
Under review as a conference paper at ICLR 2020

SESAMEBERT: ATTENTION FOR ANYWHERE

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning with pre-trained models has achieved exceptional results for many
language tasks. In this study, we focused on one such self-attention network
model, namely BERT, which has performed well in terms of stacking layers
across diverse language-understanding benchmarks. However, in many down-
stream tasks, information between layers is ignored by BERT for fine-tuning. In
addition, although self-attention networks are well-known for their ability to cap-
ture global dependencies, room for improvement remains in terms of emphasizing
the importance of local contexts. In light of these advantages and disadvantages,
this paper proposes SesameBERT, a generalized fine-tuning method that (1) en-
ables the extraction of global information among all layers through Squeeze and
Excitation and (2) enriches local information by capturing neighboring contexts
via Gaussian blurring. Furthermore, we demonstrated the effectiveness of our ap-
proach in the HANS dataset, which is used to determine whether models have
adopted shallow heuristics instead of learning underlying generalizations. The ex-
periments revealed that SesameBERT outperformed BERT with respect to GLUE
benchmark and the HANS evaluation set.

1 INTRODUCTION

In recent years, unsupervised pretrained models have dominated the field of natural language pro-
cessing (NLP). The construction of a framework for such a model involves two steps: pretraining
and fine-tuning. During pretraining, an encoder neural network model is trained using large-scale
unlabeled data to learn word embeddings; parameters are then fine-tuned with labeled data related
to downstream tasks.

Traditionally, word embeddings are vector representations learned from large quantities of unstruc-
tured textual data such as those from Wikipedia corpora (Mikolov et al., 2013). Each word is repre-
sented by an independent vector, even though many words are morphologically similar. To solve this
problem, techniques for contextualized word representation (Peters et al., 2018; Devlin et al., 2019)
have been developed; some have proven to be more effective than conventional word-embedding
techniques, which extract only local semantic information of individual words. By contrast, pre-
trained contextual representations learn sentence-level information from sentence encoders and can
generate multiple word embeddings for a word. Pretraining methods related to contextualized word
representation, such as BERT (Devlin et al., 2019), OpenAI GPT (Radford et al., 2018), and ELMo
(Peters et al., 2018), have attracted considerable attention in the field of NLP and have achieved
high accuracy in GLUE tasks such as single-sentence, similarity and paraphrasing, and inference
tasks (Wang et al., 2019). Among the aforementioned pretraining methods, BERT, a state-of-the-art
network, is the leading method that applies the architecture of the Transformer encoder, which out-
performs other models with respect to the GLUE benchmark. BERT’s performance suggests that
self-attention is highly effective in extracting the latent meanings of sentence embeddings.

This study aimed to improve contextualized word embeddings, which constitute the output of en-
coder layers to be fed into a classifier. We used the original method of the pretraining stage in the
BERT model. During the fine-tuning process, we introduced a new architecture known as Squeeze
and Excitation alongside Gaussian blurring with symmetrically SAME padding (”SESAME” here-
after). First, although the developer of the BERT model initially presented several options for its
use, whether the selective layer approaches involved information contained in all layers was unclear.
In a previous study, by investigating relationships between layers, we observed that the Squeeze and
Excitation method (Hu et al., 2018) is key for focusing on information between layer weights. This

1



Under review as a conference paper at ICLR 2020

method enables the network to perform feature recalibration and improves the quality of representa-
tions by selectively emphasizing informative features and suppressing redundant ones. Second, the
self-attention mechanism enables a word to analyze other words in an input sequence; this process
can lead to more accurate encoding. The main benefit of the self-attention mechanism method is
its high ability to capture global dependencies. Therefore, this paper proposes the strategy, namely
Gaussian blurring, to focus on local contexts. We created a Gaussian matrix and performed convo-
lution alongside a fixed window size for sentence embedding. Convolution helps a word to focus on
not only its own importance but also its relationships with neighboring words. Through such focus,
each word in a sentence can simultaneously maintain global and local dependencies.

