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ABSTRACT

Extracting underlying dynamics of objects in image sequences is one of the chal-
lenging problems in computer vision. On the other hand, dynamic mode decom-
position (DMD) has recently attracted attention as a way of obtaining modal rep-
resentations of nonlinear dynamics from (general multivariate time-series) data
without explicit prior knowledge about the dynamics. In this paper, we propose
a convolutional autoencoder based DMD (CAE-DMD) that is an extended DMD
(EDMD) approach, to extract underlying dynamics in videos. To this end, we de-
velop a modified CAE model by incorporating DMD on the encoder, which gives
a more meaningful compressed representation of input image sequences. On the
reconstruction side, a decoder is used to minimize the reconstruction error after
applying the DMD, which in result gives an accurate reconstruction of inputs.
We empirically investigated the performance of CAE-DMD in two applications:
background/foreground extraction and video classification, on publicly available
datasets.

1 INTRODUCTION

Extracting underlying dynamics of objects in video frames is one of the challenging problems in
video processing Erichson et al. (2016). Meanwhile, dynamic mode decomposition (DMD) Rowley
et al. (2009); Schmid (2010) has recently attracted attention as a way of obtaining modal repre-
sentations of nonlinear dynamics from (general multivariate time-series) data without explicit prior
knowledge about the dynamics. It is closely related to the spectral analysis of the Koopman operator
and has been successfully applied for the extraction of spatiotemporal patterns which is crucial in
many applications of engineering fields, such as fluid dynamics, epidemiology, neuroscience, con-
trolled systems, analysis of power systems, oceanography, molecular kinetics and many others. We
consider two major applications which are based on the underlying dynamics of videos, one is the
background/foreground extraction and the other is video classification. Since DMD can extract low
rank spatio-temporal features of complex dynamical systems and gives information of growth rates
and frequencies of the dynamics, which allows us to interpret spatial structural and temporal infor-
mation in the data. Therefore, it is possible to perform analysis in a dimensionality reduction data
by considering dynamics embedding with the modes obtained by DMD. However, standard or exact
DMD method is unable extract the complex non-linear dynamics in time series data, since in the
standard approach vertically aligned spatio-temporal image sequences are processed all at once with
any further processing, so it becomes difficult to extract the required dynamic information from the
data.

In this paper, we propose a universal modal embedding of dynamics in videos by CAE-DMD
method; a variant of extended dynamic mode decomposition (EDMD) to obtain a compact modal
representations of non-linear dynamics from a general multivariate time-series data. In CAE-DMD,
at first latent vectors of complex video sequences are obtained by training a CAE network and then
DMD is applied on these latent vectors to obtain modal representation of input image sequences,
those contain the spatial information of respective image sequences. This method exploits the spa-
tial and temporal information in a low-rank modal with latent vector representations that gives more
meaningful representation of input image sequences. We investigate the empirical performance of
CAE-DMD on publicly available datasets and results show that our method achieves competitive
performance and can cope with complex dynamics in videos or any time-series data.
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Algorithm 1 Dynamic Mode Decomposition Schmid (2010)
Require: V1 and V2 input sequences.
Ensure: Dynamic modes Φ and eigenvalues ∆.

1: Ur,Sr,Qr ← compact SVD of V1.
2: Ã← U∗rV2QrS

−1
r .

3: W̃ ,∆← eigenvectors and eigenvalues of Ã;
4: Φ← V2QrS

−1
r W̃r

5: return: Φ,∆;

The remainder of this paper is organized as follows: First, we give a brief review on Koopman spec-
tral analysis and Extended DMD in Section 2. In Section 3, we describe our proposed model, and
video processing with CAE-DMD is presented in Section 4. Experiments and results are discussed
in in Section 5 along with performance evaluations on the basis of benchmark datasets. Finally,
Section 6 summarizes and concludes the study.

