling analysis (Dalalyan, 2017;
Bubeck et al., 2015; Brosse et al., 2017; Durmus et al., 2019).

1. Assumption A: We assume Ω is a convex such that 0 ∈ Ω, Ω contains a Euclidean ball of radius r,
and Ω is contained in a Euclidean ball of radius R. (For example, Ω might encode box constraints.)
The projection onto Ω, PΩ(x) is defined as follows: for all x ∈ Ω, PΩ(x)=arg minz∈Ω ‖x− z‖

2.
Let R = supx,x′∈Ω ||x− x′|| <∞.

2. Assumption B: We assume that U is convex, β-smooth, and with bounded gradients:

‖∇xU(x)−∇yU(y)‖ ≤ β ‖x− y‖ , ∀x, y ∈ Ω (β-smoothness).

‖∇U(x)‖ ≤ L, ∀x ∈ Ω (Boundedness).

The Total Variation (TV) distance between two measures µ, ν is defined as follows: TV (µ, ν) =

supA |µ(A)− ν(A)|. Pinsker Inequality relates KL divergence to TV: TV (µ, ν) ≤
√

2KL(µ, ν).

Unconstrained Langevin Dynamics. In the unconstrained case, the goal is to sample from a Gibbs
distribution π(x) = exp(−U(x))/Z that has unbounded support. This sampling can be done via the
Langevin Monte Carlo (LMC) algorithm, which is given by the following iteration:

Xk+1 = Xk − η∇xU(Xk) +
√

2ληξk, k = 0 . . .K − 1 (LMC), (4)

where ξk ∼ N (0, Id), η is the learning rate, and λ > 0 is a variance term.

Constrained Langevin Dynamics. In the constrained case, the goal is to sample from π(x) =
exp(−U(x))/Z1x∈Ω,. We discuss two variants:

Projected Langevin Dynamics. Similar to projected gradient descent, Bubeck et al. (2015) introduced
Projected Langevin Monte Carlo (PLMC) and proved its mixing propreties towards the stationary
distribution π. PLMC is given by the following iteration :

Xk+1 = PΩ

(
Xk − η∇xU(Xk) +

√
2ληξk

)
, k = 0 . . .K − 1 (PLMC), (5)

In essence, PLMC consists of a single iteration of LMC, followed by a projection on the set Ω using
the operator PΩ.
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Proximal Langevin Dynamics. Similar to proximal methods in constrained optimization, Brosse
et al. (2017) introduced Proximal LMC (ProxLMC) that uses the iteration:

Xk+1 =

(
1− η

γ

)
Xk−η∇xU(Xk) +

η

γ
PΩ(Xk) +

√
2ληξk, k = 0 . . .K−1, (ProxLMC) (6)

where η is the step size and γ is a regularization parameter. In essence, ProxLMC (Brosse et al.,
2017) performs an ordinary LMC on Uγ(x) = U(x) + iγΩ(x), where iγΩ(x) is the proximal operator:

iγΩ(x) = inf
y
iΩ(x) + (2γ)−1 ‖x− y‖2 = (2γ)−1 ‖x− PΩ(x)‖2 ,

where iΩ(x) = 0 for x ∈ Ω and iΩ(x) = ∞ for x /∈ Ω. Therefore, the update in Eq. 6 is a regular
Langevin update (as in Eq. 4) with potential gradient∇xUγ(x) = ∇xU(x) + γ−1(x− PΩ(x)).

We denote by µPLMC
K and µProxLMC

K the distributions of XK obtained by iterating Eq. 5 and Eq. 6
respectively. Under Assumptions A and B, both these distributions converge to the target Gibbs
distribution π in the total variation distance. In particular, Bubeck et al. (2015) showed that for
η = θ̃(R2/K), we obtain:

TV (µPLMC
K , π) ≤ ε for K = Ω̃(ε−12d12). (7)

Likewise, Brosse et al. (2017) showed that for 0 < η ≤ γ(1 + β2γ2)−1, we obtain:

TV (µProxLMC
K , π) ≤ ε for K = Ω̃(ε−6d5), (8)

where the notation αn = Ω̃(βn) means that there exists c ∈ R, C > 0 such that αn ≥ Cβn logc(βn).

4 CONSTRAINED LANGEVIN DYNAMICS IN THE BLACK-BOX SETTING

We now introduce our variants of constrained LMC for the black-box setting where explicit potential
gradients are unavailable. We explore in this paper two strategies for approximating the gradient of
U in the black-box setting. In the first strategy, we borrow ideas from derivative-free optimization
(in particular, evolutionary search). In the second strategy we learn a surrogate deep model that
approximates the gradient of the potential. Below, let G : Ω→ Rd be a vector valued function that
approximates the gradient of the potential,∇xU . We make:

Assumption C. The surrogate gradient G satisfies E ‖G(Yk)‖2 <∞,∀k.

Surrogate Projected Langevin Dynamics. Given Y0, the Surrogate Projected LMC (S-PLMC)
replaces the potential gradient∇xU in Eq. 5 with the surrogate gradient G:

Yk+1 = PΩ

(
Yk − ηG(Yk) +

√
2ληξk

)
, k = 0 . . .K − 1 (S-PLMC) (9)

Surrogate Proximal Langevin Dynamics. Similarly, the Surrogate Proximal LMC (S-ProxLMC)
replaces the unknown potential gradient∇xU in Eq. 6 with the gradient surrogate G:

Yk+1 =

(
1− η

γ

)
Yk − ηG(Yk) +

η

γ
PΩ(Yk) +

√
2ληξk, k = 0 . . .K − 1 (S-ProxLMC) (10)

We now present our main theorems on the approximation properties of surrogate LMC (S-PLMC,
and S-ProxLMC). We do so by bounding the total variation distance between the trajectories of the
surrogate Langevin dynamics (S-PLMC, and S-ProxLMC) and the true LMC dynamics (PLMC and
ProxLMC). Theorem 1 is an application of techniques in Stochastic Differential Equations (SDE)
introduced in Dalalyan & Tsybakov (2012) and is mainly based on a variant of Grisanov’s Theorem
for change of measures (Lipster & Shiryaev, 2001) and Pinsker’s Inequality that bounds total variation
in terms of Kullback-Leibler divergence.
Theorem 1 (S-PLMC and S-ProxLMC Mixing Properties). Under Assumption C, we have:

1. S-PLMC Convergence. Let µPLMC
K be the distribution of the random variable XK obtained by

iterating PLMC Eq. 5, and µS-PLMC
K be the distribution of the random variable YK obtained by

iteration S-PLMC given in Eq. 9. We have:

TV (µS-PLMC
K , µPLMC

K ) ≤
√
η

λ

(
K−1∑
k=0

E ‖G(Yk)−∇xU(Yk)‖2 +Kβ2R2

) 1
2

. (11)
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2. S-ProxLMC Convergence. Let µProxLMC
K be the distribution of the random variable XK obtained

by iterating ProxLMC Eq. 6, and µS-ProxLMC
K be the distribution of the random variable YK obtained

by iterating S-ProxLMC given in Eq. 10. We have:

TV (µS-ProxLMC
K , µProxLMC

K ) ≤
√

η

2λ

(
K−1∑
k=0

E ‖G(Xk)−∇xU(Xk)‖2
) 1

2

. (12)

From Theorem 1, we see that it suffices to approximate the potential gradient∇xU(X) (and not the
potential U(X)) in order to guarantee convergence of surrogate-based Langevin sampling. Using the
triangle inequality, and combining Theorem 1 and bounds in Eqs 7 and 8 we obtain:
Theorem 2. (Convergence of Surrogate Constrained LMC to the Gibbs distribution.) Under assump-
tions A,B and C we have:

1. Assume in S-PLMC that there exists δ > 0 such that E ‖G(Yk)−∇xU(Yk)‖2 ≤ δ, ∀k ≥ 0. Set
λ = 1, and η ≤ min(R2/K,α/K2) where α = 1/(δ + β2R2) . Then for K = Ω̃(ε−12d12), we
have:

TV (µS-PLMC
K , π) ≤ ε.

2. Assume in S-ProxLMC that there exists δ > 0 such that E ‖G(Xk)−∇xU(Xk)‖2 ≤ δ, ∀k ≥ 0.
Set λ = 1, and η = min(γ(1 + β2γ2)−1, 1

δK2 ). Then for K = Ω̃(ε−6d5) we have:

TV (µS-ProxLMC
K , π) ≤ ε.

5 ZERO-ORDER CONSTRAINED LANGEVIN DYNAMICS

In zero-order optimization (Nesterov & Spokoiny, 2017; Duchi et al., 2015; Ghadimi & Lan,
2013; Shen et al., 2019), one considers the Gaussian smoothed potential Uν defined as Uν(x) =

Eg∼N (0,Id)U(x+ νg), and its gradient is given by∇xUν(x) = Eg U(x+νg)−U(x)
ν g. The following

is a Monte Carlo estimate of∇xUν(x):
ĜnU(x) =

1

n

n∑
j=1

(
U(x+ νgj)− U(x)

ν

)
gj , (13)

where g1, . . . gn are i.i.d. standard normal vectors.

Zero-Order sampling from log-concave densities was recently studied in Shen et al. (2019). We extend
it here to the constrained sampling case of log-concave densities with compact support. We define
Constrained Zero-Order Projected LMC (Z-PLMC) and Zero-Order Proximal LMC (Z-ProxLMC)
by setting G(x) = ĜnU(x) in Eq. 9 and Eq. 10 respectively.
Lemma 2 (Zero-Order Gradient Approximation(Nesterov & Spokoiny, 2017; Shen et al., 2019)).
Under Assumption B, we have for all x ∈ Ω:

Eg1,...,gn

∥∥∥ĜnU(x)−∇xU(x)
∥∥∥2

≤
(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

/n (14)

Thanks to Lemma 2 that ensures uniform approximation of gradients in expectation, we can apply
Theorem 2 and get the following corollary for Z-PLMC and Z-ProxLMC:
Corollary 1 (Zero-order Constrained Langevin approximates the Gibbs distribution). Under As-

sumptions A and B, let δ ∈ [0, 1], for n ≥
(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

/δ, we have the following
bounds in expectation:

1. Set λ = 1, and η ≤ min(R2/K,α/K2) where α = 1/(δ + β2R2) . For K = Ω̃(ε−12d12), we
have:

Eg1,...gnTV (µZ-PLMC
K , π) ≤ ε. (15)

2. Set λ = 1, and η = min(γ(1 + β2γ2)−1, 1
δK2 ). For K = Ω̃(ε−6d5) we have:

Eg1,...gnTV (µZ-ProxLMC
K , π) ≤ ε. (16)

Remark 3. For simplicity, we state the above bound in terms of expectations over the randomness
in estimating the gradients. It is possible to get finite-sample bounds using the Vector Bernstein
concentration inequality, coupled with covering number estimates of Ω but omit them due to space.
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6 SURROGATE MODEL BASED CONSTRAINED LANGEVIN DYNAMICS

Despite its theoretical guarantees, zero-order constrained Langevin (Z-PLMC and Z-ProxLMC) has
a prohibitive computation cost as it needs O(nK) black-box queries (in our case, invocations of a
nonlinear PDE solver). To alleviate this issue, we introduce in this Section a neural surrogate model
as an alternative to the gradient of the true potential.

6.1 HERMITE LEARNING OF GRADIENTS: JACOBIAN MATCHING OF ZERO-ODER ESTIMATES

From Theorem 2, we saw that in order to guarantee the convergence of constrained Langevin dynamics,
we need a good estimate of the gradient of the potential of the Gibbs distribution. Recall that the
potential given in Lemma 1 depends on ψj and φk, which are scalar outputs of computationally heavy
PDE solvers in our material design problem. To avoid this, we propose to train surrogate neural
network models approximating each PDE output and their gradients. Concretely, suppose we are
given a training set S for a PDE solver for the property ψ (dropping the index j for simplicity):

S = {(xi, yi = ψ(xi), ỹi = Ĝnψ(xi)), xi ∼ ρΩi.i.d., i = 1, . . . , N},

where ρΩ is the training distribution and Ĝnψ(.) is the zero-order estimate of the gradient of ψ given
in Eq. 13. We propose to learn a surrogate model belonging to a function class Hθ, f̂θ ∈Hθ, that
regresses the value of ψ and matches the zero-order gradient estimates as follows:

min
fθ∈Hθ

1

N

N∑
i=1

{(yi − fθ(xi))2 + ‖∇xfθ(xi)− ỹi‖2} (Z-Hermite Learning) (17)

The problem in Eq. 17 was introduced and analyzed in Shi et al. (2010) where Hθ is a ball in a
Reproducing Kernel Hilbert Space (RKHS). Following Shi et al. (2010), we refer to this type of
learning as Hermite Learning. In the deep learning community, this type of learning is called Jacobian
matching and was introduced in Srinivas & Fleuret (2018); Czarnecki et al. (2017) where Hθ is a
deep neural network parameterized with weights θ. When fθ is a deep network, we can optimize this
objective efficiently using common deep learning frameworks (PyTorch, TensorFlow).