We conducted experiments with our proposed method to determine whether the trained model could
outperform the BERT model. We observed that SesameBERT yielded marked improvement across
most GLUE tasks. In addition, we adopted a new evaluation set called HANS (McCoy et al., 2019),
which was designed to diagnose the use of fallible structural heuristics, namely the lexical overlap
heuristic, subsequent heuristic, and constituent heuristic. Models that apply these heuristics are
guaranteed to fail in the HANS dataset. For example, although BERT scores highly in the given test
set, it performs poorly in the HANS dataset; BERT may label an example correctly not based on
reasoning regarding the meanings of sentences but rather by assuming that the premise entails any
hypothesis whose words all appear in the premise (Dasgupta et al., 2018). By contrast, SesameBERT
performs well in the HANS dataset; this implies that this model does not merely rely on heuristics.
In summary, our final model proved to be competitive on multiple downstream tasks.

2 RELATED WORK

2.1 UNSUPERVISED PRETRAINING IN NLP

Most related studies have used pretrained word vectors (Mikolov et al., 2013; Pennington et al.,
2014) as the primary components of NLP architectures. This is problematic because word vectors
capture semantics only from a word’s surrounding text. Therefore, a vector has the same embedding
for the same word in different contexts, even though the word’s meaning may be different.

Pretrained contextualized word representations overcome the shortcomings of word vectors by cap-
turing the meanings of words with respect to context. ELMo (Peters et al., 2018) can extract context-
sensitive representations from a language model by using hidden states in stacked LSTMs. Genera-
tive pretraining (Radford et al., 2018) uses the ”Transformer encoder” rather than LSTMs to acquire
textual representations for NLP downstream tasks; however, one limitation of this model is that
it is trained to predict future left-to-right contexts of a unidirectional nature. BERT (Devlin et al.,
2019) involves a masked language modeling task and achieves high performance on multiple natural
language-understanding tasks. In BERT architecture, however, because the output data of different
layers encode a wide variety of information, the most appropriate pooling strategy depends on the
case. Therefore, layer selection is a challenge in learning how to apply the aforementioned models.

2.2 SQUEEZE AND EXCITATION

The Squeeze and Excitation method was introduced by Hu et al. (2018), who aimed to enhance the
quality of representations produced by a network. Convolutional neural networks traditionally use
convolutional filters to extract informative features from images. Such extraction is achieved by
fusing the spatial and channel-wise information of the image in question. However, the channels
of such networks’ convolutional features have no interdependencies with one another. The network
weighs each of its channels equally during the creation of output feature maps. Through Squeeze
and Excitation, a network can take advantage of feature recalibration and use global information to
emphasize informative features and suppress less important ones.

2.3 LOCALNESS MODELING

The self-attention network relies on an attention mechanism to capture global dependencies without
considering their distances by calculating all the positions in an input sequence. Our Gaussian-
blurring method focuses on learning local contexts while maintaining a high ability to capture long-
range dependencies. Localness modeling was considered a learnable form of Gaussian bias (Yang

2



Under review as a conference paper at ICLR 2020

et al., 2019) in which a central position and dynamic window are predicted alongside intermediate
representations in a neural network. However, instead of using Gaussian bias to mask the logit sim-
ilarity of a word, we performed Gaussian bias in the layer after the embedding layer to demonstrate
that performing element-wise operations in this layer can improve the model performance.

2.4 DIAGNOSING SYNTACTIC HEURISTICS

A recent study (McCoy et al., 2019) investigated whether neural network architectures are prone to
adopting shallow heuristics to achieve success in training examples rather than learning the under-
lying generalizations that need to be captured. For example, in computer vision, neural networks
trained to recognize objects are misled by contextual heuristics in cases of monkey recognition
(Wang et al., 2017). For example, in the field of natural language inference (NLI), a model may
predict a label that contradicts the input because the word ”not”, which often appears in examples of
contradiction in standard NLI training sets, is present (Naik et al., 2018; Carmona et al., 2018). In the
present study, we aimed to make SesameBERT robust with respect to all training sets. Consequently,
our experiments used HANS datasets to diagnose some fallible structural heuristics presented in this
paper (McCoy et al., 2019).