2 BACKGROUND: EXTENDED DMD

Consider a (possibly nonlinear) dynamical system:

vt+1 = f(vt), v ∈M,

where f : M → M, M is the state space, and t is the time index. In this system, the Koopman
operator K for ∀v ∈M can be defined as follows:

Kg(v) = g(f(v)),

where g : M → C (∈ F) denotes an observable that is an element in some function space F
Koopman (1931). By definition, K is a linear operator in F . Here, we assume that there exists a
subspace of F invariant to K, which can be denoted by G ⊂ F . Additionally, we assume that G
is finite-dimensional and that a set of observables {g1, . . . , gn} that spans G is available. If we let
g = [g1, . . . , gn]> : M→ Cn, the one-step evolution of g for ∀v ∈M can be expressed as follows:

Kg(v) = g(f(v)),

where the finite dimensionalK is the restriction ofK to G. Then, if all eigenvalues ofK are distinct,
any value of g can be expressed as follows:

g(v) =
∑n

i=1ϕ(v)ξi,

with some coefficients ξi, where ϕ : M → Cn is an eigenfunction of K with the corresponding
eigenvalue λ ∈ C, i.e.,Kϕ(v) = λϕ(v). Thus, we obtain

g(vt) =
∑n

i=1λ
t
ici, ci = ϕi(v0)ξi.

As a result, g is decomposed into modes {ci}, and the modulus and argument of λi express the
decay rate and frequency of ci, respectively.

Next, we summarize EDMD as a method to approximates the Koopman operator Williams et al.
(2015). It requires a pair of time series data as

V1 = [v1,v2,v3, . . . ,vT−1],V2 = [v2,v3,v4, . . . ,vT ],

where vt ∈ M and vt+1 = f(vt). And then, suppose we are given a set of independent basis
functions B = {b1, b2, . . . , bn}, where bi ∈ K. A vector valued function b : M → C1×n, where
b(v) = [b1(v), b2(v), . . . , bn(v)]. Next, we generate K ∈ Rn×n, a finite dimensional approxima-
tion of K and a function bd ∈ Fb ⊂ F , written as

bd =

n∑
i=1

wibi = bw,

where w contain the weights of n elements of B. Since Fb is not an invariant subspace of K,
Therefore

Kbd = b(Kw) + r.
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The above equation includes a residual term r ∈ F . Therefore, to findK, we minimize the following
optimization

J =
1

2

T−1∑
i=1

|(b(vi+1)− b(vi)K)a|,

which is a least square problem whose unique solution can be found as,

K = G†A,

where † denotes the pseudoinverse, while G and A can be obtained by solving the following equa-
tions

G =
1

T − 1

T−1∑
i=1

b(vi) ∗ b(vi),

A =
1

T − 1

T−1∑
i=1

b(vi) ∗ b(vi+1),

whereK,G,A ∈ Cn×n. Thus,K is a finite dimensional approximation of K and EDMD approxi-
mation of an eigenfunction of K can be written as

ϕi = bξi.

In the above equation ξi is the i-th eigenvector ofK. Note that here we briefly summarized EDMD,
a more detailed explanation can be found in Williams et al. (2015).

3 PROPOSED MODEL: CAE-DMD

In the propose model of CAE-DMD, we first train the covolutional auto-encoder network on input
image sequences to obtain the compact representation of these sequences in the form of latent vec-
tors/encoded sequences. These encoded sequences of input videos capture the complex underlying
dynamics after training the CAE network. In the next step, we apply DMD on these compact repre-
sentations to obtain modal representations, those contain the spatial information of image sequences.
Most of the spatial information of video sequences can be found in few DMD modes. Therefore,
a few set of modes can capture dynamics of even longer video sequences, that is one of the main
advantages of dimensionality reduction temporally using DMD. Also, the spatial dimension of in-
put sequences can be reduced by choosing the length of latent vectors. Therefore, we exploit the
dimensionality reduction spatially and temporally for modal embedding of dynamics in time series
sequences. Also, extraction of non-linear information in the data is achieved by representing the
input image sequences in the form of encoded vectors using deep convolutional autoencoder. The
architecture of CAE-DMD for foreground and background extraction is illustrated in Figure 1. The
details of the main blocks of CAE-DMD model are described as follows:

Encoder: In the first step, input video sequences {v1,v2, . . . ,vT−1} are trained on convolutional
autoencoder network. For this training we used sixteen layers deep CAE network. The filter size of
each convolutional layer was fixed to 5× 5 with increasing number of total filters at each layer. The
Encoder takes flattened video sequences as input and generates the feature map in the next layer as

zi = f(pi ×V1 + bi), (1)

where V1 contains the input images, pi and bi are the corresponding filter and bias, and f is the
activation function. In this model, we used Rectified Linear Unit (ReLU) as activation function after
each convolutional layer Zeiler et al. (2013), which is further followed by a max pooling layer. This
helps reducing the computational cost in the upper layers. Then, the latent spaces are obtained by a
fully connected layer at the output of encoder as

H = Z×W + C. (2)

In equation 2, H denotes the hidden layer which contains the compressed sequences of input images,
Z represents the feature maps, whereas W and C are the feature weights and bias of the fully
connected layers, respectively. Note that in this model we choose the length of a latent vector to half
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Figure 1: Convolutional autoencoder block diagram for foreground/background extraction.

the size of an input image, which gives promising results to extract dynamics from image sequences
and for classification of videos.

Decoder: The proposed model of decoder follows a symmetric pattern of layers as in the encoder.
To reconstruct the input images at the decoder side, the latent sequences obtained from the encoder
are reshaped to a reconstructed version of feature maps Z′ via fullyconnected layer as

Z′ = H×W′ + C′, (3)

where W′ and C′ are the weights and bias of fullyconnected layer at the decoder side. Then,
up-sampling is applied after each convolutional layer and the final approximated image Ṽ1 is recon-
structed at the output of the last layer of Decoder by reshape function. Note that too much com-
pression in CAE will result in loss of information. Typically a simple loss function; Mean Square
Error (MSE) is calculated for convergence of the CAE model between the network output Ṽ1 i.e.,
output of decoder and the corresponding vectorized original video sequences V1. However, in the
proposed method DMD loss term is introduced and a modified objective function is implemented
for end-to-end learning.

MSE =
1

bs

T/bs∑
i=1

‖vbsi− ˜vbsi‖2 + λd‖H2 −UÃU ′H1‖2, (4)

where T is the total number of video sequences and bs is the batch size for training. The incorporated
DMD loss term in the objective function is used to minimize the DMD reconstruction error that
is controlled by the parameter λd. H1 and H2 are the encoded sequences and shifted encoded
sequences in time step, respectively. U , U ′ are orthogonal matrices and Ã is a low-dimensional
linear operator obtained by applying DMD on latent vectors (see Alg. 1).

DMD over Encoded Sequences: In the next step, original image sequences {v1,v2, . . . ,vT−1}
and {v2,v3, . . . ,vT } are fed to the trained CAE network to obtain the latent vectors of input image
sequences. The dimension of these latent vectors is spatially compressed as compared to input
sequences, DMD is applied on these vectors to obtain dynamic modes, those contain the complex
dynamic with low and high frequency information of the data with their corresponding eigenvalues.
These filtered latent vectors are further fed to the decoder for final approximation of video sequences.

4 VIDEO PROCESSING WITH CAE-DMD

For a given video frames V ∈ Rn1×n2×T , each frame {v1,v2, . . . ,vT } is flattened as column vector
and ordered in time. This arrangement of video frames gives a spatiotemporal grid, that is arranged
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in two overlapping sets of data called left and right image sequences defined as:

V1 =

[
v1,v2, . . . ,vT−1

]
,V2 =

[
v2,v3, . . . ,vT

]
. (5)

To obtain the DMD of a given video, it is assumed that its each frame vt+1 at time interval (t+1) is
connected to the previous frame vt by linear mapping Ã as V2 = ÃV1, the estimate of Ã and its
eigen decomposition is obtained by Alg. 1.