(Shi et al., 2010) have shown that when Hθ is an RKHS ball and when ỹi = ∇xψ(xi) are exact gra-
dients, for a sufficiently large training set with N = O(1/ε1/(2rζ)) (where r, ζ are exponents in [0, 1]

that depend on the regularity of the function ψ), we have:
∫

Ω
‖∇xfθ(x)−∇xψ(x)‖2 ρΩ(x)dx ≤ ε.

Since we are using inexact zero-order gradients, we will incur an additional numerical error that is
also bounded as shown in Lemma 2.

6.2 TAYLOR LEARNING OF GRADIENTS

While Jacobian matching of zero-order gradients is a sound approach, it remains expensive to
construct the dataset, as we need for each point to have 2n+ 1 queries of the PDE solver. We exploit
in this section the Taylor learning framework of gradients that was introduced in Mukherjee & Zhou
(2006); Mukherjee & Wu (2006), and Wu et al. (2010). In a nutshell, Mukherjee & Zhou (2006)
suggests to learn a surrogate potential fθ and gradient GΛ that are consistent with the first-order
taylor expansion. Given a training set S = {(xi, yi = ψ(xi)), x ∼ ρΩ, i = 1 . . . N}, Wu et al. (2010)
suggest the following objective:

min
fθ∈Hθ,GΛ∈H d

Λ

1

N2

∑
i,j

wσij(yi − fθ(xj) + 〈GΛ(xi), xj − xi〉)2(Taylor-2), (18)

where wσij = exp
(
−‖xi−xj‖2

σ2

)
, Hθ is an RKHS ball of scalar valued functions, and H d

Λ is an
RKHS ball of vector valued functions.

Under mild assumptions, Mukherjee & Zhou (2006) shows that we have for N = O(1/εd/2):∫
Ω
‖GΛ(x)−∇xψ(x)‖2 ρΩ(x)dx ≤ ε.We simplify the problem in Eq. 18 and propose the following

two objective functions and leverage the deep learning toolkit to parameterize the surrogate fθ:

min
fθ∈Hθ

1

N2

∑
i,j

wσij(yi − fθ(xj) + 〈∇xfθ(xi), xj − xi〉)2(Taylor-1), (19)
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min
fθ∈Hθ

1

N

N∑
i=1

{(yi−fθ(xi))2+
λ

N2

∑
i,j

wσij(yi−yj+〈∇xfθ(xi), xj − xi〉)2}, (Taylor-Reg) . (20)

The objective in Eq. 19 uses a single surrogate to parameterize the potential and its gradient. The
objective in Eq. 20 is similar in spirit to the Jacobian matching formulation in the sense that it adds a
regularizer on the gradient of the surrogate to be consistent with the first-order Taylor expansion in
local neighborhoods. The advantage of the Taylor learning approach is that we do not need to perform
zero-order estimation of gradients to construct the training set and we rely instead on first-order
approximation in local neighborhood.

6.3 SURROGATE MODEL CONSTRAINED LMC

Consider the surrogate model fθ obtained via Hermite Learning (Eq. 17) or via Taylor learning
(Eqs 18, 19, 20). We are now ready to define the surrogate model LMC by replacing G(x) = ∇xfθ(x)
in the constrained Langevin dynamics in Eqs 9 and 10.

Both Hermite and Taylor learning come with theoretical guarantees when the approximation func-
tion space is an RKHS under some mild assumptions on the training distribution and the regu-
larity of the target function ψ. In Hermite learning (Theorem 2 in Shi et al. (2010)) we have:
Ex∼pΩ ‖∇xfθ(x)−∇xψ(x)‖2 ≤ ε for sufficiently large training set N = O(1/ε1/(2ζr)) (where
exponents ζ, r ∈ [0, 1] depend on regularity of ψ). In Taylor Learning with the objective function
given in Eq. 18 (Proposition 7 in Wu et al. (2010) we have: Ex∼ρΩ ‖GΛ(x)−∇xψ(x)‖2 ≤ ε for
N = O(1/εd/2). In order to apply Theorem 2 we need this gradient approximation error to hold in
expectation on all intermediate distributions in the Langevin sampling. Hence, we need the following
extra-assumption on the training distribution pΩ:

Assumption D: Assume we have a learned surrogate G on training distribution ρΩ such that
Ex∼ρΩ

‖G(x)−∇xU(x)‖2 ≤ ε. Assume ρΩ(x) > 0,∀x ∈ Ω and that it is a dominating mea-
sure of Langevin (PLMC, S-PLMC, Prox-LMC, S-ProxLMC ) intermediate distributions µk, i.e.
there exists C > 0 such that:

µk(x) ≤ CρΩ(x),∀x ∈ Ω,∀k = 0, . . .K − 1.

Under Assumption D, it follows immediately that

E ‖G(Xk)−∇U(Xk)‖2 =

∫
Ω

‖G(x)−∇U(x‖2 µk(x)

ρΩ(x)
ρΩ(x) ≤ Cε

and hence we can apply Theorem 2 for δ = Cε, and we obtain ε-approximation of the target Gibbs
distribution in terms of total variation distance.
Remark 4. Assumption D on the ε-approximation of the gradient can be achieved for a large enough
training set N , when we use Hermite learning in RKHS under mild assumptions and in Taylor
learning. The assumption on the dominance of the training distribution is natural and means that we
need a large training set that accounts to what we may encounter in Surrogate LMC iterations.

In what follows we refer to surrogate constrained LMC, as x-PLMC or x-ProxLMC where x is one
of four suffixes ({Z-Hermite, Taylor-2, Taylor-1, Taylor-Reg}).

7 RELATED WORK

Zero-Order Methods. Zero-order optimization with Gaussian smoothing was studied in Nesterov &
Spokoiny (2017) and Duchi et al. (2015) in the convex setting. Non-convex zero order optimization
was also addressed in Ghadimi & Lan (2013). The closest to our work is the zero-order Langevin
Shen et al. (2019) introduced recently for black-box sampling from log concave density. The main
difference in our setting, is that the density has a compact support and hence the need to appeal to
projected LMC (Bubeck et al., 2015) and Proximal LMC (Brosse et al., 2017). It is worth nothing
that Hsieh et al. (2018) introduced recently mirror Langevin sampling that can also be leveraged in
our framework.
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Gradients and Score functions Estimators. We used the approach of gradient distillation (Srinivas
& Fleuret, 2018) and learning gradients of (Wu et al., 2010), since they are convenient for training on
different constraints and they come with theoretical guarantees. However, other approaches can be
also leveraged such as the score matching approach for learning the gradient of the log likelihood
(Hyvärinen, 2005) and other variants appealing to dual embeddings (Dai et al., 2018). Estimating
gradients can be also performed using Stein’s method as in (Li & Turner, 2017), or via maintaining a
surrogate of the gradient as in Stein descent without gradient (Han & Liu, 2018).