3 METHODS

We focused on BERT, which is the encoder architecture of a multilayer Transformer (Vaswani et al.,
2017), featuring some improvements. The encoder consists of L encoder layers, each containing
two sublayers, namely a multihead self-attention layer and a feed-forward network. The multihead
mechanism runs through a scaled dot product attention function, which can be formulated by query-
ing a dictionary entry with key value pairs (Miller et al., 2016). The self-attention input consists of
a query Q ∈ Rl×d, a key K ∈ Rl×d, and a value V ∈ Rl×d, where l is the length of the input
sentence, and d is the dimension of embedding for query, key and value. For subsequent layers, Q,
K, V comes from the output of the previous layer. The scaled dot product attention (Vaswani et al.,
2017) is defined as follows:

Attention(Q,K,V ) = softmax(
QKT

√
d

) · V (1)

The output represents the multiplication of the attention weights A and the vector v, where
A = softmax(QKT

√
d

) ∈ Rl×l. The attention weights Ai,j enabled us to better understand about
the importance of the i-th key-value pairs with respect to the j-th query in generating the output
(Bahdanau et al., 2015). During fine-tuning, We used the output encoder layer from the pretrained
BERT model to create contextualized word embeddings and feed these embeddings into the model.
Although several methods have been developed for extracting contextualized embeddings from var-
ious layers, we believed that these methods had substantial room for improvement. Therefore, we
used Squeeze and Excitation to solve the aforementioned problem.

3.1 SQUEEZE AND EXCITATION

In this study, we proposed the application of Squeeze and Excitation (Hu et al., 2018); its application
to the output of the encoder layer was straightforward once we realized that the number of channels
was equivalent to the number of layers. Therefore, we intended to use the term channels and layers
interchangeably.

First, we defined U:,:,k as the output of the k-th encoder layer, for all 1 ≤ k ≤ n. We wanted
to acquire global information from between the layers before feeding the input into the classifier;
therefore, we concatenated all the output from each encoder layer to form the feature maps U ∈
Rl×d×n. In the squeeze step, by using global average pooling on the kth layer, we were able to
squeeze the global spatial information into a layer descriptor. In other words, we set the kth layer’s
output of the squeeze function as Z:,:,k.

Z:,:,k = fsq(Uk) =
1

l × d

l∑
i=1

d∑
j=1

Ui,j,k (2)

3



Under review as a conference paper at ICLR 2020

Figure 1: We extracted the output from each layer of the encoders and concatenated all the layers to
form a three-dimensional tensor U. We then performed Squeeze fsq(U) and Excitation fex(fsq(U))
to obtain the weight of each output layer. Finally, we fed the weighted average of all layers into the
classifier. In this work we employed n = 12 attention layers.

In the excitation step, we aimed to fully capture layer-wise dependencies. This method uses the
layer-wise output of the squeeze operation fsq to modulate interdependencies of all layers. Exci-
tation is a gating mechanism with a sigmoid activation function that contains two fully connected
layers. Let W1 and W2 be the weights of the first and second fully connected layers, respectively,
and let r be the bottleneck in the layer excitation that encodes the layer-wise dependencies; therefore,
W1 ∈ Rn×n

r , and W2 ∈ Rn
r×n. The excitation function fex:

s = fex(z) = σ(ReLU(z,W1),W2) (3)
where z is the vector squeezed from tensor Z.

Finally, we rescaled the output Z:,:,k by multiplying it by sk. The rescaled output is deonted as ũk.
The scaling function fscale is defined as follows:

ũk = fscale(sk,U:,:,k) (4)
We concatenated all rescaled outputs from all encoder layers to form our rescaled feature maps ũ.
The architecture is shown in Figure 1. We then extracted layers from the rescaled feature maps, or
calculated a weighted average layer ũavg .

ũavg =

∑n
k=1 fscale(sk,U:,:,k)∑n

k=1 sk
(5)

3.2 GAUSSIAN BLURRING

Given an input sequenceX = {x1, x2, ..., xl} ∈ Rl×d, the model transformed it into queries Q, keys
K, and values V , where Q,K, and V ∈ Rl×d. Multihead attention enabled the model to jointly
attend to information from different representation subspaces at different positions. Thus, the three
types of representations are split into h subspaces of size d

h to attend to different information. For
example, Q = (Q1,Q2, ...,Qh) with Qi ∈ Rl× d

h for all 1 ≤ i ≤ h. In each subspace h, the
element ohi in the output sequence Oh = (oh1 , o

h
2 , ..., o

h
l ) is computed as follows:

ohi = Attention(qhi ,K
h)V h (6)

where ohi ∈ R d
h .