A set of dynamic modes Φ := {φ1, . . . ,φr} and the corresponding eigenvalues ∆ := {Λ1, . . . ,Λr}
obtained are used to reconstruct these image sequences Ṽ1 and Ṽ2 which are the approximation of
original video sequences. Here, r is the number of adopted eigenvectors. These modes represent the
slowly varying or rapidly moving objects at time points t ∈ {0, 1, 2 . . . , T − 1} in the video frames
with associated continuous-time frequencies and can be expressed as follows:

ωj =
log(Λj)

∆t
. (6)

Further, the approximated video frames for low- and high-frequency modes at any time point can be
reconstructed as

Ṽ (t) ≈
r∑

j=1

φjexp(ωjt)αj = Φexp(Ωt)α, (7)

whereφj is a column vector of the j-th dynamic mode that contains the spatial structure information
andαj is the initial amplitude of the corresponding DMD mode. The vector of the initial amplitudes
α can be obtained by taking the initial video frame at time t = 0, which reduces equation 7 to
v1 = Φα. Note that the matrix of eigenvectors is not square; thus, the initial amplitudes can be
observed using the following pseudoinverse process:

α = Φ†v1. (8)

Table 1: F-measures by CAE-DMD and the existing algorithms for foreground extraction on Wallflower dataset.

Dataset DECOLOR 3TD DP-GMM LSD TVRPCASRPCA LR-FSO MODSM GFL RFSA GRASTAMSCL-FL CAE-DMD
Wallflower 0.59 0.75 0.78 0.75 0.61 0.85 0.74 0.73 0.84 0.54 0.33 0.92 0.87

4.1 FOREGROUND INFORMATION EXTRACTION

Foreground segmentation and background estimation has been originated in many computer vision
applications such as moving object detection Zhou et al. (2013), video surveillance Bouwmans &
Zahzah (2014), motion detection Gao et al. (2014) and many others. A number of methods have been
proposed in literature to achieve this task. Ortego et al. (2016) proposed multipath reconstruction
for background estimation. Liu et al. (2015) estimated the background and foreground based on
low-rank and structured sparse matrix, respectively. The performance of these methods degrades if
the background is visible for a short period or in case of dynamic background. To overcome these
limitations Javed et al. (2017) proposed a method to incorporate the spatial and temporal sparse
subspace clustering into the Robust Principal Component Analysis (RPCA) Candès et al. (2011).
However in our proposed CAE-DMD method, we split the foreground and background based on the
DMD modes and their corresponding eigenvalues (frequencies). Thus one can extract not only the
background or foreground information but also other dynamics in the data, based on the frequency
information obtained after applying DMD on latent vectors. Figure 3 shows the case of splitting
foreground and background in the video.

The key principle to separate the video frames into foregrounds and the background is by thresh-
olding of low frequency modes based on the corresponding eigenvalues. Generally, the portion that
represents the background in videos is constant among the frames and satisfies |ωp| ≈ 0, where
p ∈ {1, 2, . . . , r}. Typically, a single mode represents the background, which is located near the
origin in complex space, whereas |ωj |,∀j 6= p are the eigenvalues that represent the foreground
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structures bounding away from the origin in complex plane. Therefore, the reconstructed video
frames can be separated into the background and foreground structures as follows:

VDMD = φpexp(ωpt)αp︸ ︷︷ ︸
Background

+
∑
j 6=p

φjexp(ωjt)αj︸ ︷︷ ︸
Foreground

, (9)

where t = {0, . . . , T − 1} is the time indices up to (T − 1) frames. Note that the initial amplitude
αp = φ†p{v1} of the stationary background is constant for all the future time points, whereas
αj = φ†j{v1},∀j 6= p are the initial amplitudes of varying foreground structures.

After filtering the DMD modes based on the eigenvalues, encoded sequences are reconstructed and
fed to the decoder to approximate the background and foreground structures in the video sequences.
Figure 3 shows a set five frames of Wallflower dataset (Bootstrap video sequences) of moving peo-
ple. Figure 3 second row shows the obtained eigenvalues each of which corresponds to either fore-
ground or background modes.