Optimization approaches Due to space limitation, we restrict the discussion to the optimization
methods that are most commonly and recently used for optimal material (or molecule) design. A
popular approach to deal with optimization of expensive black-box functions is Bayesian Optimization
(BO) (Mockus, 1994; Jones et al., 1998; Frazier, 2018). The standard BO protocol is comprised
of estimating the black-box function from data through a probabilistic surrogate model, usually a
Gaussian process, and maximizing an acquisition function to decide where to sample next. BO is
often performed over a latent space, as in (Gómez-Bombarelli et al., 2018). Hernández-Lobato et al.
(2016) proposed an information-theoretic framework for extending BO to address optimization under
black-box constraints, which is close to current problem scenario. Genetic Algorithms (GA), a class
of meta-heuristic based evolutionary optimization techniques, is another widely used approach for
generating (material) samples with desired property (Jennings et al., 2019) and has been also used
for handling optimization under constraints (Chehouri et al., 2016). However, GA typically requires
a large number of function evaluations, can get stuck in local optima, and does not scale well with
complexity. Finally, Zhou et al. (2019) has used deep reinforcement learning technique of Deep
Q-networks to optimize molecules under a specific constraint using desired properties as rewards.
The advantage of our framework is that we obtain a distribution of optimal configurations (as opposed
to a single optimized sample) that does not rely on training on a specific pre-existing dataset and can
be further screened and tested for their optimality for the task at hand.

8 EXPERIMENTS

In this section, we demonstrate the usability of our black-blox Langevin sampling approach for
the design of nano-porous configurations. We first show the performance of the surrogate models
in learning the potential function, showcasing the results using four different variants: standard
regression, Taylor regularization, Taylor-1 and Taylor-2. We then show how well the surrogate-based
Langevin MC generates new samples under the thermal and mechanical constraints. We compare
the sample quality on multiple criteria between the surrogate and zero-order approaches with either
projection or proximal update step.

Data We want to learn surrogate models to approximate the gradient of the potential from data.
To this end, we generate a dataset of 50K nano-porous structures, each of size 100nm × 100nm.
One such example is displayed in Fig. 1. Number of pores is fixed to 10 in this study and each
pore is a square with a side length of 17.32nm. We sample the pore centers uniformly over the unit
square and construct the corresponding structure after re-scaling them appropriately. Then, using the
solvers OpenBTE (Romano & Grossman, 2015) and Summit (

∑
MIT Development Group, 2018), we

obtain for each structure x a pair of values: thermal conductivity κ and von Mises stress σ. Finally,
we collect two datasets: {(xi, κi)}Ni=1 and {(xi, σi)}Ni=1 with the same inputs xi’s and N = 50K
samples. More details are given in Appendices B and C on the PDEs and their corresponding solvers.

Features The pore locations are the natural input features to the surrogate models. Apart from
the coordinates, we also derive some other features based on physical intuitions. For example,
the distances between pores and the alignment along axes are informative of thermal conductivity
(Romano & Grossman, 2016). As such, we compute pore-pore distances along each coordinate axis
and add them as additional features.

Surrogate gradient methods We use feed-forward neural networks to model the surrogates since
obtaining gradients for such networks is efficient thanks to automatic differentiation frameworks. We
use networks comprised of 4 hidden layers with sizes 128, 72, 64, 32 and apply the same architecture
to approximate the gradients for κ and σ separately. The hidden layers use ReLU activations whereas
sigmoid was used at the output layer (after the target output is properly normalized). For the Taylor-2
variant (in Eq. 18), we have an additional output vector of the same size as the input for the gradient
prediction. The networks are trained on the corresponding objective functions set up earlier by an

8
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κ = 0.0871, σ = 0.4826 κ = 0.0802, σ = 0.6681 κ = 0.0732, σ = 0.4401

Figure 1: Example of nano-porous structures with corresponding heat flux shown using a color
gradient. Yellow regions indicate high phonons flux. The thermal conductivity κ and von Mises stress
σ are reported below each structure. The arrows show the moving directions of the pores. (Left) A
random sample. (Middle) The sample obtained by Taylor-Reg PMLC starting from the left structure
with κ constraint. (Right) The sample obtained by Taylor-Reg PMLC with both κ and σ constraints.
Adam optimizer with learning rate 10−4 and decay 1.0. We fine-tune the networks with simple
grid-search and select the best models for comparison. Due to the space constraint, we present the
results in Appendix A and emphasize that Z-Hermite is not included in the entire comparison but in a
small experiment performed with a more lightweight OpenBTE version.

Incorporating constraints and comparison metrics We demonstrate the usability of our proposed
black-box Langevin sampling for the design of nano-configurations under thermal conductivity and
mechanical stability constraints that are provided by the corresponding PDE solvers. To compare
sampling outcomes, we use the following metrics. We report the minimum value of κ and Monte
Carlo estimates for both κ and σ to compare the samples generated by different sampling methods
and surrogate models. The Monte Carlo estimates are computed on 20 samples.

Single constraint Our first task is to design nano-configurations under the thermal conductivity
constraint where we want κ as low as possible in order to achieve high thermo-electric efficiency.
From the posterior regularization formulation Section 2, we pose the constraint satisfaction as
sampling from the following Gibbs distribution:

π(x) = p0(x)
exp(−λκ(x)2)

Z
1x∈[0,1]20 (21)

where p0(x) is the uniform distribution over the unit square, which is equivalent to the Poisson
process of 10 pores on the square, and κ(x) is the thermal conductivity we want to minimize. Starting
from 20 samples initialized from p0(x), we run our proposed black-box Langevin MCs and obtain
20 new realizations from the target distribution π(x). We use four different surrogates (including
simple regression, Taylor-Reg, Taylor-1 and zero-order) and each surrogate with either projection or
proximal update. We show the summary statistics of these samples in Table 1. The regression-PMLC
in the first row and regression-ProxLMC in the fifth represent the sampling where the surrogate
model are fitted on solely the mean square error objective. In all methods, we set λ = 100, the
step size η = 1e−3 and the exponential decay rate 0.8. Since keeping track of the true κ value
is expensive, we stop after K = 10 iterations. We first observe that the regression-based method
(PLMC, ProxLMC) is less effective than the others simply because they do not have an implicit
objective for approximating the gradients. Taylor-Reg and Taylor-1 demonstrate its effectiveness
in approximating the gradient and are able to achieve lower thermal conductivity. In particular,
Taylor-1-ProxLMC and Zero-order-PLMC perform in the similar range in terms of the minimum
achieved, but the learned surrogate offers 17x speed up (per sample) over zero order methods. Due
to the space limit, we do not report Taylor-2 results in Table 1, and note that Taylor-2 works in the
similar vein as Taylor-1.