To capture the local dependency related to each word, we first used a predefined fixed window size
k to create a Gaussian blur g, where g ∈ Rk:

g(x;σ, k) = exp(
−(x− bk2 c)

2

2σ2
) (7)

where σ refers to the standard deviation. Several Gaussian-blurring strategies are feasible for apply-
ing convolutional operations to attention outputs.

4



Under review as a conference paper at ICLR 2020

Figure 2: Diagram of a one-dimensional Gaussian
blur kernel, which was convoluted through the in-
put dimension. This approach enabled the central
word to acquire information concerning neighbor-
ing words with weights proportional to the Gaus-
sian distribution.

3.2.1 GAUSSIAN BLURRING ON ATTENTION OUTPUTS

The first strategy focuses on each attention output Oh. We restrict Ôh
i,j,: to a local scope with a fixed

size k centered at the position i and dimension j, where 1 ≤ j ≤ d, and k can be any odd number
between 1 and l, expressed as follows:

Ôh
i,j,: = [Oh

i−b k2 c,j
, ..., Oh

i,j ..., O
h
i+b k2 c,j

] (8)

We then enhance the localness of Ôh
i,j,: through a parameter-free 1D convolution operation with g.

Õh
i,j = Ôh

i,j,: · g (9)

The final attention output is Õh, which is the dot product between the Gaussian kernel and the
corresponding input array elements at every position of Ôh

i,j,:,

Õh = Oh ∗ g (10)

where ∗ is defined as a convolution operation, as illustrated in Figure 2.

More specifically, Õh
i,j , the entry of Õh in the i-th row and j-th column, equals blur(Oh

i,j):

Õh
ij = blur(Oh

i,j)

=
∑

x∈[−k,k]

g(x;σ, k)Oi+x,j

=
∑

x∈[−k,k]

g(x;σ, k)
∑
l

Ai+x,lVl,j (11)

3.2.2 GAUSSIAN BLURRING ON VALUES

Another option focuses on values V. We applied the aforementioned method again but restrict V h

to a local scope. The final attention output Õh is denoted as follows:

Õh = Attention(Qh,Kh)(V h ∗ g) (12)

The difference between the present method and the method of performing Gaussian blurring on
attention outputs and values is that the method of performing Gaussian blurring on attention outputs
and values places greater emphasis on the interaction of cross-query vectors, whereas the present
method focuses on cross-value vectors. Finally, the outputs of the h attention heads are concatenated
to form the final output representation Õ:

Õ = (Õ1, Õ2, ..., Õh) (13)

where Õ ∈ Rl×d. The multihead mechanism enables each head to capture distinct linguistic input
properties (Li et al., 2019). Furthermore, because our model is based on BERT, which builds an
encoder framework with a stack of 12 layers, we were able to apply locality modeling to all lay-
ers through Squeeze and Excitation. Therefore, we expected that the global information and local
properties captured by all layers could be exploited.

5



Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

We evaluated the proposed SesameBERT model by conducting multiple classification tasks. For
comparison with the results of a previous study on BERT (Devlin et al., 2019), we reimplemented
the BERT model in TensorFlow in our experiments. 1 In addition, we set most of the parameters
to be identical to those in the original BERT model, namely, batch size: 16, 32, learning rate: 5e-5,
3e-5, 2e-5, and number of epochs: 3, 4. All of the results in this paper can be replicated in no more
than 12 hours by a graphics processing unit with nine GLUE datasets. We trained all of the models
in the same computation environment with an NVIDIA Tesla V100 graphics processing unit.

4.1 GLUE DATASETS

GLUE benchmark is a collection of nine natural language-understanding tasks, including question-
answering, sentiment analysis, identification of textual similarities, and recognition of textual en-
tailment (Wang et al., 2019). GLUE datasets were employed because they are sets of tools used to
evaluate the performance of models for a diverse set of existing NLU tasks. The datasets and metrics
used for the experiments in this study are detailed in the appendix A.