4.2 CLASSIFICATION OF VIDEOS

To extract the dynamics in videos several methods have been proposed for different applications
such as dynamic scene classification Derpanis et al. (2012), activity and action recognition Donahue
et al. (2015) in videos. Video classification using Convolutional Neural Networks (CNNs) have
been considered as an effective class of models, where the networks not only learn the appearance
information but also able to learn temporal evolution Karpathy et al. (2014); Du et al. (2015). In
these methods the temporal encoding is learned at a single level that is not sufficient to interpret
and understand the complex dynamics in video sequences. A more well suited method is proposed
by Cherian et al. (2017), they proposed a rank pooling method that takes input, features from the
intermediate layer of (CNN) trained on tiny subspaces. They use this low-rank approximation of
features while maintaining temporal order for compact representation of video sequences and then
use this for classification. A recently introduced discriminative hierarchical rank pooling method
Fernando et al. (2016) cope with the limitations in previous methods and proposes a novel method
to encode video sequences at multiple levels to capture the non-linear and complex dynamics. Some
of the famous traditional methods for one activity classification per video are: bag of features (BoF),
kernel dynamic system (KDS) Laptev et al. (2008), binary dynamic system (BDS) Niebles et al.
(2010), DTM Blei & Lafferty (2006), Attributes based LI & Vasconcelos (2012) and TOT those are
explained by LI & Vasconcelos (2012) .

In our proposed method, we classify the complex dynamics in videos through dynamic modes, ob-
tained by applying the DMD on latent spaces of input video sequences. In the next step of video
classification, orthogonal vectors of these DMD modes are calculated by applying singular value
decomposition (SVD) and then a projection kernel Hamm & Lee (2008) is computed on these or-
thogonal vectors. Finally, a supervised classifier is trained over this kernel with respective labels of
videos. The method to classify videos along with the projection kernel method is summarized in
Alg. 2.

5 EXPERIMENTAL RESULTS

5.1 EXTENDED (CAE-DMD) AND STANDARD DMD

To demonstrate the effectiveness of the proposed method, another experiment is performed on a
video of SBMnet1 dataset, where people are strolling in a terrace with no original background pro-
vided, so the extraction of dynamics becomes more challenging. To visualize and verify our method
we extracted foreground information from a set of 150 consecutive image sequences and then ap-
plied both methods i.e., standard and CAE-DMD. Results of standard and CAE-DMD are shown
in Figure 2 (a) and Figure 2 (b), respectively. It can be visualized in Figure 2 second row, that
standard DMD method is unable to reconstruct original image sequences because of the presence
of non-linear complex dynamics in video frames. On the other side, CAE-DMD can reconstruct

1http://scenebackgroundmodeling.net/
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Algorithm 2 CAE-DMD to classify videos.
Require: D and L, DMD modes and videos labels, respectively.
Ensure: L̃ predicted label.
1: U ← compact SVD of D.
2: for i = 1 to ns do . ns : total number of videos to train.
3: if i ≥ 2 then
4: for j = 1 to i− 1 do
5: K(i, j) = real (trace (Uj ∗U∗

j )(Ui ∗U∗
i ))

6: K(j, i) = K(i, j) . K: kernel
7: end for
8: end if
9: end for

10: Train KNN classifier over K and L. . KNN: k-nearest neighbors
11: L̃← predict with test data.

original image sequences more accurately, which shows that by applying DMD on latent vectors
can effectively minimize the reconstruction error; that shows the method is capable of handling the
non-linearity in data. Further, the dynamic and static information in the video can easily be sepa-
rated with CAE-DMD shown in Figure 2 third-row. Figure 2 fourth-row shows the threshold image
sequences after foreground extraction.

(a)

(a) (b)

Figure 2: Dynamics extraction in Standard and Extended (CAE) DMD; (a) Standard DMD. (b) CAE-DMD.
First row: original Image sequences of walking people; Second row: Image reconstruction by standard and
CAE-DMD; Third row: dynamics extraction; Last row: Threshold image sequences.

We also empirically investigated the performance of CAE-DMD based on comparisons with several
existing algorithms in the scenarios of foreground extraction in Subsection 5.2, and video classifica-
tion in Subsection 5.3.