Multiple constraints Achieving the minimal thermal conductivity can be fulfilled without much
difficulty (e.g. structures with all pores aligned along the vertical axis), but such structures are often
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Model Min κ Mean κ Per-sam. time (s)
Regression-PLMC 0.0757 0.1206± 0.0480 1055
Taylor-Reg-PLMC 0.0638 0.1196± 0.0495 899

Taylor-1-PLMC 0.0637 0.1278± 0.0610 852
Zero-order-PLMC 0.0510 0.1093± 0.0271 14967

Regression-ProxLMC 0.0646 0.1282± 0.0531 1107
Taylor-Reg-ProxLMC 0.0712 0.1205± 0.0455 899

Taylor-1-ProxLMC 0.0575 0.1297± 0.0543 874
Zero-order-ProxLMC 0.0719 0.1112± 0.0363 14938

Table 1: Statistics of 20 new samples obtained by running different surrogate-based Langevin MCs on
π with the thermal conductivity constraint (Eq. 21). We show the min and mean over the generated
samples and the per-sample time. Initialized samples have min κ = 0.0619 and mean σ = 0.1268.

mechanically unstable. In the next step, we study whether adding more (conflicting) constraints
helps us design better nano-configurations. Hence, we consider both thermal conductivity κ and
mechanical stability provided via von Mises stress σ. We want a sample x that minimizes κ(x) to
achieve high thermo-electric efficiency while maintaining σ(x) less than some threshold (which we
explain below). Like the single constraint case, we pose this as sampling from the following Gibbs
distribution:

π(x) = p0(x)
exp(−λ1κ(x)2 − λ2[σ(x)− τ ]+)

Z
1x∈[0,1]20 , (22)

where p0(x) is the same as above, σ(x) is the von Mises stress and τ is a threshold on the maximum
value of σ. With this framework, we relax the inequality constraint to the Hinge loss term on von
Mises stress. The results are summarized in Table 2. Note that all the surrogate Langevin MCs are
initialized from the same set of 20 samples as above. In this experiment, we set τ = 0.5, λ1 = 100,
λ2 = 10 the step size η = 1e−3 and the exponential decay rate 0.8. Comparing with Table 1, one
can see that not only better κ be achieved but also the σ can be reduced simultaneously. These
results suggest that our approach can effectively sample new configurations under multiple competing
constraints. Examples of new nano-configurations are show in Fig. 1 and Appendix A Fig. 4, 5 and 6.

Model Min κ Mean κ Mean σ Per-sam. time (s)
Taylor-Reg-PLMC 0.0613 0.1256± 0.0538 0.6590± 0.2261 952

Taylor-1-PLMC 0.0611 0.1278± 0.0610 0.6380± 0.1598 852
Zero-order-PLMC 0.0471 0.1148± 0.0475 0.6511± 0.1916 15677

Taylor-Reg-ProxLMC 0.0666 0.1195± 0.0534 0.6402± 0.1464 856
Taylor-1-ProxLMC 0.0548 0.1298± 0.0610 0.6156± 0.1463 972

Zero-order-ProxLMC 0.0354 0.1080± 0.0384 0.6029± 0.1376 15080

Table 2: Summary statistics of 20 new samples obtained by our sampling method on π(x) with
κ and σ constraints Eq. 22. The starting samples are reused from the single constraint case (min
κ = 0.0759, mean κ = 0.1268, and mean σ = 0.8181; note that σ can be as high as 16.)

9 CONCLUSION

In this paper we introduced Surrogate-Based Constrained Langevin Sampling for black-box sampling
from a Gibbs distribution defined on a compact support. We studied two approaches for defining the
surrogate: the first through zero-order methods and the second via learning gradient approximations
using deep neural networks. We showed the proofs of convergence of the two approaches in the
log-concave and smooth case. While zero-order Langevin had prohibitive computational cost, learned
surrogate model Langevin enjoy a good tradeoff of lightweight computation and approximation power.
We applied our black-box sampling scheme to the problem of nano-material configuration design,
where the black box constraints are given by expensive PDE solvers, and showed the efficiency
and the promise of our method in finding optimal configurations. Among different approaches
for approximating the gradient, the zero-order ones (PLMC, ProxLMC) show overall superior
performance, at a prohibitive computational cost. We established that the deep the surrogate (Taylor-1
ProxLMC) is a viable alternative to zero-order methods, achieving reasonable performance, and
offering 15x speedup over zero-order methods.
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A SUPPLEMENTAL EXPERIMENTAL RESULTS

Surrogate gradient methods We use feed-forward neural networks to model the surrogates since
obtaining gradients for such networks is efficient thanks to automatic differentiation frameworks. We
use networks comprised of 4 hidden layers with sizes 128, 72, 64, 32 and apply the same architecture
to approximate the gradients for κ and σ separately. The hidden layers compute ReLU activation
whereas sigmoid was used at the output layer (after the target output is properly normalization). For
the Taylor-2 variant (in Eq. 18), we have an output vector for the gradient prediction. The networks
are trained on the corresponding objective functions set up earlier by Adam optimizer with learning
rate 10−4 and decay 1.0. We fine-tune the networks with simple grid-search and select the best
models for comparison.

As emphasized throughout, our focus is more on approximating the gradient rather than learning
the true function. However, we need to somehow evaluate the surrogate models on how well they
generalize on a hold-out test set. Like canonical regression problems, we compare the surrogate
variants against each other using root mean square error (RMSE) on the test set. Figures 2 and 3
shows the results. The left figure shows RMSE for predicting κ and the right one shows RMSE for
the von Mises stress σ. We can see that the Taylor-Reg generalizes better and also converges faster
than Taylor-1 and Taylor-2 to target RMSE for κ, while all methods result similarly for σ prediction.
This is reasonable because the objectives of Taylor-1 and Taylor-2 are not to optimize the mean
square error, which we evaluate on here. Figure 3 shows the learning in terms of sample complexity.
Again, Taylor-Reg outperforms Taylor-1 and Taylor-2 for κ prediction. In contrast, most models
work similarly for σ regression, particularly when the training size is reduced to 50% (25K).
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Figure 2: Comparison of the surrogate variants in testing RMSE. (Left) prediction accuracy for the thermal
conductivity κ. (Right) prediction accuracy for mechanical stability σ. Note the difference in scale of κ and σ.