4.2 HANS DATASET

We used a new evaluation set, namely the HANS dataset, to diagnose fallible structural heuristics
presented in a previous study (McCoy et al., 2019) based on syntactic properties. More specifically,
models might apply accurate labels not based on reasoning regarding the meanings of words but
rather by assuming that the premise entails any hypothesis whose words all appear in the premise
(Dasgupta et al., 2018; Naik et al., 2018). Furthermore, an instance that contradicts the lexical
overlap heuristics in MNLI is likely too rare to prevent a model from learning heuristics. Models
may learn to assume that a label is contradictory whenever a negation word is contained in the
premise but not the hypothesis (McCoy & Linzen, 2019). Therefore, whether a model scored well
on a given test set because it relied on heuristics can be observed. For example, BERT performed
well on MNLI tasks but poorly on the HANS dataset; this finding suggested that the BERT model
employs the aforementioned heuristics.

The main difference between the MNLI and HANS datasets is their numbers of labels. The MNLI
dataset has three labels, namely Entailment, Neutral, and Contradiction. In the HANS dataset,
instances labeled as Contradiction or Neutral are translated into non-entailment. Therefore, this
dataset has only two labels: Entailment and Non-entailment. The HANS dataset targets three heuris-
tics, namely Lexical overlap, Subsequence, and Constituent, with more details in appendix B. This
dataset not only serves as a tool for measuring progress in this field but also enables the visualization
of interpretable shortcomings in models trained using MNLI.

4.3 RESULTS

4.3.1 GLUE DATASETS RESULTS

This subsection provides the experiment results of the baseline model and the models trained using
our proposed method. We performed Gaussian blurring on attention outputs in the experiment. In
addition, we employed a batch size of 32, learning rates of 3e-5, and 3 epochs over the data for all
GLUE tasks. We fine-tuned the SesameBERT model through 9 downstream tasks in the datasets.
For each task, we performed fine-tuning alongside Gaussian blur kernel sigmas 1e-2, 1e-1, 3e-1, and
5e-1 and selected that with the most favorable performance in the dev set. Because GLUE datasets
do not distribute labels for test sets, we uploaded our predictions to the GLUE server for evaluation.
The results are presented in Table 1; GLUE benchmark is provided for reference. In most tasks, our
proposed method outperformed the original BERT-Base model (Devlin et al., 2019). For example, in
the RTE and AX datasets, SesameBERT yielded improvements of 1.2% and 1.6%, respectively. We
conducted experiments on GLUE datasets to test the effects of Gaussian blurring alongside BERT
on the value layer and context layer. Table 2 shows the degrees of accuracy in the dev set. The
performance of Gaussian blurring with respect to self-attention layers varied among cases.

1Our code will be released upon acceptance.

6



Under review as a conference paper at ICLR 2020

Table 1: Test results in relation to the GLUE benchmark. The metrics for these tasks, shown in
appendix A, were calculated using a GLUE score. We compared our SesameBERT model with the
original BERT-Base model, ELMo (Peters et al., 2018) and OpenAI GPT (Radford et al., 2018). All
results were obtained from https://gluebenchmark.com/leaderboard.

BiLSTM+ELMo+Attn OpenAI GPT BERT-Base SesameBERT
CoLA 33.6 45.4 52.1 52.7
SST-2 90.4 91.3 93.5 94.2
MRPC 84.4 82.3 88.9 88.9
STS-B 72.3 80.0 85.8 85.5
QQP 63.1 70.3 71.2 70.8
MNLI-m 74.1 82.1 84.6 83.7
MNLI-mm 74.5 81.4 83.4 83.6
QNLI 79.8 88.1 90.5 91.0
RTE 58.9 56.0 66.4 67.6
AX 21.7 - 34.2 35.8
GLUE score 70.0 76.9 78.3 78.6

Table 2: Performance of Gaussian blurring alongside the BERT model. The results were tested on
four GLUE datasets, with accuracy as the metric.

MRPC RTE QNLI SST-2
BERT 86.7 65.3 88.4 92.7
Blur on Value layer 86.8 69.7 90.9 91.3
Blur on Context layer 86.5 70.4 90.8 92.0

Gong et al. (2019) demonstrated that different layers vary in terms of their abilities to distinguish
and capture neighboring positions and global dependency between words. We evaluated the weights
learned from all layers. These weights indicated that a heavier weight represents greater importance.
The results are shown in appendix C. Because the lower layer represents word embeddings that are
deficient in terms of context (Baosong Yang, 2018), the self-attention model in the lower layer may
need to encode representations with global context and may struggle to learn localness. Table 3
shows the degree of accuracy predicted by each extracted attention output layer method. The results
indicated that the lower layers had lower accuracy.