Experimental details: We utilize convolutional autoencoder network to represent each video frame
by a latent vector obtained by a fully connected layer, the length of each latent vector is set to half
of the input image size, with a filter size of 5x5 and stride of one, unless otherwise specified. The
network is implemented in python with Tensorflow package and parameters such as batch size of
16, learning rate 1e−4, number of epochs 500 1000, and optimization is done with adam optimizer.
To avoid overfitting a dropout of 0.5 was used. Test, validation and train data is separated as 10%,
10% and 80%, respectively for foreground extraction tasks. Note that the optimal values of these
parameters were manually tuned and set to those where the best performance was achieved. Total
time to reconstruct a batch of images was 1-2.5s, after training of video frames.

5.2 FOREGROUND EXTRACTION

We applied the proposed method to extract foreground structures from the background using the
wallflower dataset.2 This dataset contains six video sequences (Moved Object, Camouflage, Fore-
ground Aperture, Light Switch, Time of Day and Waving Trees) and a single hand segmented
ground-truth image for each sequence. The results are compared with the state-of-the-art meth-
ods, such as DECOLOR Zhou et al. (2013), 3TD Oreifej et al. (2013), DP-GMMHaines & Xiang

2http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
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(2014), LSD Liu et al. (2015), TVRPCA Cao et al. (2016), SRPCA Javed et al. (2018), LR-FSO Xue
et al. (2013), MODSM, GFL Xin et al. (2015), RFSA Guo et al. (2014), GRASTA He et al. (2012)
and MSCL-FL Javed et al. (2017). Figure 4 shows some examples of results by CAE-DMD for fore-
ground extraction. The first column shows the original frames of video sequences. The estimated
backgrounds by CAE-DMD is shown in the second column followed by difference images in the
third column. The estimated foreground images by our method and the hand segmented ground-truth
images of corresponding videos are shown in fourth and fifth columns, respectively. The difference
image was calculated by considering the absolute difference between the original frames and their
respective backgrounds. To further enhance the accuracy of the extracted foreground structures,
morphological operations were applied to fill the empty holes and to connect the unconnected bina-
ry pixels followed by thresholding. The performance of CAE-DMD calculated by F-measure values
are shown in Table 1, that shows the our method is competitive with other state-of-the-art proposed
methods.

Figure 3: Splitting foreground and the background in
Wallflower dataset (Bootstrap video sequences).

Figure 4: Wallflower dataset; first column frames of o-
riginal videos; Estimated backgrounds are shown in the
second column; Difference and threshold images are
shown in column three and fourth respectively. Fifth
column shows the enhanced images after applying mor-
phological operations.

Table 2: Classification accuracy on Weizmann Activities.

Dataset BoF ATTRIBUTES DTM TOT KDS BDS CAE-DMD
Weizmann Activities 57.8% 72.6% 84.6% 88.2% 90.2% 94.8% 91.1%

5.3 VIDEO CLASSIFICATION

Our second experiment is the classification of videos based on the dynamics they contain. We used
Weizmann dataset3 to classify different actions in videos. We consider this dataset suitable for our
experiments, since it contains one particular action per video with 10 classes of different actions
e.g., (Bend, Jack, Jump, Pjump, Run, Side, Skip, Walk, Wave1 and Wave2) performed by 9 different
subjects. Next we classify these activities with a 9-fold leave-one-out-cross-validation (LOOCV),
where for each trial the activities of one subject were used as test set and those of the remaining
8 as a training set. The classification accuracy of our method is presented in Table 2, that shows
classification through modal representations using DMD on latent vectors can be used to classify
videos containing different actions.

6 CONCLUSIONS

We proposed a universal modal embedding of dynamics by CAE-DMD that is an extended DMD
method to extract complex underlying dynamics in general multivariate time series data. The ex-
perimental results show that our modal embedding method; a dimensionality reduction spatially and
temporally can effectively extract the underlying dynamics in videos. To verify our method we con-
sider two applications: foreground extraction and videos classification. Comparable performance
achieved on these applications exhibit that this method can be applied on any multivariate-time
series data to extract complex and non-linear dynamics.

3http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
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