10 15 20 25 30 35 40
Number of samples (x1000)

1.50

1.45

1.40

1.35

1.30

RM
SE

 (l
og

ar
ith

m
)

Sample complexity of the surrogate models for 
Regular
Taylor-Reg
Taylor-1
Taylor-2

10 15 20 25 30 35 40
Number of samples (x1000)

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

RM
SE

 (l
og

ar
ith

m
)

Sample complexity of the surrogate models for v

Regular
Taylor-Reg
Taylor-1
Taylor-2

Figure 3: Comparison of the surrogate models in RMSE on the same test set when the training size is varied.
Note the scale difference in the figures due to the different range of values.

Effectiveness of Z-Hermite learning Notice that Z-Hermite learning is not included in this com-
parison and as a surrogate model in the black-blox Langevin sammpling in Section 8. The reason
is that apart from the usual sample pair (xi, yi), we need the gradient ỹi (See Eq. 17). Since we
can query the solvers, this gradient can only be estimated using finite difference. For both κ and σ
in our experiment, obtaining such data is extremely expensive. As a consequence, we do not have
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the full results of the Z-Hermite model. Instead, we ran a separate study to show the effectiveness
of Z-Hermite surrogate LMC on a smaller data with a lightweight OpenBTE version (0.9.55). The
results in Table 3 shows the working of Z-Hermite learning in learning the gradient of κ(x). Here,
the entropy is based nearest neighbor estimate to demonstrate the diversity of the pore centers in the
unit square. With the (xp, yp)-coordinates of each pore p, the entropy estimate is given by:

H =
1

n

n∑
i=1

log(nmin
j 6=i
‖pi − pj‖) + log 2 + C.

Model Mean κ Mean entropy Per-sam. time (s)
Zero-order PLMC 0.0676 1.960 3658
Taylor-1 PLMC 0.0988 1.739 253

Z-Hermite PLMC 0.0946 1.745 227

Table 3: Z-Hermite learning is sample efficient at training time as well as for the Langevin sampling,
but collecting the training set is prohibitive.

Additional generated samples We show additional configurations generated by our sampling ap-
proach (Taylor-Reg ProxLMC, Taylor-1 ProxLMC and Zero-order ProxLMC) in Fig. 4, 5 and
6.

κ = 0.0871, σ = 0.4826 κ = 0.0834, σ = 0.4638 κ = 0.0942, σ = 0.4566

Figure 4: Example of nano-porous structures with corresponding heat flux shown using a color
gradient. Yellow regions indicate high phonons flux. The thermal conductivity κ and von Mises stress
σ are reported below each structure. The arrows show the moving directions of the pores. (Left)
A random sample. (Middle) The sample obtained by Taylor-Reg ProxLMC starting from the left
structure with κ constraint. (Right) The sample obtained by Taylor-Reg ProxLMC with both κ and σ
constraints.
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κ = 0.0871, σ = 0.4826 κ = 0.0834, σ = 0.4638 κ = 0.0942, σ = 0.4566

Figure 5: Example of nano-porous structures with corresponding heat flux shown using a color
gradient. Yellow regions indicate high phonons flux. The thermal conductivity κ and von Mises stress
σ are reported below each structure. The arrows show the moving directions of the pores. (Left) A
random sample. (Middle) The sample obtained by Taylor-1 ProxLMC starting from the left structure
with κ constraint. (Right) The sample obtained by Taylor-1 ProxLMC with both κ and σ constraints.

κ = 0.0871, σ = 0.4826 κ = 0.0719, σ = 0.4424 κ = 0.1074, σ = 0.5110

Figure 6: Example of nano-porous structures with corresponding heat flux shown using a color
gradient. Yellow regions indicate high phonons flux. The thermal conductivity κ and von Mises stress
σ are reported below each structure. The arrows show the moving directions of the pores. (Left)
A random sample. (Middle) The sample obtained by Zero-order ProxLMC starting from the left
structure with κ constraint. (Right) The sample obtained by Zero-order ProxLMC with both κ and σ
constraints.

B BACKGROUND ON MODELING NANOSCALE HEAT TRANSPORT

At the nanoscale, heat transport may exhibit strong ballistic behaviour and a non-diffusive model must
be used (Chen, 2005). In this work we use the Boltzmann transport equation under the relaxation
time approximation and in the mean-free-path (MFP) formulation (Romano & Grossman, 2015)

Λŝ · ∇T (Λ) + T (Λ) =

∫
α(Λ′)〈T (Λ′)〉dΛ′, (23)

where T (Λ) is the effective temperature associated to phonons with MFP Λ and direction ŝ; the
notation 〈.〉 stands for an angular average. The coefficients α(Λ′) are given by
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α(Λ′) =
K(Λ′)

Λ′

[∫
K(Λ′′)

Λ′′
dΛ′′

]−1

, (24)

where K(Λ′) is the bulk MFP distribution. In general, such a quantity can span several orders of
magnitude; however, for simplicity we assume the gray model, i.e. all phonons travel with the same
MFP, Λ0. Within this approximation, we have K(Λ) = κbulkδ(Λ− Λ0). In this work we choose Λ0

= 10 nm, namely as large as the unit cell, so that significant phonons size effects occur. With no loss
of generality, we set κbulk = 1 Wm−1K−1 . Eq. 23 is an integro-differential PDE, which is solved
iteratively for each phonon direction over an unstructured mesh (Romano & Di Carlo, 2011). We
apply periodic boundary conditions along the unit cell while imposing a difference of temperature
of ∆T = 1 K along the x-axis. At the pores’ walls we apply diffusive boundary conditions. Upon
convergence, the effective thermal conductivity is computed using Fourier’s law, i.e.

κeff = − L

∆TA

∫
A

J · n̂dS, (25)

where J = (κbulk/Λ0)〈T (Λ0)̂s〉n̂ is the heat flux, L is the size of the unit cell, A is the area of the
cold contact (with normal n̂). Throughout the text we use the quantity κ = κeff/κbulk as a measure
of phonon size effects.