We performed three ablation studies. First, we examined the performance of our method without
blurring; we observed that Squeeze and Excitation helped the higher layer. This trend suggested
that higher layers benefit more than do lower layers from Squeeze and Excitation. Second, we an-
alyzed the effect of Gaussian blurring on the context layer. The results revealed that the method
with blurring achieved higher accuracy in lower layers. We assumed that capturing short-range de-
pendencies among neighboring words in lower layers is an effective strategy. Even if self-attention
models capture long-range dependencies beyond phrase boundaries in higher layers, modeling lo-
calness remains a helpful metric. Finally, we observed the direct effects of SesameBERT. Although
our proposed architecture performed poorly in lower layers, it outperformed the other methods in
higher layers. This finding indicated that in higher layers, using Squeeze and Excitation alongside
Gaussian blurring helps self-attention models to capture global information in all layers.

4.3.2 HANS DATASET RESULTS

We trained both BERT and SesameBERT on the MNLI-m dataset to evaluate their classification ac-
curacy. Similar to the results of another study (Devlin et al., 2019), BERT achieved 84.6% accuracy,
which is higher than that of SesameBERT, as shown in Table 1. In the HANS dataset, we explored
the effects of two models on each type of heuristic. The results are presented in Figure 3; we first
examined heuristics for which the label was Entailment. We can see that both models performed
well; they assigned the correct labels almost 100% of the time, as we had expected them to do after
adopting the heuristics targeted by HANS.

7

https://gluebenchmark.com/leaderboard


Under review as a conference paper at ICLR 2020

Table 3: Comparison of specified layers among various approaches in the RTE dataset. We dissected
our models into two methods. SE-BERT refers to BERT with Squeeze and Excitation; BLUR-BERT
refers to BERT with Gaussian blurring.

Layers BERT SE-BERT BLUR-BERT SesameBERT
Dev Set Accuracy

First Hidden Layer 58.1 57.0 64.6 54.5
Second Hidden Layer 55.6 56.3 57.4 54.2
Second-to-Last Hidden 64.6 69.0 67.5 70.8
Last Hidden 65.3 67.9 68.6 70.4
Sum Last Four Hidden 65.0 69.3 68.2 69.7
Sum All 12 Layers 68.2 68.6 66.4 69.0
Weighted Average Layers 66.8 67.5 67.9 70.0

Next, we evaluated the heuristics labeled as Non-entailment. BERT performed poorly for all three
cases, meaning that BERT assigned correct labels based on heuristics instead of applying the correct
rules of inference. By contrast, our proposed method performed almost three times as well as BERT
in the case of ”Lexical overlap”.

Figure 3: We compared BERT and SesameBERT for each case. Left: Results of heuristics-entailed
cases. Right: Results of heuristics labeled as Nonentailment. In contrast to the results in Left:,
BERT performed poorly in all three cases in Right; this indicated that the model had adopted shallow
heuristics rather than learning the latent information that it intended to capture.

This paper argues that capturing local contexts for self-attention networks with Gaussian blurring
can prevent models from easily adopting heuristics. Although our models performed poorly in cases
of ”Subsequence” and ”Constituent”, both of these heuristics may be hierarchical cases of the lexical
overlap heuristic, meaning that the performance of this hierarchy would not necessarily match the
performance of our models (McCoy et al., 2019).

5 CONCLUSION

This paper proposes a fine-tuning approach named SesameBERT based on the pretraining model
BERT to improve the performance of self-attention networks. Specifically, we aimed to find high-
quality attention output layers and then extract information from aspects in all layers through
Squeeze and Excitation. Additionally, we adopted Gaussian blurring to help capture local contexts.
Experiments using GLUE datasets revealed that SesameBERT outperformed the BERT baseline
model. The results also revealed the weight distributions of different layers and the effects of ap-
plying different Gaussian-blurring approaches when training the model. Finally, we used the HANS
dataset to determine whether our models were learning what we wanted them to learn rather than
using shallow heuristics. We highlighted the use of lexical overlap heuristics as an advantage over
the BERT model. SesameBERT could be further applied to prevent models from easily adopting
shallow heuristics.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. ICLR, 2015.