C BACKGROUND ON MODELING MECHANICAL STRESS

We model mechanical stress by using the continuum linear elasticity equations

∂

∂xj
σij = fi, (26)

where fi is the body force (which is zero in this case), and σij is the stress tensor. Note that we used
the Einstein notation, i.e. repeated indexes are summed over. The strain εkl is related to the stress via
the fourth-rank tensor elastic constant Cijkl

σij = Cijklεkl. (27)

The strain is then related to the displacement u via

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂uk

)
. (28)

We apply periodic boundary conditions along the unit-cell and applied solicitation is a small in-plane
expansion. Once the stress tensor is calculated, we compute the von Mises stress as

σVM =

√
1

2
(σ3 − σ2)

2
+ (σ3 − σ1)

2
+ (σ2 − σ1)

2
, (29)

where σi are the principal stress axis. As a mechanical stability estimator we use σ = maxx∈D(σVM )
where D is the simulation domain. To avoid material’s plasticity, σ needs to be smaller than the
yield stress of a given material. For mechanical simulation we used the SUMIT code (

∑
MIT

Development Group, 2018).

D BACKGROUND ON STOCHASTIC DIFFERENTIAL EQUATIONS (SDE):
CHANGE OF MEASURE AND GRISANOV’S FORMULA

Theorem 3 (Grisanov Theorem, Change of Measure for Brownian Motion (Lipster & Shiryaev,
2001), Theorem 6.3 page 257). Let (Wt,Ft) be a Wiener process (Brownian motion) and (βt,Ft) a
random process such that for any T > 0∫ T

0

‖βt‖2 dt <∞ a.s

16
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Then the random process : dW̃t = dWt − βtdt or written equivalently: W̃t = Wt −
∫ t

0
βsds, is a

Wiener process with respect to Ft, t ∈ [0, T ]. Let PWT = L (W[0,T ]), and P W̃T = L (W̃[0,T ]) the

densities are given by: dP W̃T
dPWT

= exp
(∫ T

0
〈βs, dWs〉 − 1

2

∫ T
0
‖βs‖2 ds

)
. It follows that:

KL(PWT , P W̃T ) =
1

2
EPWT

[∫ T

0

‖βs‖2 ds

]
(30)

Theorem 4 (Grisanov Theorem, Change of Measure for Diffusion Processes, (Lipster & Shiryaev,
2001), ()). Let (Xt)t≥0 and (Yt)t≥0

dXt = αt(X)dt+ dWt

dYt = βt(Y )dt+ dWt

where X0 = Y0 is an F0 measurable random variable. Suppose that the non-anticipative functionals
αt(x) and βt(x) are such that a unique continuous strong solutions exits for both processes. If for
any T > 0:∫ T

0

‖αs(X)‖2 + ‖βs(X)‖2 ds <∞(a.s) and
∫ T

0

‖αs(Y )‖2 + ‖βs(Y )‖2 ds <∞(a.s).

Let PXT = L (X[0,T ]), and PYT = L (Y[0,T ]).

dPYT
dPXT

(X) = exp

(
−
∫ T

0

〈αs(X)− βs(X), dXs〉+
1

2

∫ T

0

(‖αs(X)‖ − ‖βs(X)‖2)ds

)
.

KL(PXT , P
Y
T ) =

1

2
EPXT

[∫ T

0

‖αs(X)− βs(X)‖2 ds

]
. (31)

E BACKGROUND ON ZERO-ORDER OPTIMIZATION (GRADIENT-FREE)

Consider the smoothed potential Uν defined as follows:

Uν(x) = Eg∼N (0,Id)U(x+ νg)

its gradient is given by:

∇xUν(x) = Eg
U(x+ νg)− U(x)

ν
g,

A monte carlo estimate of∇xUν(x) is:

Ĝn(x) =
1

n

n∑
j=1

(
U(x+ νgj)− U(x)

ν

)
gj ,

where g1, . . . gn are iid standard Gaussians vectors.

Using known results in zero order optimization under assumptions on smoothness and bounded
gradients of the gradients we have for all x ((Nesterov & Spokoiny, 2017; Shen et al., 2019)):

Eg
∥∥∥Ĝ1(x)−∇xU(x)

∥∥∥2

≤
(
βν(d+ 2)3/2 + (d+ 1)

1
2 ‖∇xU(x)‖

)2

≤
(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

Finally by independence of u1, . . . un we have:

Eg1,...,gn

∥∥∥Ĝn(x)−∇xU(x)
∥∥∥2

≤

(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

n
(32)
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F PROOFS

Proof of Lemma 1. Define the Lagrangian:

L(q, η) =

∫
Ω

log

(
q(x)

p0(x)

)
q(x)dx+

Ce∑
j=1

λj

∫
Ω

(ψj(x)− yj)2q(x)dx

+

Ci∑
k=1

λk

∫
x∈Ω

(φk(x)− bk)+q(x)dx+ η

(
1−

∫
x∈Ω

q(x)

)
Setting first order optimality conditions on q, we have for x ∈ Ω:

log

(
q(x)

p0(x)

)
+ 1 +

C∑
j=1

λj(ψj(x)− yj)2 +

Ci∑
k=1

λk(φk(x)− bk)+ − η = 0

Hence we have:

q(x) = p0(x)
exp

(
−
∑Ce
j=1 λj(ψj(x)− yj)2 −

∑Ci
k=1 λk(φk(x)− bk)+

)
e exp−η

, x ∈ Ω

and
q(x) = 0, x /∈ Ω,

First order optimality on η give us:
∫

Ω
q(x) = 1, we conclude by setting e exp(−η) = Z.

Proof of Theorem 1 1) Projected Langevin. Let us define the following continuous processes by
interpolation of Xk and YK (Piecewise constant):

dX̃t = PΩ(Ũt(X̃)dt+
√

2λdWt)

where Ũt(X̃) = −
∑∞
k=0∇xU(X̃kη)1t∈[kη,(k+1)η](t). Similarly let us define :

dỸt = PΩ(Gt(Ỹ )dt+
√

2λdWt)

where Gt(Ỹ ) = −
∑∞
k=0G(Ỹkη)1t∈[kη,(k+1)η](t).

It is easy to see that we have : Xk = X̃kη and Yk = Ỹkη .

Let πT
X̃

and πT
Ỹ

be the distributions of (X̃t)t∈[0,T ] and (Ỹ )t∈[0,T ].

Note that :

dỸt = PΩ

(
Ũt(X̃t)dt+

√
2λ(dWt +

1√
2λ

(Gt(Ỹt)− Ũt(X̃t))dt)

)
Let

dW̃t = dWt +
1√
2λ

(Gt(Ỹt)− Ũt(X̃t))dt

Hence we have :
dỸt = PΩ

(
Ũt(X̃) +

√
2λdW̃t

)
,

Assume that X0 = Y0 there exists Q such that , XT = Q({Wt}t∈[0,T ]) and YT = Q((W̃t)t∈[0,T ]).
Let µX̃T be the law of X̃t∈[0,T ]. Same for µỸT . The proof here is similar to the proof of Lemma 8 in
(Bubeck et al., 2015). By the data processing inequality we have:

KL(µX̃T , µ
Ỹ
T ) ≤ KL(Wt∈[0,T ], W̃t∈[0,T ]),

Now using Grisanov’s Theorem for change of measure of Brownian Motion (Theorem 3) we have:

KL(Wt∈[0,T ], W̃t∈[0,T ]) =
1

4λ
E
∫ T

0

|Gt(Ỹt)− Ũt(X̃t)|2dt

18
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Consider T = Kη, hence we have (with some abuse of notation we drop tilde as Yk = Ỹkη):

KL(µX̃T , µ
Ỹ
T ) ≤ 1

4λ
E
∫ Kη

0

|Gt(Ỹt)− Ũt(X̃t)|2dt

=
1

4λ
E
K−1∑
k=0

∫ (k+1)η

kη

‖G(Ykη)−∇xU(Xkη)‖2 dt

=
η

4λ

K−1∑
k=0

E ‖G(Ykη)−∇xU(Xkη)‖2

=
η

4λ

K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη) +∇xU(Ykη)−∇xU(Xkη)‖2

≤ η

2λ

K−1∑
k=0

(
E ‖G(Ykη)−∇xU(Ykη)‖2 + E ‖∇xU(Ykη)−∇xU(Xkη)‖2

)

where in the last inequality we used the fact that ||a− b||2 ≤ 2(||a||2 + ||b||2). Note that we have by
smoothness assumption on U :

‖∇xU(Ykη)−∇xU(Xkh)‖2 ≤ β2 ‖Xkh − Ykh‖2

Let R be the diameter of Ω, we can get a bound as follows:

KL(µX̃T , µ
Ỹ
T ) ≤ η

2λ


K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη)‖2︸ ︷︷ ︸
Gradient approximation error

+β2
K−1∑
k=0

E ‖Xkh − Ykh‖2


≤ η

2λ

(
K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)

Now using Pinsker inequality we have:

TV (µX̃T , µ
Ỹ
T )2 ≤ 2KL(µX̃T , µ

Ỹ
T ) ≤ η

λ

(
K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)

Hence for T = Kη we have:

TV (µS-PLMC
K , µPLMC

K ) ≤
√
η

λ

(
K−1∑
k=0

E ‖G(Yk)−∇xU(Yk)‖2 +Kβ2R2

) 1
2

. (33)

Proof of Theorem 1 2) Proximal LMC. Let us define the following continuous processes by interpo-
lation of Xk and YK (Piecewise constant):

dX̃t = Ũt(X̃)dt+
√

2λdWt

where Ũt(X̃) = −
∑∞
k=0(∇xU(X̃kη) + 1

γ (X̃kη − PΩ(X̃kη)))1t∈[kη,(k+1)η](t). Similarly let us
define :

dỸt = Gt(Ỹ )dt+
√

2λdWt

19
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whereGt(Ỹ ) = −
∑∞
k=0(G(Ỹkη)+ 1

γ (Ỹkη−PΩ(Ỹkη)))1t∈[kη,(k+1)η](t). Now applying Grisanov’s
Theorem for diffusions (Theorem 4) we have:

KL(µX̃T , µ
Ỹ
T ) =

1

4λ
EPXT

[∫ T

0

∥∥∥Ut(X̃)−Gt(X̃)
∥∥∥2

dt

]

=
1

4λ
E
K−1∑
k=0

∫ (k+1)η

kη

∥∥∥G(X̃kη)−∇xU(X̃kη)
∥∥∥2

dt

=
η

4λ

K−1∑
k=0

E
∥∥∥G(X̃kη)−∇xU(X̃kη)

∥∥∥2

=
η

4λ

K−1∑
k=0

E ‖G(Xk)−∇xU(Xk)‖2 .

Now using Pinsker inequality we have:

TV (µT
X̃
, µT
Ỹ

)2 ≤ 2KL(µT
X̃
, µT
Ỹ

).

Hence for T = Kη we have:

TV (µS-ProxLMC
K , µProxLMC

K ) ≤
√

η

2λ

(
K−1∑
k=0

E ‖G(Xk)−∇xU(Xk)‖2
) 1

2

. (34)

Proof of Theorem 2 . S-PLMC. If we set λ = 1, η ≤ α/K2, where α = 1/(δ + β2R2), in this
Corollary we obtain that : TV (µS−PLMC

K , µPLMC
K ) ≤ 1√

K
. Assuming A, B and C we consider

η ≤ min(R2/K,α/K2), and K = Ω̃(ε−12d12). Now using the triangle inequality together with the
bounds in Eq.s 7 we have: TV (µS−PLMC

K , π) ≤ TV (µS−PLMC
K , µPLMC

K ) + TV (µPLMC , π) ≤
ε+ 1√

K
.

S-ProxLMC. We conclude with a similar argument for TV (µS−ProxLMC
K , π) using Eq.s 8. Consid-

ering η = min(γ(1 + β2γ2)−1, 1
δK2 ), and K = Ω̃(ε−6d5), we obtain (ε+ 1√

K
) approximation in

TV of the target Gibbs distribution.

Proof of Corollary 1. Z-PLMC: We have:

TV (µX̃T , µ
Ỹ
T ) ≤

√√√√η

λ

(
K−1∑
k=0

E ‖GnU(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)
Taking the expectation we have:

Eg1...gnTV (µX̃T , µ
Ỹ
T ) ≤ Eg1...gn

√√√√η

λ

(
K−1∑
k=0

E ‖GnU(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)

≤

√√√√η

λ

(
K−1∑
k=0

EY Eg1...gn ‖GnU(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)
(Jensen inequality)

Note now that we have:
Eg1...gn ‖GnU(Ykη)−∇xU(Ykη)‖2 ≤ δ, ∀Ykη.

For n ≥
(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

/δ The rest of the proof is an application of Theorem 2.

Z-ProxLMC. A similar argument holds.
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