Derek F. Wong Fandong Meng Lidia S. Chao Tong Zhang Baosong Yang, Zhaopeng Tu. Modeling
localness for self-attention networks. EMNLP, 2018.

V. Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. Behavior analysis of nli models:
Uncovering the influence of three factors on robustness. NAACL, 2018.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmuller, Samuel J. Gershman, and Noah D. Goodman.
Evaluating compositionality in sentence embeddings. 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2019.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of bert
by progressively stacking. ICML, 2019.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks.
CVPR, 2018.

Jian Li, Baosong Yang, Zi-Yi Dou, Xing Wang, Michael R. Lyu, and Zhaopeng Tu. Information
aggregation for multi-head attention with routing-by-agreement. NAACL, 2019.

R. Thomas McCoy and Tal Linzen. Non-entailed subsequences as a challenge for natural language
inference. SCiL, 2019.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. ACL, 2019.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality. NIPS, 2013.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading documents. 2016.

Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig.
Stress test evaluation for natural language inference. COLING, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. EMNLP, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. NAACL, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NIPS, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. ICLR,
2019.

Jianyu Wang, Zhishuai Zhang, Cihang Xie, Yuyin Zhou, Vittal Premachandran, Jun Zhu, Lingxi Xie,
and Alan Yuille. Visual concepts and compositional voting. Annals of Mathematical Sciences and
Applications, 2017.

Baosong Yang, Longyue Wang, Derek Wong, Lidia S. Chao, and Zhaopeng Tu. Convolutional
self-attention networks. NAACL, 2019.

9



Under review as a conference paper at ICLR 2020

A DESCRIPTIONS OF GLUE DATASETS

Table 4: Descriptions of GLUE tasks. The second and third column denote the sizes of the corre-
sponding corpora. All tasks are classification tasks, except for STS-B, which is a regression task.

Corpus #Train #Test Task Metrics Domain
Single− Sentence Tasks

CoLA 8.5k 1k acceptability Matthews correlation misc
SST-2 67k 1.8k sentiment Accuracy movie reviews

Similarity/Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase Accuracy/F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc
QQP 364k 391k paraphrase Accuracy/F1 social QA

Inference Tasks
MNLI 393k 20k NLI Accuracy misc
QNLI 105k 5.5k QA/NLI Accuracy Wikipedia
RTE 2.5k 3k NLI Accuracy Wikipedia
AX - 1.1k NLI Matthews correlation news, paper, etc

B DESCRIPTION OF HANS DATASET

Table 5: Three types of heuristics targeted by the HANS dataset. The examples show incorrect
entailment predictions that would result from targeting these heuristics.

Heuristic Definition Example
Lexical overlap Assume that a premise entails all hypotheses

constructed from words in the premise
The docter was paid by the actor.
−−−−→
WRONG

The doctor paid the actor.

Subsequence Assume that a premise entails all of its contigu-
ous subsequences.

The doctor near the actor danced.
−−−−→
WRONG

The actor danced.

Constituent Assume that a premise entails all complete sub-
trees in its parse tree.

If the artist slept, the actor ran.
−−−−→
WRONG

The artist slept.

C LAYER WEIGHTS CALCULATED BY SQUEEZE AND EXCITATION

Figure 4: Evaluation of the weights calculated by Squeeze and Excitation for all layers, with the
RTE dataset as an example.

10


	Introduction
	RELATED WORK
	Unsupervised Pretraining in NLP
	Squeeze and Excitation
	Localness Modeling
	Diagnosing Syntactic Heuristics

	Methods
	Squeeze and Excitation
	Gaussian Blurring
	Gaussian Blurring on Attention Outputs
	Gaussian Blurring on Values


	Experiments
	GLUE Datasets
	HANS Dataset
	Results
	GLUE Datasets Results
	HANS Dataset Results


	Conclusion
	Descriptions of GLUE DATASETS
	Description of HANS DATASET
	Layer weights calculated by Squeeze and Excitation

